Analysis and evaluation of the thermal performance of roofing systems used in dry construction for residential buildings located in the city of Santiago de Cali and its area of influence
Main Article Content
The following research work is part of the comparative evaluation of roofing materials marketed in the city of Cali and the area of influence and the elements that complement it, such as: Roof base and / or ceiling, establishing their thermal insulation capacity in the face of solar radiation, conduction and absorption phenomena occurring on the roof surface and at the level of the interior space.
The research is structured based on the bimodal climatology (two dry periods and two rain periods interspersed) of the
place. The test tubes (modules of 1 x 1 m) are located in the vicinity between Cali and Santander de Quilichao under
real atmospheric conditions, taking into account the data issued by the Institute of Hydrology, Meteorology and
Environmental Studies "IDEAM" and those thrown by the thermal measurement equipment located inside and outside
the modules.
Under this approach, different techno-constructive roof solutions are assembled in complete specimens whose walls do not include architectural management variables such as door and window openings. These envelopes, together with the floor envelope, are made in a sandwich panel system with a 10 cm polyurethane foam insulation that allows the variable walls to be isolated from the roof envelope given the phenomenon of thermal inertia.
Next step, the temperature measurements are made inside and outside the test pieces since September 2017 and on the roof surface (Interior, exterior), determining the factors that trigger the increase in temperature within the space at a rate of the physical properties of the materials and of the heat transfer phenomena, the data is subsequently processed through a statistical analysis where maximum, minimum and average temperatures related to the hours are estimated for each module.
(1) Decreto 1285. Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio, en lo relacionado con los lineamientos de construcción sostenible para edificaciones. 2015.
(2) Vidal S & Barona J. Análisis y evaluación del desempeño térmico del sistema de construcción liviana en seco en edificaciones de vivienda. 1era ed. Cali;2019.
(3) Godoy-Vaca L., Vallejo-Coral E. C., Martínez-Gómez, J., Orozco, M., & Villacreses, G. Predicted Medium Vote Thermal Comfort Analysis Applying Energy Simulations with Phase Change Materials for Very Hot-Humid Climates in Social Housing in Ecuador. Sustainability [Internet]. 2021; 13(20). Taken from: https://doi.org/10.3390/su13031257.
(4) Bravo-Orlandini C., Gómez-Soberón J. M., Valderrama-Ulloa, C., & Sanhueza-Durán, F. Energy, Economic, and Environmental Performance of a Single-Family House in Chile Built to Passivhaus Standard. Sustainability [Internet]. 2021; 13(3). Taken from: https://doi.org/10.3390/su13031199.
(5) Garzón B. Arquitectura Bioclimática. 1era ed. Buenos Aires: Nobuko ;2007, 48.
(6) Callejas I. J. A., Durante, L. C., Guarda, E. L. A. da, & Apolonio, R. M. Thermal Performance of Partially Bermed Earth-Sheltered House: Measure for Adapting to Climate Change in a Tropical Climate Region. Multidisciplinary Digital Publishing Institute Proceedings [Internet]. 2020; 1(2). Tomado de: https://doi.org/10.3390/WEF-06919.
(7) Dias A. A. C. Avaliação da perceção da influência do conforto térmico na produtivida de [ internet master's thesis in human engineering]. Portugal: Minho University; 2013. 22. Taken from: http://hdl.handle.net/1822/27247.
(8) Faria L. C. de, Romero M. A., & Pirró, L. F. S. Evaluation of a Coupled Model to Predict the Impact of Adaptive Behavior in the Thermal Sensation of Occupants of Naturally Ventilated Buildings in Warm-Humid Regions. Sustainability [Internet]. 2021. Taken from: https://doi.org/10.3390/su13010255.
(9) ASHRAE; ANSI. Standard 55-2017: Thermal Environmental Conditions for Human Occupancy. 2017.
(10) Mavrigiannaki A., & Ampatzi E. Latent heat storage in building elements: A systematic review on properties and contextual performance factors. Renewable and Sustainable Energy Reviews [Internet]. 2016. Taken from: https://doi.org/10.1016/j.rser.2016.01.115
(11) Nowogońska B., & Mielczarek M. Renovation Management Method in Neglected Buildings. Sustainability. [Internet]. 2021.Taken from: DOI: 10.3390 / su13020929
(12) Escobar Ruiz V. La cubierta ventilada metálica en el clima cálido húmedo. [Doctoral thesis in architecture, energy and the environment]. Barcelona: Polytechnic University of Cataluña;2017. 159. Taken from: http://hdl.handle.net/2117/115033
(13) Lobo Z., González Cortina M., & Técnico, A. Análisis mediante CFD del comportamiento de la teja cerámica con estructura celular.2010
(14) Sánchez Amono M. P. Estudio de la viabilidad de aplicación de polietileno y caucho reciclados para un sistema constructivo de cubierta. [Doctoral thesis in engineering, mention materials]. Córdoba: National Technological University; 2018. 44. Taken from: http://hdl.handle.net/11336/88638.
(15) Chávez Molina M. W., Martínez Figueroa L. A., Cisneros Mayén C. A., Rodríguez L., Vidal Vidales A. C., & Miranda J. R. (2015). Experimental investigation of the thermal behavior of roof construction systems. 1era ed: Graphic workshops UCA. El Salvador ;2015.
(16) Kuhnhenne M., Wiegand A., Forschungsprojekt D., & Lösungen B. (2017). Bauen im Bestand – Lösungen für Dach und Fassade in Stahlleichtbauweise. [Internet].2017. Taken from: https://doi.org/10.1002/stab.201710535
(17) Möller R., Peter H., & Schwarze K. Planen und Bauen MIT Trapezprofilen und Sandwichelementen 2: Gestaltung, Planung, Ausführung. 1era ed. Vol 2: Ernst & Sohn. Berlín;2011.
(18) Díaz O. La cubierta metálica en el clima cálido húmedo: análisis del comportamiento térmico y efecto en el confort del techo de zinc de la vivienda vernácula dominicana. [ Master's thesis in architecture energy and environment]. Barcelona: Polytechnic University of Cataluña;2012. 54. Taken from: http://hdl.handle.net/2099.1/16662.
(19) Valachova D., Badurova A., & Skotnicova I. Thermal Technical Analysis of Lightweight Timber-Based External Wall Structures with Ventilated Air Gap. [Internet]. 2021. Taken from: https://doi.org/10.3390/su13010378
(20) Olgyay V., & Frontado J. Arquitectura y clima: manual de diseño bioclimático para arquitectos y urbanistas. Gustavo Gili. 1998.
(21) Macias J., Soriano G., Sánchez H. y Canchingre Y. Assessment of solar reflectance of roofing assemblies of dwellings in Guayaquil, Ecuador. [Internet]. 2015. 195 (312). Taken from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202019000400303&lng=es&nrm=iso
(22) Calderón F. An evaluation of the improvement of thermal comfort with the incorporation of sustainable materials in self-build dwellings in Bosa, Bogotá. [Internet]. 2019. Taken from: http://dx.doi.org/10.22320/07190700.2019.09.02.03.
(23) Semana´s Magazine “La Nueva Generación de Cubiertas para el Sector de la Construcción en Colombia” [Internet]. 2015. Taken from: https://www.semana.com/especialescomerciales/articulo/la-nueva-generacion-de-cubiertas-para-el-sector-de-laconstruccion/440263-3/
(24) Groat L. N., & Wang, D. Architectural research methods. John Wiley & Sons. 2013.
(25) Heim D., & Wieprzkowicz, A. Attenuation of temperature fluctuations on an external surface of the wall by a phase change material-activated layer. Applied Sciences. [Internet]. 2018. 5. Taken from: https://doi.org/10.3390/app8010011.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).