Molecular analysis of antagonist fungi isolated from plantations of cocoa (Theobroma cacao) from north of Santander
Main Article Content
Molecular biology techniques have been used in order to obtain specific species genetic markers, find polymorphic differences and provide the necessary information for the identification of nucleotide sequences related to pathogenicity factors in species related to biological control. At present, biological control is considered indispensable in the strategies of sustainable agriculture with agroecological base in crops, growing interest in Colombia such as cocoa (Theobroma cacao L.). Molecularly analyze different strains of antagonistic fungi with biotechnological potential in order to elucidate genomic similarities and the search for DNA fragments related to pathogenicity factors. The technique of RAPD (Randomized Amplified Polymorphic DNA) was standardized, using 10 primers, and the pr1 gene was amplified using the PCR technique using 6 pairs of primers. An initial classification of the population of antagonistic fungi was achieved and the diversity of the isolates was also demonstrated. In addition, three genes of the Beauveria bassiana, Trichoderma yunnanense and Purpureocillium lilacinus strains were amplified, which were found to encode a family of proteases designed to exert antagonistic activity against a wide range of hosts. It can be inferred that the strains under study are good initial candidates for the formulation of biopreparations destined to the biological control of plague organisms in crops of agricultural interest in the region, due to the fact that traits and genes were found that will allow to exert a wide antagonistic action.
(1) FEDECACAO. Economía Nacional [Internet]. 2019. Available from: https://www.fedecacao.com.co/portal/index.php/es/2015-02-12-17-20-59/nacionales.
(2) Evans HC. Cacao diseases - the trilogy revisited. Phytopathology. 2007;97(12):1640-1643. https://doi.org/10.1094/PHYTO-97-12-1640.
(3) Alves S. Hongos entomopatógenos. In: Alves S, editor. Control microbiano de insectos. Piracicaba: FEALQ; 1998. p. 289–381.
(4) Suarez L, Rangel A. Aislamiento de microorganismos para control biológico de Moniliophthora roreri. Acta Agronómica. 2013;62(4):370–378. Available from: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/36211.
(5) Suarez L, Cabrales CP. Identificación de especies de cepas nativas de Trichoderma sp., y Bacillus sp., y evaluación de su potencial antagonista in vitro frente al hongo patógeno nativo Moniliophthora roreri de la región nororiental en el departamento Norte de Santander. Respuestas. 2008;13(1):45-56.
(6) Suarez L. Aislamiento e identificación de Moniliophthora roreri causante de la moniliasis en municipios del nororiente colombiano y ensayos preliminares para su control biológico. Respuestas. 2006;11(1):3-9.
(7) Zambrano-Bullones K, Dávila M, Castillo M. Detección de fragmentos de ADN de hongos y su posible relación con la síntesis de proteínas de actividad entomopatógena. Revista de la Facultad de Agronomía. 2002;19(3):185-193.
(8) Súarez-contreras LY. Extracción y purificación del ADN de Moniliophthora roreri hongo que ataca el cacao, en norte de Santander. Respuestas. 2016;10(2):4-8.
(9) Dávila, Martha, Zambrano, Karla, Castillo, Miguel A., Uso de la técnica RAPD para la identificación de fragmentos de ADN posiblemente relacionados con virulencia en hongos entomopatógenos. Bioagro [Internet]. 2001;13(3):93-98.
(10) Rosas-García NM. Avalos-de-León O, Villegas-Mendoza JM, Mireles-Martínez M, E, Barboza-Corona JE, et. al. Correlation between pr1 and pr2 Gene Content and Virulence in Metarhizium anisopliae Strains. Journal of Microbiology and Biotechnology. 2014;24(11): 1495-1502. https://doi.org/10.4014/jmb.1404.04044.
(11) Avalos-de León O. Identificación y análisis de los genes productores de proteasas tipo subtilisina y tipo tripsina en el hongo Metarhizium anisopliae, como factores de virulencia para su aplicación en el control biológico de insectos plaga [Master’s Thesis]. Reynosa: Centro de Biotecnología genómica. 2011.
(12) Sambrook J, Russell DW. Molecular Cloning A Laboratory Manual. 3rd ed. New York: CSHL Press; 2001. 2344 p.
(13) Vega-Contreras NA, Galvis-Serrano NF, Salazar-Mercado SA. Relaciones evolutivas de los peces Prochilodus reticulatus y Prochilodus magdalenae (Characiformes: Prochilodontidae).
Revista de ciencias. 2017;21(1):163-173. https://doi.org/10.25100/rc.v21i1.6348.
(14) Gwanama C, Labuschagne M, Botha AM. Analysis of genetic variation in Cucurbita moschata by random amplified. Euphytica. 2000;113:19–24. https://doi.org/10.1023/A:1003936019095
(15) Latha J, Mukherjee P. PCR fingerprinting of some Trichoderma isolates from two Indian type culture collections a need for re-identification of these economically important fungi. Current Science. 2002;83(4):372-375. Available from: https://www.jstor.org/stable/24106834.
(16) Góes L, Lima-Da-Costa A, López-De-Carvalho-Freire L, Tinti-De-Oliveira N. Randomly Amplified Polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani. Brazilian Archives of Biology and Technology. 2002;45(2):151-160. https://doi.org/10.1590/S1516-89132002000200005.
(17) Bagga S, Hu G, Screen S, Leger RJ. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene. 2004;324:159-169. https://doi.org/10.1016/j.gene.2003.09.031
(18) Hernandez-Lauzardo AN, Bautista-Baños S, Velázquez-del Valle G, Hernández-Rodríguez A. Uso de Microorganismos Antagonistas en el Control de Enfermedades Postcosecha en Frutos. Revista mexicana de patologia. 2007;25(1):66-74.
(19) Cano MA. Interacción De Microorganismos Benéficos En Plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. Revista U.D.C.A Actualidad & Divulgación Científica. 2011;14(2):15-31. https://doi.org/10.31910/rudca.v14.n2.2011.771.
(20) Fernández-Larrea OV. Microorganismos antagonistas para el control Fitosanitario. Avances en el Fomento de Productos Fitosanitarios No-sintéticos. 2001;62:96-100.
(21) Freimoser FM, Screen S, Bagga S, Hu G, Leger RJ. Expressed sequence tag (EST)
analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect host. Microbiology. 2003;149(Pt 1):239-47. https://doi.org/10.1099/mic.0.25761-0.
(22) Charnley A. Fungal pathogens of insects: cuticle degrading enzymes and toxins. Advances in Botanical. 2003;40:241-321. https://doi.org/10.1016/S0065-2296(05)40006-3.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).