Contenido principal del artículo

Nanopartículas de TiO2 fueron sintetizadas utilizando un fácil y escalable método sol-gel y sus propiedades estructurales y ópticas estudiadas. Se uso XRD y FTIR para identificar la fase, el tamaño del cristalito y los grupos funcionales presentes en las nanopartículas. Las muestras preparadas cristalizan en la estructura anatasa con un orden altamente cristalino. TEM/EDX muestran que las nanopartículas son puras, esféricas y con un tamaño medio de partícula de 15 ± 2 nm. La energía de la banda prohibida fue de 3,59, 3,79 y 3,54 eV, respectivamente. La emisión de FL se atribuye a las vacantes de oxígeno (Vo). La temperatura de calcinación a 450 ° C sugiere un mejor rendimiento fotocatalítico bajo luz visible en comparación con los tratamientos térmicos de otras muestras.

1.
Mosquera EE, Herrera-Molina D, Diosa JE. Propiedades estructurales y ópticas de las nanopartículas de TiO2 y su comportamiento fotocatalítico bajo luz visible. inycomp [Internet]. 4 de julio de 2021 [citado 3 de octubre de 2022];23(2):e21310965. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10965

(1) Romero-Sáez M, Jaramillo L Y, Saravanan R, Benito N, Pabón E, Mosquera E, Gracia F. Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants. eXPRESS Polym. Lett. 2017; 11:899–909. http://doi.org//10.3144/expresspolymlett.2017.86

(2) Mehrabi M, Javanbakht V. Photocatalytic degradation of cationic and anionic dyes by removal a novel nanophotocatalyst of TiO2/ZnTiO3/Fe2O3 by ultraviolet light irradiation. J Mater. Sci: Mater. Electron. 2018; 29:9908–9919. https://doi.org/10.1007/s10854-018-9033-0

(3) Lassoued A, Lassoued M S, Dkhil B, Ammar S, Gadri A. Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J Mater. Sci: Mater. Electron. 2018; 29(9):7057–7067. https://doi.org/10.1007/s10854-018-8693-0

(4) Khan M M, Ansari S A, Pradhan D, Ansari M O, Han D H, Lee J, Cho M H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A. 2014; 2:637–644. https://doi.org/10.1039/C3TA14052K

(5) Saravanan R, Sacari E, Gracia F, Khan M M, Mosquera E, Gupta V K. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liquids. 2016; 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

(6) Khan M M, Ansari S A, Amal M I, Lee J, Cho M H. Highly visible light active Ag@TiO2

nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale. 2013; 5:4427–4435. https://doi.org/10.1039/C3NR00613A

(7) Khan M M, Lee J, Cho M H. Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry. 2014; 20:1584–1590.https://doi.org/10.1016/j.jiec.2013.08.002

(8) Yuan J, Zhang X, Li H, Wang K, Gao S, Yin S, Yu H, Zhu X, Xiong Z, Xie Y. TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catalysis Communications. 2015; 60:129–133. https://doi.org/10.1016/j.catcom.2014.11.032

(9) Kalathil S, Khan M M, Ansari S A, Lee J, Cho M H. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale. 2013; 5:6323–6326. https://doi.org/10.1039/c3nr01280h

(10) Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta V K. Crystallinity and lowering band gap induced visible light photocatalitytic activity of TiO2/CS (Chitosan) nanocomposites. Int. J. Biol. Macromol. 2018; 109:1239–1245.: https://doi.org/10.1016/j.ijbiomac.2017.11.125

(11) Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study. Mater. Chem. Phys. 2008; 110:166–175. https://doi.org/10.1016/j.matchemphys.2008.01.037

(12) Imran M, Riaz S, Naseem S. Synthesis and characterization of titania nanoparticles by sol-gel technique. Mater. Today. 2015; 2(10):5455–5461. https://doi.org/10.1016/j.matpr.2015.11.069

(13) Dubey R. Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater. Lett. 2018; 215:312–317. https://doi.org/10.1016/j.matlet.2017.12.120

(14) Quintero Y, Mosquera E, Diosa J, García A. Ultrasonic-assisted sol-gel synthesis of TiO2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance. J Sol-Gel Sci. Technol. 2020; 94:477–485 https://doi.org/10.1007/s10971-020-05263-6

(15) García A, Quintero Y, Vicencio N, Rodríguez B, Ozturk D, Mosquera E, Corrales T P, Volkmann U G. Influence of TiO2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes. RSC Adv. 2016;6:82941–82948. https://doi.org/10.1039/C6RA17999A

(16) Wang C L, Hwang W S, Chu H L, Lin H J, Ko H H, Wang M C. Kinetic of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Ceram. Inter. 2016; 42:13136–13143. https://doi.org/10.1016/j.ceramint.2016.05.101

(17) Rajendran S, Khan M M, Gracia F, Qin F, Gupta V K, Arumainathan S. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 2016; 6:31641.https://doi.org/10.1038/srep31641

(18) Saravanan R, Gupta V K, Mosquera E, Gracia F. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liquids. 2014; 198:409–412. https://doi.org/10.1016/j.molliq.2014.07.030

(19) Gnanasekaran L, Hemamalini R, Saravanan R, Ravishandran K, Gracia F, Gupta V K. Intermediate state created by dopant ions (Mn, Co, and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J. Mol. Liquids. 2016; 223:652–659. https://doi.org/10.1016/j.molliq.2016.08.105

(20) Karthik K, Nikolova M P, Phuruangrat A, Pushpa S, Revathi V, Subbulakshmi M. Ultrasonic-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov. 2020; 24(4): 229–234. https://doi.org/10.1080/14328917.2019.1634404

(21) Wong C W, Chan Y S, Jeevanandam J, Pal K, Bechelany M, Elkodous M A, El-Sayyad G S. Response surface methodology optimization of mono-disperse MgO nanoparticles fabricated by ultrasonic-assisted sol-gel method for outstanding antimicrobial and antibiofilm activities. J. Cluster Sci. 2020; 31:367–389. https://doi.org/10.1007/s10876-019-01651-3

(22) B. D. Cullity. Elements of X-Ray Diffraction. Addison Wesley, 2nd Ed. 1978.

(23) Zak A K, Majid W H A, Abrishami M E, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 2011; 13:251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

(24) Mosquera E, Rojas-Michea C, Morel M, Gracia F, Fuenzalida V, Zárate R A. Zinc oxide nanoparticles with incorporated silver: Structural, morphological, optical and vibrational properties. Appl. Surf. Sci.. 2015; 347:561–568. https://doi.org/10.1016/j.apsusc.2015.04.148

(25) Patterson A L. The Scherrer formula for X-ray particle size determination. Phys. Rev.1939; 56:978–982. https://doi.org/10.1103/PhysRev.56.978

(26) Viezbicke B D, Patel S, Davis B E, Birnie D P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Physica Status Solidi B.

; 252:1700–1710. https://doi.org/10.1002/pssb.201552007

(27) Vorontsov A V, Valdés H. Quantum size effect and visible light activity of anatase nanosheet quantum dots. J. Photochem Photobiol. A: Chem. 2019; 379:39–46. https://doi.org/10.1016/j.jphotochem.2019.05.001

(28) Morgan B J, Watson G W. Intrinsic n-type defect formation in TiO2: A comparison of rutile and anatase from GGA+U calculations. J. Phys. Chem. C. 2010; 114: 2321–2328. https://doi.org/10.1021/jp9088047

(29) Tshabalala Z P, Motaung D E, Mhlongo G H, Ntwaeaborwa O M. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment. Sens. Actuators B: Chem. 2016; 224:841–856. https://doi.org/10.1016/j.snb.2015.10.079

(30) Santara B, Giri P K, Imakita K, Fujii M. Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: An in situ photoluminescence study. J. Phys. Chem. C. 2013; 117:23402–23411. https://doi.org/10.1021/jp408249q

(31) Tachikawa T, Majima T. Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 2010; 39:4802–4819. https://doi.org/10.1039/B919698F

(32) Benito N, Palacio P. Growth of Ti–O–Si mixed oxides by reactive ion-beam mixing of Ti/Si interfaces. J. Phys. D: Appl. Phys. 2014; 47:015308/1–7. https://doi.org/10.1088/0022-3727/47/1/015308

(33) Luan Z, Maes E M, van der Heide P A W, Zhao D, Czernuszewicz R S, Kevan L. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chem. Mater. 1999; 11:3680–3686. https://doi.org/10.1021/cm9905141

(34) Suzana M, Francisco P, Mastelaro V R, Nascente P A P, Florentino A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2–TiO2 catalysts. J. Phys. Chem. B. 2001; 105:10515–10522. https://doi.org/10.1021/jp0109675

(35) Li Y, Hwang D S, Lee N H, Kim S J. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett. 2005;404:25–29. https://doi.org/10.1016/j.cplett.2005.01.062