Contenido principal del artículo

According to the decree 1285 (1), regulating the approaches of sustainable construction in Colombia as part of the inclusion of "Environmental Criteria for the Design and Construction of Urban Housing" of the Ministry of Environment and Sustainable Development, the following research work is part of the management of passive measures for the improvement of the thermal condition of housing buildings.


Under this approach, the analysis of envelopes (walls and roofing) is key to enriching the proposals for improving thermal comfort focused on light dry construction systems and their components. In the case of walls, described and expanded in the text "Analysis and Evaluation of thermal performance of the Light Dry Construction System in Residential Buildings” (2), factors that trigger heating inside the spaces due to heat transfer phenomena are detected. In this section we isolate the roof variable that is addressed in the current project, called "Analysis and evaluation of the thermal performance of roofing systems used in dry constructions for Residential buildings located in the city of Santiago de Cali and its area of influence", where different roofing solutions are tested in the field considering this variable as fundamental in the analysis, thermal comparison and evaluation, not including architectural management variables that can be simulated later (openings of gaps in specimens and arrangement of spaces).


At the same time, they considered technical aspects that were successful in the previous study, being that they determined the behavior of the components of the construction system and their location; These mechanisms include ventilated chamber and well-performing thermal insulation such as glass wool and polyester foam


 

1.
Vidal S, Barona J. Analysis and evaluation of the thermal performance of roofing systems used in dry construction for residential buildings located in the city of Santiago de Cali and its area of influence. inycomp [Internet]. 30 de diciembre de 2022 [citado 27 de enero de 2023];25(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11363

(1) Decreto 1285. Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio, en lo relacionado con los lineamientos de construcción sostenible para edificaciones. 2015.

(2) Vidal S & Barona J. Análisis y evaluación del desempeño térmico del sistema de construcción liviana en seco en edificaciones de vivienda. 1era ed. Cali;2019.

(3) Godoy-Vaca L., Vallejo-Coral E. C., Martínez-Gómez, J., Orozco, M., & Villacreses, G. Predicted Medium Vote Thermal Comfort Analysis Applying Energy Simulations with Phase Change Materials for Very Hot-Humid Climates in Social Housing in Ecuador. Sustainability [Internet]. 2021; 13(20). Taken from: https://doi.org/10.3390/su13031257.

(4) Bravo-Orlandini C., Gómez-Soberón J. M., Valderrama-Ulloa, C., & Sanhueza-Durán, F. Energy, Economic, and Environmental Performance of a Single-Family House in Chile Built to Passivhaus Standard. Sustainability [Internet]. 2021; 13(3). Taken from: https://doi.org/10.3390/su13031199.

(5) Garzón B. Arquitectura Bioclimática. 1era ed. Buenos Aires: Nobuko ;2007, 48.

(6) Callejas I. J. A., Durante, L. C., Guarda, E. L. A. da, & Apolonio, R. M. Thermal Performance of Partially Bermed Earth-Sheltered House: Measure for Adapting to Climate Change in a Tropical Climate Region. Multidisciplinary Digital Publishing Institute Proceedings [Internet]. 2020; 1(2). Tomado de: https://doi.org/10.3390/WEF-06919.

(7) Dias A. A. C. Avaliação da perceção da influência do conforto térmico na produtivida de [ internet master's thesis in human engineering]. Portugal: Minho University; 2013. 22. Taken from: http://hdl.handle.net/1822/27247.

(8) Faria L. C. de, Romero M. A., & Pirró, L. F. S. Evaluation of a Coupled Model to Predict the Impact of Adaptive Behavior in the Thermal Sensation of Occupants of Naturally Ventilated Buildings in Warm-Humid Regions. Sustainability [Internet]. 2021. Taken from: https://doi.org/10.3390/su13010255.

(9) ASHRAE; ANSI. Standard 55-2017: Thermal Environmental Conditions for Human Occupancy. 2017.

(10) Mavrigiannaki A., & Ampatzi E. Latent heat storage in building elements: A systematic review on properties and contextual performance factors. Renewable and Sustainable Energy Reviews [Internet]. 2016. Taken from: https://doi.org/10.1016/j.rser.2016.01.115

(11) Nowogońska B., & Mielczarek M. Renovation Management Method in Neglected Buildings. Sustainability. [Internet]. 2021.Taken from: DOI: 10.3390 / su13020929

(12) Escobar Ruiz V. La cubierta ventilada metálica en el clima cálido húmedo. [Doctoral thesis in architecture, energy and the environment]. Barcelona: Polytechnic University of Cataluña;2017. 159. Taken from: http://hdl.handle.net/2117/115033

(13) Lobo Z., González Cortina M., & Técnico, A. Análisis mediante CFD del comportamiento de la teja cerámica con estructura celular.2010

(14) Sánchez Amono M. P. Estudio de la viabilidad de aplicación de polietileno y caucho reciclados para un sistema constructivo de cubierta. [Doctoral thesis in engineering, mention materials]. Córdoba: National Technological University; 2018. 44. Taken from: http://hdl.handle.net/11336/88638.

(15) Chávez Molina M. W., Martínez Figueroa L. A., Cisneros Mayén C. A., Rodríguez L., Vidal Vidales A. C., & Miranda J. R. (2015). Experimental investigation of the thermal behavior of roof construction systems. 1era ed: Graphic workshops UCA. El Salvador ;2015.

(16) Kuhnhenne M., Wiegand A., Forschungsprojekt D., & Lösungen B. (2017). Bauen im Bestand – Lösungen für Dach und Fassade in Stahlleichtbauweise. [Internet].2017. Taken from: https://doi.org/10.1002/stab.201710535

(17) Möller R., Peter H., & Schwarze K. Planen und Bauen MIT Trapezprofilen und Sandwichelementen 2: Gestaltung, Planung, Ausführung. 1era ed. Vol 2: Ernst & Sohn. Berlín;2011.

(18) Díaz O. La cubierta metálica en el clima cálido húmedo: análisis del comportamiento térmico y efecto en el confort del techo de zinc de la vivienda vernácula dominicana. [ Master's thesis in architecture energy and environment]. Barcelona: Polytechnic University of Cataluña;2012. 54. Taken from: http://hdl.handle.net/2099.1/16662.

(19) Valachova D., Badurova A., & Skotnicova I. Thermal Technical Analysis of Lightweight Timber-Based External Wall Structures with Ventilated Air Gap. [Internet]. 2021. Taken from: https://doi.org/10.3390/su13010378

(20) Olgyay V., & Frontado J. Arquitectura y clima: manual de diseño bioclimático para arquitectos y urbanistas. Gustavo Gili. 1998.

(21) Macias J., Soriano G., Sánchez H. y Canchingre Y. Assessment of solar reflectance of roofing assemblies of dwellings in Guayaquil, Ecuador. [Internet]. 2015. 195 (312). Taken from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202019000400303&lng=es&nrm=iso

(22) Calderón F. An evaluation of the improvement of thermal comfort with the incorporation of sustainable materials in self-build dwellings in Bosa, Bogotá. [Internet]. 2019. Taken from: http://dx.doi.org/10.22320/07190700.2019.09.02.03.

(23) Semana´s Magazine “La Nueva Generación de Cubiertas para el Sector de la Construcción en Colombia” [Internet]. 2015. Taken from: https://www.semana.com/especialescomerciales/articulo/la-nueva-generacion-de-cubiertas-para-el-sector-de-laconstruccion/440263-3/

(24) Groat L. N., & Wang, D. Architectural research methods. John Wiley & Sons. 2013.

(25) Heim D., & Wieprzkowicz, A. Attenuation of temperature fluctuations on an external surface of the wall by a phase change material-activated layer. Applied Sciences. [Internet]. 2018. 5. Taken from: https://doi.org/10.3390/app8010011.