Contenido principal del artículo

Los lixiviados de rellenos sanitarios son efluentes generados por la degradación de los residuos sólidos y la percolación del agua lluvia, que arrastra las sustancias orgánicas e inorgánicas y que esta caracterizado por ser un líquido de color oscuro con compuestos tóxicos, peligrosos, patogénicos, entre otras. Es importante mencionar, que de no recibir un adecuado tratamiento tienen la capacidad de afectar negativamente el medio ambiente. No obstante, se ha demostrado que al utilizar procesos de oxidación avanzada acoplados a tratamientos biológicos se logra reducir la carga contaminante de este líquido residual. Con el objetivo de determinar los impactos sobre los componente biótico, abiótico y socioeconómico, en la actual investigación se llevó a cabo un “Scoping”, que sirvió como insumo para la cuantificación del impacto ambiental realizada a través de la metodología de Conesa. Como resultado principal se obtuvo que las fugas de lixiviado durante le procesos de tratamiento afectan notoriamente la calidad del agua y a su vez alteran el equilibrio del ecosistema con el que entran en contacto. Como medida correctiva se planteó, ejercer medidas de control sobre las tuberías y el flujo del sistema para evitar esta contingencia. Positivamente se destaca el cumplimiento de los Objetivos de Desarrollo Sostenible y el aumento de la disponibilidad del recurso hídrico gracias a la efectividad del tratamiento realizado.  

1.
Villamizar S, Soto-Verjel J, Maturana Cordoba A, Pacheco Bustos CA. Scoping acoplado a la metodología de Conesa para la evaluación ambiental de un sistema avanzado de descontaminación de lixiviado de relleno sanitario. inycomp [Internet]. 26 de mayo de 2022 [citado 26 de junio de 2022];24(02):25. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11359

Al-Jarallah R, Aleisa E. A baseline study characterizing the municipal solid waste in the State of Kuwait. Waste Manag [Internet]. 2014 May;34(5):952–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956053X14000671

Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Vol. 703, Science of the Total Environment. Elsevier B.V.; 2020. p. 135468.

Augustsson A, Uddh Söderberg T, Jarsjö J, Åström M, Olofsson B, Balfors B, et al. The risk of overestimating the risk-metal leaching to groundwater near contaminated glass waste deposits and exposure via drinking water. Sci Total Environ [Internet]. 2016 Oct;566–567:1420–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969716311676

Sauve G, Van Acker K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. J Environ Manage [Internet]. 2020 May;261:110216. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301479720301511

Laner D, Cencic O, Svensson N, Krook J. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining. Environ Sci Technol [Internet]. 2016 Jul 5;50(13):6882–91. Available from: https://pubs.acs.org/doi/10.1021/acs.est.6b01275

Sadler B, Mccabe M, Fuller K, Australia E, Ridgway B, Bailey J, et al. Environmental Impact Assessment Training Resource Manual This is the second edition of the EIA Training Resource Manual prepared by The Institute of Environmental Management and Assessment Centre for Environmental Assessment and Management United Nations [Internet]. 2002 [cited 2021 Apr 4]. Available from: http://www.unep.ch/etu

Dougherty TC, Hall AW. Chapter 3: EIA process. In: Environmental impact assessment of irrigation and drainage projects [Internet]. [cited 2021 Apr 4]. p. 11–28. Available from: http://www.fao.org/3/V8350E/v8350e06.htm

Vaccari M, Tudor T, Vinti G. Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: an overview. Waste Manag [Internet]. 2019 Jul;95:416–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956053X1930409X

Madon I, Drev D, Likar J. Long-term risk assessments comparing environmental performance of different types of sanitary landfills. Waste Manag [Internet]. 2019 Aug;96:96–107. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956053X19304477

Maiti SK, De S, Hazra T, Debsarkar A, Dutta A. Characterization of Leachate and Its Impact on Surface and Groundwater Quality of a Closed Dumpsite – A Case Study at Dhapa, Kolkata, India. Procedia Environ Sci [Internet]. 2016;35:391–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878029616301086

Yaghmaien K, Hadei M, Hopke P, Gharibzadeh S, Kermani M, Yarahmadi M, et al. Comparative health risk assessment of BTEX exposures from landfills, composting units, and leachate treatment plants. Air Qual Atmos Heal [Internet]. 2019 Apr 1;12(4):443–51. Available from: http://link.springer.com/10.1007/s11869-019-00669-w

Carney Almroth B, Cartine J, Jönander C, Karlsson M, Langlois J, Lindström M, et al. Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior. Ecotoxicol Environ Saf [Internet]. 2021 Jan;207:111523. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0147651320313609

Akdogan Z, Guven B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ Pollut [Internet]. 2019 Nov;254:113011. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0269749119302039

Nurhasanah, Cordova MR, Riani E. Micro- and mesoplastics release from the Indonesian municipal solid waste landfill leachate to the aquatic environment: Case study in Galuga Landfill Area, Indonesia. Mar Pollut Bull [Internet]. 2021 Feb;163:111986. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0025326X21000205

Schirinzi GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res [Internet]. 2017 Nov;159:579–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0013935117310770

Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull [Internet]. 2011 Dec;62(12):2588–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0025326X11005133

Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res [Internet]. 2015 May;75:63–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043135415000858

Tagg AS, Harrison JP, Ju-Nam Y, Sapp M, Bradley EL, Sinclair CJ, et al. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem Commun [Internet]. 2017;53(2):372–5. Available from: http://xlink.rsc.org/?DOI=C6CC08798A

Prata JC. Airborne microplastics: Consequences to human health? Environ Pollut [Internet]. 2018 Mar;234:115–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0269749117307686

Castillo E, Vergara M, Moreno Y. Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Manag. 2007;27(5):720–6.

Donneys-Victoria D, Marriaga-Cabrales N, Camargo-Amado RJ, Machuca-Martínez F, Peralta-Hernández JM, Martínez-Huitle CA. Treatment of landfill leachate by a combined process: Iron electrodissolution, iron oxidation by H2O2 and chemical flocculation. Sustain Environ Res. 2018 Jan 1;28(1):12–9.

Rebolledo LP, Arana VA, Trilleras J, Barros GE, González-Solano AJ, Maury-Ardila H. Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate. Water [Internet]. 2019 Jun 29 [cited 2020 Feb 25];11(7):1351. Available from: https://www.mdpi.com/2073-4441/11/7/1351

Becerra D, Soto J, Villamizar S, Machuca-Martínez F, Ramírez L. Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process. Top Catal [Internet]. 2020 May 28 [cited 2020 Jun 6];1–14. Available from: http://link.springer.com/10.1007/s11244-020-01284-1

Mayer F, Bhandari R, Gäth SA, Himanshu H, Stobernack N. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Sci Total Environ [Internet]. 2020 Jun;721:137731. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969720312420

Ziegler-Rodriguez K, Margallo M, Aldaco R, Vázquez-Rowe I, Kahhat R. Transitioning from open dumpsters to landfilling in Peru: Environmental benefits and challenges from a life-cycle perspective. J Clean Prod [Internet]. 2019 Aug;229:989–1003. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652619315252

Turner DA, Beaven RP, Woodman ND. Evaluating landfill aftercare strategies: A life cycle assessment approach. Waste Manag [Internet]. 2017 May;63:417–31. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956053X16307437

Lezama JL, Graizbord B. Medio ambiente [Internet]. 2010 [cited 2021 Apr 5]. Available from: http://ezproxy.uninorte.edu.co:2142/ehost/ebookviewer/ebook/bmxlYmtfXzEwMTc5OTJfX0FO0?sid=d98a4699-57fa-4c22-89d9-a4e509fc64b2@pdc-v-sessmgr02&vid=0&format=EK&lpid=navpoint5&rid=0

Chavarro Cadesa JE. estructuras y condiciones sociales y económicas [Internet]. Grupo Editorial Nueva Legislación SAS. 2017 [cited 2021 Apr 5]. p. 217. Available from: https://ezproxy.uninorte.edu.co:6051/es/ereader/unorte/68882

Toro Calderón J, Martínez Prada R. Métodos de Evaluación de Impacto Ambiental en Colombia. Rev Investig Agrar y Ambient [Internet]. 2013 Oct 15;4(2):43. Available from: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/990

FERNANDEZ-VITORIA V. Guía metodológica para la evaluación del impacto ambiental [Internet]. 2011 [cited 2021 Apr 4]. 203–318 p. Available from: https://books.google.com.co/books?hl=es&lr=&id=wa4SAQAAQBAJ&oi=fnd&pg=PP2&dq=Guia+Metodologica+para+la+evaluacion+del+impacto+ambiental.&ots=r-0dbNnf9u&sig=YLktm3bxmtg_-YW8tC9s4NfV5Oc#v=onepage&q=Guia Metodologica para la evaluacion del impacto ambiental.

Muñoz I, Peral J, Antonio Ayllón J, Malato S, Passarinho P, Domènech X. Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Res [Internet]. 2006 Nov;40(19):3533–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0043135406004490

Chemlal R, Azzouz L, Kernani R, Abdi N, Lounici H, Grib H, et al. Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol Eng [Internet]. 2014 Dec;73:281–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925857414004546

Niero M, Pizzol M, Bruun HG, Thomsen M. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J Clean Prod [Internet]. 2014 Apr;68:25–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652613009050

Dominguez S, Laso J, Margallo M, Aldaco R, Rivero MJ, Irabien Á, et al. LCA of greywater management within a water circular economy restorative thinking framework. Sci Total Environ [Internet]. 2018 Apr;621:1047–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0048969717328322

Cornejo PK, Zhang Q, Mihelcic JR. Quantifying benefits of resource recovery from sanitation provision in a developing world setting. J Environ Manage [Internet]. 2013 Dec;131:7–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301479713006439

Zepon Tarpani RR, Azapagic A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). J Environ Manage [Internet]. 2018 Jun;215:258–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301479718302743

Rutherford LA, Matthews SL, Doe KG, Julien GRJ. Aquatic Toxicity and Environmental Impact of Leachate Discharges from a Municipal Landfill. Water Qual Res J [Internet]. 2000 Feb 1;35(1):39–58. Available from: https://iwaponline.com/wqrj/article/35/1/39/40480/Aquatic-Toxicity-and-Environmental-Impact-of

Bove D, Merello S, Frumento D, Arni S Al, Aliakbarian B, Converti A. A Critical Review of Biological Processes and Technologies for Landfill Leachate Treatment. Chem Eng Technol [Internet]. 2015 Dec;38(12):2115–26. Available from: http://doi.wiley.com/10.1002/ceat.201500257

Feng D, Song C, Mo W. Environmental, human health, and economic implications of landfill leachate treatment for per- and polyfluoroalkyl substance removal. J Environ Manage [Internet]. 2021 Jul;289:112558. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301479721006204

Di Maria F, Sisani F. A life cycle assessment of conventional technologies for landfill leachate treatment. Environ Technol Innov [Internet]. 2017 Nov;8:411–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352186417300159

Dalun H, Abdullah MO. Regional leachate discharge, monitoring and the associated riverine pollutants propagation model simulation of Sungai Sarawak in Malaysia. J Clean Prod [Internet]. 2021 Jun;303:127091. Available from: https://linkinghub.elsevier.com/retrieve/pii/S095965262101310X

Ibor OR, Eni G, Andem AB, Bassey IU, Arong GA, Asor J, et al. Biotransformation and oxidative stress responses in relation to tissue contaminant burden in Clarias gariepinus exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. Chemosphere [Internet]. 2020 Aug;253:126630. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653520308237

Budi S, Suliasih BA, Othman MS, Heng LY, Surif S. Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Manag [Internet]. 2016 Sep;55:231–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956053X15301318

Chatzisymeon E, Foteinis S, Mantzavinos D, Tsoutsos T. Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment. J Clean Prod [Internet]. 2013 Sep;54:229–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S095965261300320X

Holloway RW, Miller-Robbie L, Patel M, Stokes JR, Munakata-Marr J, Dadakis J, et al. Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. J Memb Sci [Internet]. 2016 Jun;507:165–78. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037673881630045X

Sathya U, Keerthi, Nithya M, Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J Environ Manage [Internet]. 2019 Sep;246:768–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301479719308278

Calderón Márquez AJ, Cassettari Filho PC, Rutkowski EW, de Lima Isaac R. Landfill mining as a strategic tool towards global sustainable development. J Clean Prod [Internet]. 2019 Jul;226:1102–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652619311345

Descargas

Los datos de descargas todavía no están disponibles.