Main Article Content

Authors

TiO2 nanoparticles were successfully synthesized using a facile and scalable sol-gel method and their structural and optical properties studied. XRD ad FTIR was used to identify the phase, crystallite size, and functional groups present in the nanoparticles. The prepared samples crystallize in the anatase structure with highly crystalline order. TEM/EDX shows that the nanoparticles are pure, spherical, and with an average particle size of 15 ± 2 nm. The bandgap energy was 3.59, 3.79, and 3.64 eV, respectively. PL emission is attributed to oxygen vacancies (Vo). The calcination temperature at 450 °C suggests a better photocatalytic performance under visible light compared with other sample's thermal treatments.

1.
Mosquera EE, Herrera-Molina D, Diosa JE. Structural and optical properties of TiO2 nanoparticles and their photocatalytic behavior under visible light . inycomp [Internet]. 2021 May 18 [cited 2024 Nov. 18];23(2):e21310965. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10965

(1) Romero-Sáez M, Jaramillo L Y, Saravanan R, Benito N, Pabón E, Mosquera E, Gracia F. Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants. eXPRESS Polym. Lett. 2017; 11:899–909. http://doi.org//10.3144/expresspolymlett.2017.86

(2) Mehrabi M, Javanbakht V. Photocatalytic degradation of cationic and anionic dyes by removal a novel nanophotocatalyst of TiO2/ZnTiO3/Fe2O3 by ultraviolet light irradiation. J Mater. Sci: Mater. Electron. 2018; 29:9908–9919. https://doi.org/10.1007/s10854-018-9033-0

(3) Lassoued A, Lassoued M S, Dkhil B, Ammar S, Gadri A. Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J Mater. Sci: Mater. Electron. 2018; 29(9):7057–7067. https://doi.org/10.1007/s10854-018-8693-0

(4) Khan M M, Ansari S A, Pradhan D, Ansari M O, Han D H, Lee J, Cho M H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A. 2014; 2:637–644. https://doi.org/10.1039/C3TA14052K

(5) Saravanan R, Sacari E, Gracia F, Khan M M, Mosquera E, Gupta V K. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liquids. 2016; 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

(6) Khan M M, Ansari S A, Amal M I, Lee J, Cho M H. Highly visible light active Ag@TiO2

nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale. 2013; 5:4427–4435. https://doi.org/10.1039/C3NR00613A

(7) Khan M M, Lee J, Cho M H. Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry. 2014; 20:1584–1590.https://doi.org/10.1016/j.jiec.2013.08.002

(8) Yuan J, Zhang X, Li H, Wang K, Gao S, Yin S, Yu H, Zhu X, Xiong Z, Xie Y. TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catalysis Communications. 2015; 60:129–133. https://doi.org/10.1016/j.catcom.2014.11.032

(9) Kalathil S, Khan M M, Ansari S A, Lee J, Cho M H. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale. 2013; 5:6323–6326. https://doi.org/10.1039/c3nr01280h

(10) Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta V K. Crystallinity and lowering band gap induced visible light photocatalitytic activity of TiO2/CS (Chitosan) nanocomposites. Int. J. Biol. Macromol. 2018; 109:1239–1245.: https://doi.org/10.1016/j.ijbiomac.2017.11.125

(11) Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study. Mater. Chem. Phys. 2008; 110:166–175. https://doi.org/10.1016/j.matchemphys.2008.01.037

(12) Imran M, Riaz S, Naseem S. Synthesis and characterization of titania nanoparticles by sol-gel technique. Mater. Today. 2015; 2(10):5455–5461. https://doi.org/10.1016/j.matpr.2015.11.069

(13) Dubey R. Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater. Lett. 2018; 215:312–317. https://doi.org/10.1016/j.matlet.2017.12.120

(14) Quintero Y, Mosquera E, Diosa J, García A. Ultrasonic-assisted sol-gel synthesis of TiO2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance. J Sol-Gel Sci. Technol. 2020; 94:477–485 https://doi.org/10.1007/s10971-020-05263-6

(15) García A, Quintero Y, Vicencio N, Rodríguez B, Ozturk D, Mosquera E, Corrales T P, Volkmann U G. Influence of TiO2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes. RSC Adv. 2016;6:82941–82948. https://doi.org/10.1039/C6RA17999A

(16) Wang C L, Hwang W S, Chu H L, Lin H J, Ko H H, Wang M C. Kinetic of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Ceram. Inter. 2016; 42:13136–13143. https://doi.org/10.1016/j.ceramint.2016.05.101

(17) Rajendran S, Khan M M, Gracia F, Qin F, Gupta V K, Arumainathan S. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 2016; 6:31641.https://doi.org/10.1038/srep31641

(18) Saravanan R, Gupta V K, Mosquera E, Gracia F. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liquids. 2014; 198:409–412. https://doi.org/10.1016/j.molliq.2014.07.030

(19) Gnanasekaran L, Hemamalini R, Saravanan R, Ravishandran K, Gracia F, Gupta V K. Intermediate state created by dopant ions (Mn, Co, and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J. Mol. Liquids. 2016; 223:652–659. https://doi.org/10.1016/j.molliq.2016.08.105

(20) Karthik K, Nikolova M P, Phuruangrat A, Pushpa S, Revathi V, Subbulakshmi M. Ultrasonic-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov. 2020; 24(4): 229–234. https://doi.org/10.1080/14328917.2019.1634404

(21) Wong C W, Chan Y S, Jeevanandam J, Pal K, Bechelany M, Elkodous M A, El-Sayyad G S. Response surface methodology optimization of mono-disperse MgO nanoparticles fabricated by ultrasonic-assisted sol-gel method for outstanding antimicrobial and antibiofilm activities. J. Cluster Sci. 2020; 31:367–389. https://doi.org/10.1007/s10876-019-01651-3

(22) B. D. Cullity. Elements of X-Ray Diffraction. Addison Wesley, 2nd Ed. 1978.

(23) Zak A K, Majid W H A, Abrishami M E, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 2011; 13:251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

(24) Mosquera E, Rojas-Michea C, Morel M, Gracia F, Fuenzalida V, Zárate R A. Zinc oxide nanoparticles with incorporated silver: Structural, morphological, optical and vibrational properties. Appl. Surf. Sci.. 2015; 347:561–568. https://doi.org/10.1016/j.apsusc.2015.04.148

(25) Patterson A L. The Scherrer formula for X-ray particle size determination. Phys. Rev.1939; 56:978–982. https://doi.org/10.1103/PhysRev.56.978

(26) Viezbicke B D, Patel S, Davis B E, Birnie D P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica Status Solidi B.

; 252:1700–1710. https://doi.org/10.1002/pssb.201552007

(27) Vorontsov A V, Valdés H. Quantum size effect and visible light activity of anatase nanosheet quantum dots. J. Photochem Photobiol. A: Chem. 2019; 379:39–46. https://doi.org/10.1016/j.jphotochem.2019.05.001

(28) Morgan B J, Watson G W. Intrinsic n-type defect formation in TiO2: A comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C. 2010; 114: 2321–2328. https://doi.org/10.1021/jp9088047

(29) Tshabalala Z P, Motaung D E, Mhlongo G H, Ntwaeaborwa O M. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment. Sens. Actuators B: Chem. 2016; 224:841–856. https://doi.org/10.1016/j.snb.2015.10.079

(30) Santara B, Giri P K, Imakita K, Fujii M. Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: An in situ photoluminescence study. J. Phys. Chem. C. 2013; 117:23402–23411. https://doi.org/10.1021/jp408249q

(31) Tachikawa T, Majima T. Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 2010; 39:4802–4819. https://doi.org/10.1039/B919698F

(32) Benito N, Palacio P. Growth of Ti–O–Si mixed oxides by reactive ion-beam mixing of Ti/Si interfaces. J. Phys. D: Appl. Phys. 2014; 47:015308/1–7. https://doi.org/10.1088/0022-3727/47/1/015308

(33) Luan Z, Maes E M, van der Heide P A W, Zhao D, Czernuszewicz R S, Kevan L. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chem. Mater. 1999; 11:3680–3686. https://doi.org/10.1021/cm9905141

(34) Suzana M, Francisco P, Mastelaro V R, Nascente P A P, Florentino A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2–TiO2 catalysts. J. Phys. Chem. B. 2001; 105:10515–10522. https://doi.org/10.1021/jp0109675

(35) Li Y, Hwang D S, Lee N H, Kim S J. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett. 2005;404:25–29. https://doi.org/10.1016/j.cplett.2005.01.062

Received 2021-01-23
Accepted 2021-05-05
Published 2021-05-18