Scoping acoplado a la metodología de Conesa para la evaluación ambiental de un sistema avanzado de descontaminación de lixiviado de relleno sanitario
Contenido principal del artículo
Los lixiviados de rellenos sanitarios son efluentes generados por la degradación de los residuos sólidos y lapercolación del agua lluvia, caracterizados por ser un líquido de color oscuro con compuestos tóxicos, peligrosos, patogénicos, entre otras, que al ser descontaminados mediante procesos de oxidación avanzada acoplados a tratamientos biológicos logran efluentes con baja peligrosidad. A pesar de los beneficios otorgados por estas combinaciones, los investigadores usualmente se enfocan en analizar solo el efluente resultante, ignorando el impacto ambiental generado en la construcción, puesta en marcha y mantenimiento de los tratamientos, existiendo una brecha de conocimiento al no encontrarse suficiente bibliografía de trabajos que combinen el Scoping y la metodología de Conesa sobre tratamientos acoplados para la descontaminación de lixiviados, en la cuantificación del impacto ambiental. Atendiendo a lo mencionado, el presente manuscrito determinó los impactos sobre los componente biótico, abiótico y socioeconómico
que genera acoplar un sistema fotocatalítico con un proceso biológico, para lo que se utilizó la técnica del Scoping como insumo de la cuantificación del impacto ambiental realizada a través de la metodología de Conesa, obteniendo como conclusión que impactos generados por fugas de lixiviado, así como los generados por los residuos y consumo de energía son considerados como críticos en los tratamientos y futuros investigadores que trabajen en el tema deben controlar, prevenir o mitigar. Finalmente, se destaca la presencia de impactos positivos de los tratamientos tales como el aumento de la disponibilidad del recurso hídrico gracias a la efectividad del tratamiento realizado y el cumplimiento de los Objetivos de Desarrollo Sostenible.
(1) Al-Jarallah R, Aleisa E. A baseline study characterizing the municipal solid waste in the State of Kuwait. Waste Manag [Internet]. 2014 May;34(5):952–60. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0956053X14000671 DOI: https://doi.org/10.1016/j.wasman.2014.02.015
(2) Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Vol. 703, Science of the Total Environment. Elsevier B.V.; 2020. p. 135468.
(3) Augustsson A, Uddh Söderberg T, Jarsjö J, Åström M, Olofsson B, Balfors B, et al. The risk of overestimating the riskmetal leaching to groundwater near contaminated glass waste deposits and exposure via drinking water. Sci Total Environ [Internet]. 2016 Oct;566– 567:1420–31. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0048969716311676 DOI: https://doi.org/10.1016/j.scitotenv.2016.06.003
(4) Xiao S, Peng J, Song Y, Zhang D, Liu R, Zeng P. Degradation of biologically treated landfill leachate by using electrochemical process combined with UV irradiation. Sep Purif Technol [Internet]. 2013 Sep;117:24–9. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S1383586613002487 DOI: https://doi.org/10.1016/j.seppur.2013.04.024
(5) Ye Z, Zhang H, Yang L, Wu L, Qian Y, Geng J, et al. Effect of a solar FeredFenton system using a recirculation reactor on biologically treated landfill leachate. J Hazard Mater [Internet]. 2016 Dec;319:51–60. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0304389416300279 DOI: https://doi.org/10.1016/j.jhazmat.2016.01.027
(6) Xu Q, Siracusa G, Di Gregorio S, Yuan Q. COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs). Process Saf Environ Prot [Internet]. 2018 Nov;120:278–85. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0957582018308668 DOI: https://doi.org/10.1016/j.psep.2018.09.014
(7) Chen C, Feng H, Deng Y. Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Res [Internet]. 2019 Apr;153:100–7. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0043135419300478 DOI: https://doi.org/10.1016/j.watres.2019.01.013
(8) Gautam P, Kumar S, Lokhandwala S. Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. J Clean Prod [Internet]. 2019 Nov;237:117639. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652619324898 DOI: https://doi.org/10.1016/j.jclepro.2019.117639
(9) Del Moro G, Mancini A, Mascolo G, Di Iaconi C. Comparison of UV/H2O2based AOP as an end treatment or integrated with biological degradation for treating landfill leachates. Chem EngJ [Internet]. 2013 Feb;218:133–7.Available from: https://linkinghub.elsevier.com/retrieve/ pii/S1385894713000247 DOI: https://doi.org/10.1016/j.cej.2012.12.086
(10) Arimi MM. Integration of Fenton with biological and physical–chemical methods in the treatment of complex effluents: a review. Vol. 6, Environmental Technology Reviews. Taylor and Francis Ltd.; 2017. p. 156– 73. DOI: https://doi.org/10.1080/21622515.2017.1342699
(11) Oller I, Malato S, Sánchez-Pérez JA. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review. 2011; DOI: https://doi.org/10.1016/j.scitotenv.2010.08.061
(12) LAMOUR R, AZEVEDO E, LEITE S, DEZOTTI M. Removal of phenol in high salinity media by a hybrid process (activated sludge+photocatalysis). Sep Purif Technol [Internet]. 2008 Apr 20;60(2):142–6. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S1383586607003759 DOI: https://doi.org/10.1016/j.seppur.2007.08.008
(13) Dia O, Drogui P, Buelna G, Dubé R. Hybrid process, electrocoagulationbiofiltration for landfill leachate treatment. Waste Manag [Internet]. 2018 May;75:391–9. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0956053X18300825 DOI: https://doi.org/10.1016/j.wasman.2018.02.016
(14) Gripa E, Campos JC, da Fonseca F V. Combination of ozonation and microfiltration to condition landfill leachate for reverse osmosis treatment. J Water Process Eng [Internet]. 2021 Oct;43:102264. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S2214714421003512 DOI: https://doi.org/10.1016/j.jwpe.2021.102264
(15) Becerra D, Barrientos I, Rodriguez A, Machuca-Martinez F, Ramírez L. Treatment of Agricultural Wastewater with Chlorpyrifos by Coupling of Heterogeneous Photocatalysis and Anaerobic Biological Process. Top Catal [Internet]. 2020 Oct 29;63(11–14):1261– 71. Available from: https://link.springer.com/10.1007/s1124 4-020-01281-4 DOI: https://doi.org/10.1007/s11244-020-01281-4
(16) Colombo A, Módenes AN, Góes Trigueros DE, Giordani da Costa SI, Borba FH, Espinoza-Quiñones FR. Treatment of sanitary landfill leachate by the combination of photo-Fenton and biological processes. J Clean Prod [Internet]. 2019 Mar;214:145–53. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652618340411 DOI: https://doi.org/10.1016/j.jclepro.2018.12.310
(17) Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci (Ny) [Internet]. 1975 Jan;8(3):199–249. Available from: https://linkinghub.elsevier.com/retrieve/ pii/0020025575900365 DOI: https://doi.org/10.1016/0020-0255(75)90036-5
(18) Sauve G, Van Acker K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. J Environ Manage [Internet]. 2020 May;261:110216. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479720301511 DOI: https://doi.org/10.1016/j.jenvman.2020.110216
(19) Laner D, Cencic O, Svensson N, Krook J. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining. Environ Sci Technol [Internet]. 2016 Jul 5;50(13):6882–91. Available from: https://pubs.acs.org/doi/10.1021/acs.est. 6b01275 DOI: https://doi.org/10.1021/acs.est.6b01275
(20) Toro Calderón J, Martínez Prada R. Métodos de Evaluación de Impacto Ambiental en Colombia. Rev Investig Agrar y Ambient [Internet]. 2013 Oct 15;4(2):43. Available from: http://hemeroteca.unad.edu.co/index.php /riaa/article/view/990 DOI: https://doi.org/10.22490/21456453.990
(21) Villacreses G, Salinas SS, Ortiz WD, Villacís S, Martínez-Gómez J, Narváez C. RA. Environmental Impact Assessment of Internal Combustion and Electric Engines for Maritime Transport. Environ Process [Internet]. 2017 Dec 23;4(4):907–22. Available from: http://link.springer.com/10.1007/s40710- 017-0270-7 DOI: https://doi.org/10.1007/s40710-017-0270-7
(22) Alfonso Zorro NY, Díaz Sánchez SS, Gómez Hernández F. Propuesta de un sistema de gestión integrado basado en NTC-ISO 9001:2015, NTC-ISO 14001:2015 y el Decreto 1072 de 2015 (capítulo 6) para una empresa de atención médica domiciliaria. SIGNOS - Investig en Sist gestión [Internet]. 2017 Jan 1;9(1):45–57. Available from: https://revistas.usantotomas.edu.co/index .php/signos/article/view/4000 DOI: https://doi.org/10.15332/s2145-1389.2017.0001.03
(23) Lezama JL, Graizbord B. Medio ambiente [Internet]. 2010 [cited 2021 Apr 5]. Available from: http://ezproxy.uninorte.edu.co:2142/ehos t/ebookviewer/ebook/bmxlYmtfXzEwM Tc5OTJfX0FO0?sid=d98a4699-57fa4c22-89d9-a4e509fc64b2@pdc-v-sessmgr02&vid=0&format=EK&lpid=n avpoint5&rid=0
(24) Chavarro Cadesa JE. estructuras y condiciones sociales y económicas [Internet]. Grupo Editorial Nueva Legislación SAS. 2017 [cited 2021 Apr 5]. p. 217. Available from: https://ezproxy.uninorte.edu.co:6051/es/ ereader/unorte/68882
(25) Sadler B, Mccabe M, Fuller K, Australia E, Ridgway B, Bailey J, et al. Environmental Impact Assessment Training Resource Manual This is the second edition of the EIA Training Resource Manual prepared by The Institute of Environmental Management and Assessment Centre for Environmental Assessment and Management United Nations [Internet]. 2002 [cited 2021 Apr 4]. Available from: http://www.unep.ch/etu
(26) Koornneef J, Faaij A, Turkenburg W.The screening and scoping of Environmental Impact Assessment and Strategic Environmental Assessment of Carbon Capture and Storage in theNetherlands. Environ Impact Assess Rev [Internet]. 2008 Aug;28(6):392–414. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0195925507001266 DOI: https://doi.org/10.1016/j.eiar.2007.08.003
(27) Dougherty TC, Hall AW. Chapter 3: EIA process. In: Environmental impact assessment of irrigation and drainage projects [Internet]. [cited 2021 Apr 4]. p. 11–28. Available from: http://www.fao.org/3/V8350E/v8350e06 .htm
(28) Chemlal R, Azzouz L, Kernani R, Abdi N, Lounici H, Grib H, et al. Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol Eng. 2014;73:281–9.
(29) Vilar VJP, Rocha EMR, Mota FS, Fonseca A, Saraiva I, Boaventura RAR. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Res [Internet]. 2011 Apr;45(8):2647–58. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0043135411000753 DOI: https://doi.org/10.1016/j.watres.2011.02.019
(30) Titchou FE, Zazou H, Afanga H, El Gaayda J, Ait Akbour R, Nidheesh PV, et al. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem Eng Process - Process Intensif [Internet]. 2021 Dec;169:108631. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S025527012100324X DOI: https://doi.org/10.1016/j.cep.2021.108631
(31) Juan Pérez JI. Identificación y evaluación de impactos ambientales en el Campus Ciudad Universitaria, Universidad Autónoma del Estado de México, Cerro de Coatepec, Toluca México. Acta Univ [Internet]. 2017 Aug 2;27(3):36–56. Available from: http://148.214.150.50/index.php/acta/arti cle/view/1249 DOI: https://doi.org/10.15174/au.2017.1249
(32) Lijteroff R, Giorda EC, Dávila SA. Identificación y valoración de aspectos e impactos ambientales en la Dirección Nacional de Vialidad, Distrito San Luis, Argentina. Un caso de estudio. Gestión y Ambient. 2018;21(1):22–30. DOI: https://doi.org/10.15446/ga.v21n1.67364
(33) Darbra RM, Ronza A, Stojanovic TA, Wooldridge C, Casal J. A procedure for identifying significant environmental aspects in sea ports. Mar Pollut Bull [Internet]. 2005 Aug;50(8):866–74. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0025326X05001918 DOI: https://doi.org/10.1016/j.marpolbul.2005.04.037
(34) Marazza D, Bandini V, Contin A. Ranking environmental aspects in environmental management systems: A new method tested on local authorities. Environ Int [Internet]. 2010 Feb;36(2):168–79. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0160412009002177 DOI: https://doi.org/10.1016/j.envint.2009.10.011
(35) Snell T, Cowell R. Scoping in environmental impact assessment: Balancing precaution and efficiency? Environ Impact Assess Rev [Internet]. 2006 May;26(4):359–76. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0195925505001411 DOI: https://doi.org/10.1016/j.eiar.2005.06.003
(36) Wood G, Glasson J, Becker J. EIA scoping in England and Wales: Practitioner approaches, perspectivesand constraints. Environ Impact Assess Rev [Internet]. 2006 Apr;26(3):221–41. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0195925505000028 DOI: https://doi.org/10.1016/j.eiar.2005.02.001
(37) FERNANDEZ-VITORIA V. Guía metodológica para la evaluación del impacto ambiental [Internet]. 2011 [cited 2021 Apr 4]. 203–318 p. Available from: https://books.google.com.co/books?hl=e s&lr=&id=wa4SAQAAQBAJ&oi=fnd& pg=PP2&dq=Guia+Metodologica+para+ la+evaluacion+del+impacto+ambiental. &ots=r0dbNnf9u&sig=YLktm3bxmtg_- YW8tC9s4NfV5Oc#v=onepage&q=Gui a Metodologica para la evaluacion del impacto ambiental.
(38) Teng C, Zhou K, Peng C, Chen W. Characterization and treatment oflandfill leachate: A review. Water Res [Internet]. 2021 Sep;203:117525.Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0043135421007211 DOI: https://doi.org/10.1016/j.watres.2021.117525
(39) Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ [Internet]. 2020 Feb;703:135468. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0048969719354610 DOI: https://doi.org/10.1016/j.scitotenv.2019.135468
(40) Hassan M, Zhao Y, Xie B. Employing TiO 2 photocatalysis to deal with landfill leachate: Current status and development. Chem Eng J [Internet]. 2016 Feb;285:264–75. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S1385894715013649 DOI: https://doi.org/10.1016/j.cej.2015.09.093
(41) Poblete R, Otal E, Vilches LF, Vale J, Fernández-Pereira C. Photocatalytic degradation of humic acids and landfill leachate using a solid industrial byproduct containing TiO2 and Fe. Appl Catal B Environ [Internet]. 2011 Feb;102(1–2):172–9. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0926337310005278 DOI: https://doi.org/10.1016/j.apcatb.2010.11.039
(42) Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ [Internet]. 2012 Aug;125:331–49. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0926337312002391 DOI: https://doi.org/10.1016/j.apcatb.2012.05.036
(43) Lebron YAR, Moreira VR, Brasil YL, Silva AFR, Santos LV de S, Lange LC, et al. A survey on experiences in leachate treatment: Common practices,differences worldwide and future perspectives. J Environ Manage [Internet]. 2021 Jun;288:112475. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479721005375 DOI: https://doi.org/10.1016/j.jenvman.2021.112475
(44) Miao L, Yang G, Tao T, Peng Y. Recent advances in nitrogen removal from landfill leachate using biological treatments – A review. J Environ Manage [Internet]. 2019 Apr;235:178– 85. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S030147971930060X DOI: https://doi.org/10.1016/j.jenvman.2019.01.057
(45) Ehrig H-J, Stegmann R, Robinson T. Biological Leachate Treatment. In: Solid Waste Landfilling [Internet]. Elsevier; 2018. p. 541–74. Available from: https://linkinghub.elsevier.com/retrieve/ pii/B9780124077218000279 DOI: https://doi.org/10.1016/B978-0-12-407721-8.00027-9
(46) Chaturvedi H, Kaushal P. Comparative study of different Biological Processes for non-segregated Municipal Solid Waste (MSW) leachate treatment. Environ Technol Innov [Internet]. 2018 Feb;9:134–9. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S2352186417302717 DOI: https://doi.org/10.1016/j.eti.2017.11.008
(47) El-Gohary FA, Kamel G. Characterization and biological treatment of pre-treated landfill leachate. Ecol Eng [Internet]. 2016 Sep;94:268– 74. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0925857416303093 DOI: https://doi.org/10.1016/j.ecoleng.2016.05.074
(48) Muñoz I, Peral J, Antonio Ayllón J, Malato S, Passarinho P, Domènech X. Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Res [Internet]. 2006 Nov;40(19):3533–40. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0043135406004490 DOI: https://doi.org/10.1016/j.watres.2006.08.001
(49) Chemlal R, Azzouz L, Kernani R, Abdi N, Lounici H, Grib H, et al. Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol Eng [Internet]. 2014 Dec;73:281–9. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0925857414004546 DOI: https://doi.org/10.1016/j.ecoleng.2014.09.043
(50) Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, et al. Sequencing batch reactor technology for landfill leachate treatment: A state-ofthe-art review. J Environ Manage [Internet]. 2021 Mar;282:111946. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479721000086 DOI: https://doi.org/10.1016/j.jenvman.2021.111946
(51) O’Connor M, Garnier G, Batchelor W. Life cycle assessment comparison of industrial effluent management strategies. J Clean Prod [Internet]. 2014 Sep;79:168–81. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652614005435 DOI: https://doi.org/10.1016/j.jclepro.2014.05.066
(52) Postacchini L, Ciarapica FE, Bevilacqua M. Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. J Clean Prod [Internet]. 2018 May;183:1021–33. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652618305493 DOI: https://doi.org/10.1016/j.jclepro.2018.02.219
(53) Ortiz O, Pasqualino JC, Díez G, Castells F. The environmental impact of the construction phase: An application to composite walls from a life cycle perspective. Resour Conserv Recycl [Internet]. 2010 Sep;54(11):832–40. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0921344910000108 DOI: https://doi.org/10.1016/j.resconrec.2010.01.002
(54) Niero M, Pizzol M, Bruun HG, Thomsen M. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J Clean Prod [Internet]. 2014 Apr;68:25–35. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652613009050 DOI: https://doi.org/10.1016/j.jclepro.2013.12.051
(55) Dominguez S, Laso J, Margallo M, Aldaco R, Rivero MJ, Irabien Á, et al. LCA of greywater management within a water circular economy restorative thinking framework. Sci Total Environ [Internet]. 2018 Apr;621:1047–56. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0048969717328322 DOI: https://doi.org/10.1016/j.scitotenv.2017.10.122
(56) Muñoz I, Rodríguez A, Rosal R, Fernández-Alba AR. Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment. Sci Total Environ [Internet]. 2009 Feb;407(4):1245–56. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0048969708009996 DOI: https://doi.org/10.1016/j.scitotenv.2008.09.029
(57) Chatzisymeon E, Foteinis S, Mantzavinos D, Tsoutsos T. Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment. J Clean Prod [Internet]. 2013 Sep;54:229–34. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S095965261300320X DOI: https://doi.org/10.1016/j.jclepro.2013.05.013
(58) Ontiveros GA, Campanella EA. Environmental performance ofbiological nutrient removal processes from a life cycle perspective. Bioresour Technol [Internet]. 2013 Dec;150:506– 12. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0960852413012893 DOI: https://doi.org/10.1016/j.biortech.2013.08.059
(59) Cornejo PK, Zhang Q, Mihelcic JR. Quantifying benefits of resource recovery from sanitation provision in a developing world setting. J Environ Manage [Internet]. 2013 Dec;131:7–15. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479713006439 DOI: https://doi.org/10.1016/j.jenvman.2013.09.043
(60) Zepon Tarpani RR, Azapagic A. Life cycle environmental impacts ofadvanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). J Environ Manage [Internet]. 2018 Jun;215:258–72. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479718302743 DOI: https://doi.org/10.1016/j.jenvman.2018.03.047
(61) Rutherford LA, Matthews SL, Doe KG, Julien GRJ. Aquatic Toxicity and Environmental Impact of Leachate Discharges from a Municipal Landfill. Water Qual Res J [Internet]. 2000 Feb 1;35(1):39–58. Available from: https://iwaponline.com/wqrj/article/35/1/ 39/40480/Aquatic-Toxicity-andEnvironmental-Impact-of DOI: https://doi.org/10.2166/wqrj.2000.003
(62) Renzoni R, Germain A. Life Cycle Assessment of Water: From the pumping station to the wastewater treatment plant (9 pp). Int J Life Cycle Assess [Internet]. 2007 Mar 1;12(2):118–26. Available from: http://link.springer.com/10.1065/lca2005 .12.243 DOI: https://doi.org/10.1065/lca2005.12.243
(63) Muga HE, Mihelcic JR. Sustainability of wastewater treatment technologies. J Environ Manage [Internet]. 2008 Aug;88(3):437–47. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479707001028 DOI: https://doi.org/10.1016/j.jenvman.2007.03.008
(64) Chong MN, Sharma AK, Burn S, Saint CP. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. J Clean Prod [Internet]. 2012 Nov;35:230–8. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652612002867 DOI: https://doi.org/10.1016/j.jclepro.2012.06.003
(65) Bove D, Merello S, Frumento D, Arni S Al, Aliakbarian B, Converti A. A Critical Review of Biological Processes and Technologies for Landfill Leachate Treatment. Chem Eng Technol [Internet]. 2015 Dec;38(12):2115–26. Available from: http://doi.wiley.com/10.1002/ceat.20150 0257 DOI: https://doi.org/10.1002/ceat.201500257
(66) Feng D, Song C, Mo W. Environmental, human health, and economic implications of landfill leachatetreatment for per- and polyfluoroalkyl substance removal. J Environ Manage [Internet]. 2021 Jul;289:112558. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479721006204 DOI: https://doi.org/10.1016/j.jenvman.2021.112558
(67) Di Maria F, Sisani F. A life cycle assessment of conventional technologies for landfill leachate treatment. Environ Technol Innov [Internet]. 2017 Nov;8:411–22. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S2352186417300159 DOI: https://doi.org/10.1016/j.eti.2017.09.002
(68) Li Y, Luo X, Huang X, Wang D, Zhang W. Life Cycle Assessment of a municipal wastewater treatment plant: a case study in Suzhou, China. J CleanProd [Internet]. 2013 Oct;57:221–7. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652613003739 DOI: https://doi.org/10.1016/j.jclepro.2013.05.035
(69) Garfí M, Flores L, Ferrer I. Life Cycle Assessment of wastewater treatment systems for small communities:Activated sludge, constructed wetlandsand high rate algal ponds. J Clean Prod [Internet]. 2017 Sep;161:211–9.Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652617310569 DOI: https://doi.org/10.1016/j.jclepro.2017.05.116
(70) Dalun H, Abdullah MO. Regional leachate discharge, monitoring and the associated riverine pollutants propagation model simulation of Sungai Sarawak in Malaysia. J Clean Prod [Internet]. 2021 Jun;303:127091. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S095965262101310X DOI: https://doi.org/10.1016/j.jclepro.2021.127091
(71) Ibor OR, Eni G, Andem AB, Bassey IU, Arong GA, Asor J, et al. Biotransformation and oxidative stress responses in relation to tissue contaminant burden in Clarias gariepinus exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. Chemosphere [Internet]. 2020 Aug;253:126630. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0045653520308237 DOI: https://doi.org/10.1016/j.chemosphere.2020.126630
(72) Budi S, Suliasih BA, Othman MS, Heng LY, Surif S. Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Manag [Internet]. 2016 Sep;55:231–7. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0956053X15301318 DOI: https://doi.org/10.1016/j.wasman.2015.09.022
(73) Pesci Pereira C, da Conceição Pereira T, Gomes G, Quintaes BR, Bila DM, Campos JC. Evaluation of reduction estrogenic activity in the combined treatment of landfill leachate and sanitary sewage. Waste Manag [Internet]. 2018 Oct;80:339–48. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0956053X18305592 DOI: https://doi.org/10.1016/j.wasman.2018.09.018
(74) Ferraz FM, Povinelli J, Pozzi E, Vieira EM, Trofino JC. Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter. J Environ Manage [Internet]. 2014 Aug;141:9–15. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479714001728 DOI: https://doi.org/10.1016/j.jenvman.2014.03.022
(75) Sims N, Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ Int [Internet]. 2020 Jun;139:105689. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0160412020304542 DOI: https://doi.org/10.1016/j.envint.2020.105689
(76) Mayer F, Bhandari R, Gäth SA, Himanshu H, Stobernack N. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Sci Total Environ [Internet]. 2020 Jun;721:137731. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0048969720312420 DOI: https://doi.org/10.1016/j.scitotenv.2020.137731
(77) Ziegler-Rodriguez K, Margallo M, Aldaco R, Vázquez-Rowe I, Kahhat R. Transitioning from open dumpsters to landfilling in Peru: Environmental benefits and challenges from a life-cycle perspective. J Clean Prod [Internet]. 2019 Aug;229:989–1003. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652619315252 DOI: https://doi.org/10.1016/j.jclepro.2019.05.015
(78) Turner DA, Beaven RP, Woodman ND. Evaluating landfill aftercare strategies: A life cycle assessment approach. Waste Manag [Internet]. 2017 May;63:417–31. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0956053X16307437 DOI: https://doi.org/10.1016/j.wasman.2016.12.005
(79) Anand U, Li X, Sunita K, Lokhandwala S, Gautam P, Suresh S, et al. SARSCoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. Environ Res [Internet]. 2022 Jan;203:111839. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0013935121011336 DOI: https://doi.org/10.1016/j.envres.2021.111839
(80) Antonopoulou M, Kosma C, Albanis T, Konstantinou I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci Total Environ [Internet]. 2021 Apr;765:144163. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0048969720376944 DOI: https://doi.org/10.1016/j.scitotenv.2020.144163
(81) Sathya U, Keerthi, Nithya M, Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J Environ Manage [Internet]. 2019 Sep;246:768–75. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0301479719308278 DOI: https://doi.org/10.1016/j.jenvman.2019.06.039
(82) Calderón Márquez AJ, Cassettari Filho PC, Rutkowski EW, de Lima Isaac R. Landfill mining as a strategic tool towards global sustainable development. J Clean Prod [Internet]. 2019 Jul;226:1102–15. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0959652619311345 DOI: https://doi.org/10.1016/j.jclepro.2019.04.057
Aceptado 2021-10-28
Publicado 2022-05-26

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).