Contenido principal del artículo

Autores

Debido a los efectos adversos que tienen los hidrocarburos aromáticos policíclicos (HAP) en los ecosistemas de la bahía de Cartagena. Se realizó un análisis exergético a un proceso industrial de tratamiento de agua mediante el uso de un bioadsorbente a partir de quitosano modificado con nanopartículas ara evaluar el rendimiento energético del proceso y valorar su posible aplicación. En el software aspen plus se simuló el proceso y se sustrajeron valores de propiedades de las corrientes para el análisis. En este análisis se encontró que la etapa de recuperación de los solventes presenta las mayores irreversibilidades (284,251.2344 Mj/h), a diferencia de las otras etapas del proceso que presentaron irreversibilidades del orden de 10^2 (Mj/h), esto es debido al uso de energía térmica en el equipo de separación que tiende a perderse con más facilidad al usarse para realizar un trabajo útil. Además, se realizó un análisis de sensibilidad entra la etapa de adsorción y la de recuperación, este indica que, la eficiencia exergetica de la etapa de adsorción aumenta hasta un 99%, solo se presenta un aumento del 0.1% de la eficiencia global, mientras que un aumento del 0,4% de la eficiencia de la etapa de recuperación produce un cambio de 0.4%, esto señala, que esta etapa es crucial para aumentar la eficiencia exergetica global del proceso que fue de 15% e indica que este proceso tiene cabida de mejora para ser totalmente sostenible energéticamente. 

Ángel D. González-Delgado, 1Universidad de Cartagena, Facultad de Ingeniería, Departamento de Ingeniería Química, Grupo de Investigación de Nanopartículas e Ingeniería Asistida por Computador (NIPAC), Cartagena, Colombia.

https://orcid.org/0000-0001-8100-8888

1.
Aguilar-Vásquez EA, González-Delgado Ángel D. Análisis exergético de un proceso industrial para la remoción de hidrocarburos aromáticos policíclicos de agua de mar mediante microperlas de quitosano modificadas. inycomp [Internet]. 26 de mayo de 2022 [citado 12 de marzo de 2025];24(02):17. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11113

(1). Godinho JM, Lawhorn J, Boyes BE. Rapid analysis of polycyclic aromatic hydrocarbons. J Chromatogr A [Internet]. 2020;1628:461432. Available from: https://doi.org/10.1016/j.chroma.2020.461432

(2). Health Organization W. Polynuclear aromatic hydrocarbons in Drinking-water Background. Guidelines for Drinkingwater Quality. 2003.

(3). Hussar E, Richards S, Lin Z-Q, Dixon RP, Johnson KA. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA. Water Air Soil Pollut. 2013;223(9):5535–48.

(4). US Environment Protection Agency. Polycyclic Aromatic Hydrocarbons (PAHs) [Internet]. Environmental Health.2013. Available from: https://www.epa.gov/sites/production/files/2014-03/documents/pahs_factsheet_cdc_2013.pdf

(5). Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ [Internet]. 2021;773:145403. Available from: https://doi.org/10.1016/j.scitotenv.2021.1 45403

(6). Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci Total Environ [Internet]. 2019;696:133971. Available from: https://doi.org/10.1016/j.scitotenv.2019.133971

(7). Li R, Hua P, Zhang J, Krebs P. Effect of anthropogenic activities on the occurrence of polycyclic aromatic hydrocarbons in aquatic suspended particulate matter: Evidence from Rhine and Elbe Rivers. Water Res [Internet]. 2020;179:115901. Available from: https://doi.org/10.1016/j.watres.2020.115901

(8). Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet [Internet]. 2016;25(1):107–23. Available from: http://dx.doi.org/10.1016/j.ejpe.2015.03.011

(9). Johnson-Restrepo B, Olivero-Verbel J, Lu S, Guette-Fernández J, Baldiris-Avila R, O’Byrne-Hoyos I, et al. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ Pollut. 2008;151(3):452–9.

(10). Gaurav GK, Mehmood T, Kumar M, Cheng L, Sathishkumar K, Kumar A, etal. Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. J Contam Hydrol [Internet]. 2021;236(May 2020):103715. Available from: https://doi.org/10.1016/j.jconhyd.2020.103715

(11). Costa TC, Hendges LT, Temochko B, Mazur LP, Marinho BA, Weschenfelder SE, et al. Evaluation of the technical and environmental feasibility of adsorption process to remove water soluble organics from produced water: A review. J Pet Sci Eng. 2022;208(April 2021).

(12). Lamichhane S, Bal Krishna KC, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere [Internet]. 2016;148:336–53. Available from: http://dx.doi.org/10.1016/j.chemosphere. 2016.01.036

(13). Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour Technol. 2008;99(10):4515–9.

(14). Pal P, Pal A, Nakashima K, Yadav BK. Applications of chitosan in environmental remediation: A review. Chemosphere [Internet]. 2021;266:128934. Available from: https://doi.org/10.1016/j.chemosphere.20 20.128934

(15). Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S. Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook. Bioresour Technol [Internet]. 2017;242:295–303. Available from: http://dx.doi.org/10.1016/j.biortech.2017. 03.119

(16). Saheed IO, Oh W Da, Suah FBM. Chitosan modifications for adsorption of pollutants – A review. J Hazard Mater [Internet]. 2021;408(December 2020):124889. Available from: https://doi.org/10.1016/j.jhazmat.2020.12 4889

(17). Nisticò R, Franzoso F, Cesano F, Scarano D, Magnacca G, Parolo ME, et al. Chitosan-Derived Iron Oxide Systems for Magnetically Guided and Efficient Water Purification Processes from Polycyclic Aromatic Hydrocarbons. ACS Sustain Chem Eng. 2017;5(1):793–801.

(18). Solano RA, De León LD, De Ávila G, Herrera AP. Polycyclic aromatic hydrocarbons (PAHs) adsorption from aqueous solution using chitosan beads modified with thiourea, TiO2 and Fe3O4 nanoparticles. Environ Technol Innov [Internet]. 2021;21:101378. Available from: https://doi.org/10.1016/j.eti.2021.101378

(19). Oliveira RVM, Lima JRA, Cunha G da C, Romão LPC. Use of eco-friendly magnetic materials for the removal of polycyclic aromatic hydrocarbons and metals from environmental water samples. J Environ Chem Eng [Internet]. 2020;8(4):104050. Available from: https://doi.org/10.1016/j.jece.2020.10405 0

(20). Nisticò R, Cesano F, Franzoso F, Magnacca G, Scarano D, Funes IG, et al. From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons. Chemosphere. 2018;202:686–93.

(21). Zhang Y, Zhao M, Cheng Q, Wang C, Li H, Han X, et al. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere [Internet]. 2021;279(May):130927. Available from: https://doi.org/10.1016/j.chemosphere.2021.130927

(22). Sirajudheen P, Chettithodi N, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water — A comprehensive review. Carbohydr Polym. 2021;273(July).

(23). Meramo-Hurtado SI, Moreno-Sader KA, González-Delgado ÁD. Design, Simulation, and Environmental Assessment of an Adsorption-Based Treatment Process for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from Seawater and Sediments in North Colombia. ACS Omega. 2020;5(21):12126–35.

(24). Querol E, Gonzalez-Regueral B, PerezBenedito JL. Enfoque Práctico de Exergia y Análisis Termoeconómico de Procesos Industriales [Internet]. 2013. 93 p. Available from: http://www.springer.com/series/8903

(25). Van Gool W. Thermodynamics of chemical references for exergy analysis. Energy Convers Manag. 1998;39(16– 18):1719–28.

(26). de Oliveira S. Exergy: Production, cost and renewability. Vol. 63, Green Energy and Technology. 2013.

(27). Dincer I, Rosen MA. Exergy. Energy, Environment And Sustainable Development. Second. San Diego: Elsevier; 2013.

(28). Aghbashlo M, Mobli H, Rafiee S, Madadlou A. A review on exergy analysis of drying processes and systems. Renew Sustain Energy Rev [Internet]. 2013;22:1–22. Available from: http://dx.doi.org/10.1016/j.rser.2013.01.0 15

(29). Wittig WA, Jeng H. Exergy: Energy, Environment and Sustainable Development. 2005;1–6.

(30). Meramo-Hurtado S, Alarcón-Suesca C, González-Delgado ÁD. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. J Clean Prod. 2020;248.

(31). Sato N. Chemical Energy and Exergy: An Introduction to Chemical Thermodynamics for Engineers. Chemical Energy and Exergy: An Introduction to Chemical Thermodynamics for Engineers. 2004. 1– 149 p.

(32) Rivero R, Garfias M. Standard chemical exergy of elements updated. Energy. 2006;31(15):3310–26.

(33). Michalakakis C, Cullen JM, Gonzalez Hernandez A, Hallmark B. Exergy and network analysis of chemical sites. Sustain Prod Consum [Internet]. 2019;19:270–88. Available from: https://doi.org/10.1016/j.spc.2019.07.004

(34). Arshad A, Ali HM, Habib A, Bashir MA, Jabbal M, Yan Y. Energy and exergy analysis of fuel cells: A review. Therm Sci Eng Prog. 2019;9:308–21.

(35). Meramo-Hurtado S, Urbina-Suaréz N, González-Delgado Á. Computer-aided environmental and exergy analyses of a large-scale production of chitosan microbeads modified with TiO2 nanoparticles. J Clean Prod. 2019;237.

(36). Meramo-Hurtado S, Herrera-Barros A, González-Delgado Á. Evaluation oflargescale production of chitosan microbeads modified with nanoparticles based on exergy analysis. Energies. 2019;12(79).

Recibido 2021-03-31
Aceptado 2021-11-21
Publicado 2022-05-26