Main Article Content

Authors

This article presents the development of a portable lighting system powered by photovoltaic solar energy for use by the Chucheros-Buenaventura community. The basic needs of the community and the availability of natural energy resources were considered, as well as the use of environmentally friendly, ergonomic, and multifunctional components of the lighting system in order to evaluate its environmental impact and energy autonomy. The analysis of different materials for the construction of the system's housing managed to show favorable characteristics of the mixture (50/50) of the recycled materials Polypropylene and High Density Polyethylene (PPr/PEADr) compared to the others, in terms of thermal transference and resistance to impacts. Furthermore, with the selection of the electronic devices of the lighting system, an energy autonomy of approximately 4 hours was obtained by supplying a current of 500 mA. Finally, the use of available technologies in our context and the use of renewable energies allowed the development of a portable solar light that opens the possibility of carrying out different basic activities of people and contributes, not only in the improvement of the quality of life of these in the homes of the Non-Interconnected Zones (NIZ), but also as an environmentally friendly technological alternative for general use lighting.

Andrés Fernando Restrepo Alvarez, Tecnoparque Nodo Cali, Servicio Nacional de Aprendizaje – SENA, Cali – Colombia

Ingeniero Electrónico y Doctor en Ingeniería de la Universidad del Valle - Colombia

1.
Restrepo Alvarez AF, Bolivar Chaves OF, Muñoz Arias C, Villamil Villar BI. Development of a portable lighting system powered by photovoltaic solar energy: Chucheros-Buenaventura community application case. inycomp [Internet]. 2021 May 18 [cited 2024 Nov. 18];23(2):e20910806. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10806

(1) DANE (CO). Necesidades Básicas Insatisfechas (NBI) Censo Nacional de Población y Vivienda (CNPV) 2018. Bogotá; 2019. Available from: https://www.dane.gov.co/files/censo2018/informacion-tecnica/CNPV-2018-NBI.xlsx.

(2) UPME - Unidad de Planeación Minero Energética (CO). Plan Indicativo de Expansión de Cobertura de Energía Eléctrica PIEC 2016-2020. Bogotá; 2016. 48 p. Available from: http://www.upme.gov.co/Siel/Siel/Portals/0/Piec/PIEC_2016-2020_PublicarDic202016.pdf.

(3) IPSE (CO). Planes de energización rural sostenible - PERS - herramienta de información para el desarrollo rural. Bogotá; 2016. 35 p. Available from: https://www1.upme.gov.co/Hemeroteca/Memorias/Memorias_dia_UPME_2016/Herramienta_informacion_Pers.pdf.

(4) Bueno-Lopez M, Rodríguez-Sanchez P and Molinas M. Sustainable model for rural electrification projects in Non-Interconnected Areas in Colombia. In: IEEE Global Humanitarian Technology Conference (GHTC). Seattle, USA; 2019. p. 1-6. https://doi.org/10.1109/GHTC46095.2019.9033104.

(5) Enríquez S. Estudio del impacto ambiental de fuentes de luz durante: su producción, tiempo de vida y desecho. [Master’s Thesis]. Barcelona, España; Universidad Politécnica de Cataluña: 2012. Available from: https://wwwaie.webs.upc.edu/maema/wp-content/uploads/2016/07/TESINA-Enriquez-Santiago-.pdf.

(6) Mills E. Identifying and reducing the health and safety impacts of fuel-based lighting. Energy for Sustainable Development. 2016;30:39-50. https://doi.org/10.1016/j.esd.2015.11.002.

(7) Barki DT, Barki B. and Habbu G. Creating global awareness for eliminating light poverty in the world: To replace hazardous kerosene lamps with clean and safe solar lamps. In: 33rd IEEE Photovoltaic Specialists Conference. San Diego, USA; 2008. p. 1-5. https://doi.org/10.1109/PVSC.2008.4922825.

(8) Lam NL, Muhwezi G, Isabirye F, Harrison K, Ruiz-Mercado I, Amukoye E et al. Exposure reductions associated with introduction of solar lamps to kerosene lamp‐using households in Busia County, Kenya. Indoor Air. 2018;28(2): 218-27. https://doi.org/10.1111/ina.12433.

(9) UPME - Unidad de Planeación Minero Energética (CO). Atlas de radiación de Colombia. Bogotá; 2005. 175 p. Available from: https://biblioteca.minminas.gov.co/pdf/Atlas%20de%20radiaci%C3%B3n%20solar%20Colombia.pdf.

(10) Ospino-Castro A, Robles-Algarín C, Tobón-Perez J, Peña-Gallardo R and Acosta-Coll M. Financing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region. International Journal of Energy Economics and Policy. 2020;10(6):337-346. https://doi.org/10.32479/ijeep.9560.

(11) Rodríguez-Urrego D, Rodríguez-Urrego L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews. 2018;92:160-70. https://doi.org/10.1016/j.rser.2018.04.065.

(12) Yasin MS, Islam MS, Biswas T and Rahman MS. Design of a low-cost lighting system for the rural areas of Bangladesh. In: International Conference on Innovations in Science, Engineering and Technology (ICISET). Dhaka; 2016. p. 1-4. https://doi.org/10.1109/ICISET.2016.7856504.

(13) Salamanca-Avila S. Propuesta de diseño de un sistema de energía solar fotovoltaica. Caso de aplicación en la ciudad de Bogotá. Revista Científica. 2017;3(30):263-77. https://doi.org/10.14483/23448350.12213.

(14) GREENPEACE (CO). Mejor sin plásticos – La contaminación plástica en Colombia y el mundo. 2018, 10 p. Available from: http://greenpeace.co/pdf/reporte_plasticos.pdf.

(15) INVEMAR (CO). Estado del ambiente y los ecosistemas marinos y costeros. En: Informe del Estado de los Ambientes Marinos y Costeros en Colombia. Santa Marta; 2017. pp. 31-73. Available from: http://www.invemar.org.co/documents/10182/14479/IER_2017_baja_Final.pdf/76690566-f6e1-4610-906f-1c49c610b2c8.

(16) INVEMAR (CO). Diagnóstico y evaluación de la calidad de las aguas marinas y costeras en el Caribe y Pacífico colombianos – Informe Técnico 2016. Santa Marta; 2017. 265 p. Available from: http://www.invemar.org.co/documents/10182/14479/Informe+REDCAM+2016.pdf/b21d50f5-cd2d-4926-a016-b321cc9659e7.

(17) Salazar EA, Arroyave JF, Moreno IY. Desarrollo de vivienda ecosostenible para sectores vulnerables. Ingeniería y Competitividad. 2014;16(1):249-59. https://doi.org/10.25100/iyc.v16i1.3729.

Received 2020-11-27
Accepted 2021-03-20
Published 2021-05-18