Applicability of UV absorbance as an indicator of Atrazine presence into risk management of water supply watersheds No applied
Main Article Content
The type of hazards and hazardous events in watersheds, depend on land uses around them. Atrazine is an organic pollutant widely applied as a pesticide and it is a potential chemical hazard present in water sources, which cause water pollution and negative effects on aquatic life and human health, due to its high solubility and persistence in soil. However, for developing countries, monitoring and quantification of atrazine can be complex and costly; thus, to contribute to establishing strategies for risk assessment in water supply watersheds, it was evaluated the potential use of an easy, rapid and low-cost technique such as ultraviolet (UV) absorbance to identify the presence of atrazine. It was conformed distilled and surface water samples doped with Atrazine, and there were correlated with the UV typical spectrum indicator of organic material presence (wavelength λ: 200 - 300 nm). The optimal λ range was 203 - 223 nm to identify this substance at levels possible to be found in surface sources, being UV223 more adequate than UV254, which is more used to identify the presence of natural organic matter, which shows that UV223 is a complementary tool to chemical risk assessment for atrazine in drinking water supply systems.
(1) Pérez-Vidal A, Torres-Lozada P, Escobar-Rivera J. Hazard identification in watersheds based on water safety plan approach: case study of Cali-Colombia. Environ. Eng. Manag. J. 2016;15(4):861–72.
(2) Hansen S, Messer L, Mittelstet A. Mitigating the risk of atrazine exposure: identifying hot spots and hot times in surface waters across Nebraska, USA. J. Environ. Manage. 2019;250:109424. https://doi.org/10.1016/j.jenvman.2019.109424.
(3) World Health Organization (WHO). Guidelines for drinking-water quality, 4th edn, Geneva, Switzerland; 2018.
(4) Pérez-Vidal A, Escobar-Rivera J, Torres-Lozada P. Development and implementation of a water-safety plan for drinking-water supply system of Cali, Colombia. Int. J. Hyg. Environ. Health. 2020;224:113422. https://doi.org/10.1016/j.ijheh.2019.113422.
(5) Ojeda EO, Arias-Uribe R. Informe nacional sobre la gestión del agua en Colombia (National report on water management in Colombia). CEPAL, GWP; 2000.
(6) Badii M, Landeros J. Plaguicidas que afectan a la salud humana y la sustentabilidad (Pesticides that affect human health and sustainability). CULCyT. 2007;19(4):21-34.
(7) Zhou R, Zhu L, Yang K, Chen Y. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. J. Hazard Mat. 2006;137(1):68–75. https://doi.org/10.1016/j.jhazmat.2006.02.005.
(8) Zhao Z, Jiang Y, Li Q, Cai Y, Yin H, Zhang L, Zhang J. Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers. Ecotox. Environ. Safe. 2017;142:117–28. https://doi.org/10.1016/j.ecoenv.2017.03.039.
(9) Graymore M, Stagnitti F, Allinson G. Impacts of Atrazine in aquatic ecosystems. Environ. Int. 2001;26(7–8):483–95. https://doi.org/10.1016/S0160-4120(01)00031-9.
(10) Hou X, Huang X, Ai Z, Zhao J, Zhang L. Ascorbic acid induced Atrazine degradation. J. Hazard Mat. 2017;327:71–8. https://doi.org/10.1016/j.jhazmat.2016.12.048.
(11) Nasseri S, Baghapour M, Derakhshan Z, Faramarzian M. Degradation of Atrazine by microbial consortium in an anaerobic anaerobic submerged biological filter. J. water health. 2014;12(3):492–503. https://doi.org/10.2166/wh.2014.162.
(12) Environmental Protection Agency (EPA). 816-F-09-004, National Primary Drinking Water Regulations. United States. 2009.
(13) Shipitalo M, Owens B. Atrazine, deethylAtrazine, and deisopropylAtrazinein surface runoff from conservation tilled watersheds. Environ. Sci. Technol. 2003;37(5):944–50. https://doi.org/10.1021/es020870b.
(14) Baldwin A et al. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity. Sci. Total Environ. 2016;554–555: 42–52. https://doi.org/10.1016/j.scitotenv.2016.02.137.
(15) Al-Degs Y, Al-Ghouti M, El-Sheikh A. Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. J. Hazard Mat. 2009;169(1–3):128–35. https://doi.org/10.1016/j.jhazmat.2009.03.065.
(16) Wu C, Hill H, Gamerdinger A. Electrospray Ionization-Ion Mobility Spectrometry as a Field Monitoring Method for the Detection of Atrazine in Natural Water. Field Anal. Chem. Technol. 1998;2(3):155–61. https://doi.org/10.1002/(SICI)1520-6521(1998)2:3%3C155::AID-FACT4%3E3.0.CO;2-U.
(17) Gerrity D et al. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res. 2012;46(19):6257-72. https://doi.org/10.1016/j.watres.2012.08.037.
(18) Amaral B, De Araujo J, Peralta-Zamora P, Nagata N. Simultaneous determination of Atrazine and metabolites (DIA and DEA) in natural water by multivariate electronic spectroscopy. Microchemical J. 2014;117:262–67. https://doi.org/10.1016/j.microc.2014.07.008.
(19) Ekanayake D et al. Interrelationship among the pollutants in stormwater in an urban catchment and first flush identification using UV spectroscopy. Chemosphere. 2019;233:245-51. https://doi.org/10.1016/j.chemosphere.2019.05.285.
(20) Szerzyna S, Mołczan M, Wolska M, Adamski W, Wiśniewski J. Absorbance based water quality indicators as parameters for treatment process control with respect to organic substance removal. E3S Web of Conferences. 2017;17:00091. https://doi.org/10.1051/e3sconf/20171700091.
(21) Beauchamp N et al. Relationships between DBP concentrations and differential UV absorbance in full-scale conditions. Water Res. 2018;131:110-121. https://doi.org/10.1016/j.watres.2017.12.031.
(22) American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF). Standard Methods for Water and Wastewater Examination, Washington D.C., United States. 2012.
(23) Lobanga K, Haarhoff J, Van Staden S. Treatability of South African surface waters by enhanced coagulation. Water SA. 2014;40(3):529-34. https://doi.org/10.4314/wsa.v40i3.17.
(24) Altmann J, Massa L, Sperlich A, Gnirss R, Jekel M. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon. Water Res. 2016;94:240-5. https://doi.org/10.1016/j.watres.2016.03.001.
(25) Thomas O, Burgess C. UV-visible Spectrophotometry of Water and Wastewater. 1st ed. Amsterdam, Netherlands. 2007.
(26) Mehaffey M, Nash S, Wade T, Ebert D, Jones K, Rager A. Linking land cover and water quality in New York city’s water supply watersheds. Environ. Monit. Assess. 2005;107(1-3):29–44. https://doi.org/10.1007/s10661-005-2018-5.
(27) De Girolamo A, Porto A. Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Pol. 2012;29(3):691– 701. https://doi.org/10.1016/j.landusepol.2011.11.005.
(28) Bueno K, Pérez A, Torres P. Identificación de peligros químicos en cuencas de abastecimiento de agua como instrumento para la evaluación del riesgo (Identification of chemical hazards in supply watersheds as an instrument for risk evaluation). Revista Ingenierías. 2014;13(24):59–75.
(29) Environmental Protection Agency (EPA). Method 523: Determination of Triazine Pesticides and their Degradates in Drinking Water by Gas Chromatography/Mass Spectrometry. 2009.
(30) Fairbairn D, Karpuzcu M, Arnold W, Barber B, Kaufenberg E, et. al. Sediment-water distribution of contaminants of emerging concern in a mixed-use watershed. Sci. Total Environ. 2015;505:896–904. https://doi.org/10.1016/j.scitotenv.2014.10.046.
(31) Kim C, Eom J, Jung S, Ji T. Detection of organic compounds in water by an optical absorbance method. Sensors (Switzerland). 2016;16(1):61. https://dx.doi.org/10.3390%2Fs16010061.
(32) Montgomery D. Design and analysis of experiments. John Wiley & Sons, (ed.). 8th ed. Arizona, United States. 2012.
(33) Instituto Colombiano Agropecuario (ICA). Registros nacionales (National records). 2020 [cited 2019 Sep 15]. Available from: http://www.ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1cdaeb1/registros-nacionales-pqua-15-04-09.aspx.
(34) Dalton R, Pick F, Boutin C, Saleem A. Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS). Environ. Pollut. 2014;189:134-42. https://doi.org/10.1016/j.envpol.2014.02.028.
(35) Tarazona GA. Manejo fitosanitario del cultivo de la caña panelera. Instituto Colombiano Agropecuario (ICA). Bogotá; 2011 [cited 2021 mar 4]. Available from: https://www.ica.gov.co/getattachment/6a54658e-1723-488d-a7ab-2f4baad793cb/Manejo-fitosanitario-del-cultivo-de-la-cana-panele.aspx.
(36) Weishaar J, Aiken G, Bergamaschi B, Fram M, Fujii R, Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003; 37(20):4702–8. https://doi.org/10.1021/es030360x.
(37) Swietlik J, Sikorska E. Characterization of Natural Organic Matter Fractions by High Pressure Size-Exclusion Chromatography, Specific UV Absorbance and Total Luminescence Spectroscopy. Pol. J. Environ Stud. 2006;15(1):145–53.
(38) Ghernaout D, Ghernaout B, Kellil A. Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation.
Desalination Water Treat. 2009; 2(1–3):203–22. https://doi.org/10.5004/dwt.2009.116.
(39) Heathwaite A, Quinn P, Hewett C. Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. J. Hydrology. 2005;304(1–4):446–61. https://doi.org/10.1016/j.jhydrol.2004.07.043.
(40) Subantu P. Development of methods for the separation and characterization of natural organic matter in dam water [Master thesis]. Sudáfrica: Durban University of Technology. 2014. Available at: http://openscholar.dut.ac.za/handle/10321/1182.
- Andrea Pérez-Vidal, Luis G. Delgado-Cabrera, Patricia Torres-Lozada, Evolution and perspectives of the water supply system in the city of Santiago de Cali front of the water quality insurance , Ingeniería y Competitividad: Vol. 14 No. 2 (2012): Ingeniería y Competitividad
- Andrea Pérez-Vidal, Claudia Amézquita-Marroquín, Patricia Torres-Lozada, Water Safety Plans: Risk assessment for consumers in Drinking Water Supply Systems , Ingeniería y Competitividad: Vol. 15 No. 2 (2013): Ingeniería y Competitividad
Accepted 2021-03-20
Published 2021-05-18
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).