Diagnosis of SARS-CoV-2 and innovative alternative methods based on optic fiber.
Main Article Content
This work shows a world overview of the SARS-CoV-2 diagnostic methods, analyzing their effectiveness and sensitivity. With a special emphasis on biosensors, specifically, those that are based on fiber-optic technology, explaining simply their operation and their ability to detect diseases such as SARS-CoV-2. With these technological advances, the clinical diagnosis will be made: faster, cheaper, and applied to patients in remote places where there are no hospitals or clinical laboratories, either due to poverty, geographic difficulties, or violence, factors found in Colombia.
(1) WHO and others. Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2 Institut Pasteur, Paris. Geneva: World Health Organization. 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/real-time-rt-pcr-assays-for-the-detection-of-sars-cov-2-institut-pasteur-paris.pdf?sfvrsn=3662fcb6_2.
(2) Huang JC, Chang Y-F, Chen K-H, Su L-C, Lee C-W, Chen C-C, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosensors and Bioelectronics.2009;25(2):320–5. https://doi.org/10.1016/j.bios.2009.07.012.
(3) Weinstein MC, Freedberg KA, Hyle EP, Paltiel AD. Waiting for Certainty on Covid-19 Antibody Tests—At What Cost? N Engl J Med. 2020;383:e37. https://doi.org/10.1056/NEJMp2017739.
(4) Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection—Challenges and Implications. N Engl J Med. 2020;383:e37. https://doi.org/10.1056/NEJMp2015897.
(5) Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnology advances. 2012;30(3):489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003.
(6) Iniewski K, Rajan G, Krzysztof Iniewski. Optical Fiber Sensors Advanced Techniques and Applications. 1st ed. Rajan G, editor. Boca Raton (FL): CRC Press; 2017. 575 p.
(7) Candiani A, Bertucci A, Giannetti S, Konstantaki M, Manicardi A, Pissadakis S, et al. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. Journal of biomedical optics. 2013;18(5):057004.https://doi.org/10.1117/1.JBO.18.5.057004.
(8) Gonçalves HM, Moreira L, Pereira L, Jorge P, Gouveia C, Martins-Lopes P, et al. Biosensor for label-free DNA quantification based on functionalized LPGs. Biosensors and Bioelectronics. 2016;84:30–6. https://doi.org/10.1016/j.bios.2015.10.001.
(9) Del Villar I, Zamarreño C, Hernaez M, Sanchez P, Arregui F, Matias I. Generation of surface plasmon resonance and lossy mode resonance by thermal treatment of ITO thin-films. Optics & Laser Technology. 2015;69:1–7. https://doi.org/10.1016/j.optlastec.2014.12.012.
(10) Del Villar I, Zamarreño CR, Hernaez M, Arregui FJ, Matias IR. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. Journal of Lightwave Technology. 2010;28(1):111–7. https://doi.org/10.1109/JLT.2009.2036580.
(11) Maya YC, Villar I Del, Socorro AB, Corres JM, Botero-Cadavid JF. Optical Fiber Immunosensors Optimized with Cladding Etching and ITO Nanodeposition. In: 2018 IEEE Photonics Conference (IPC). Reston, VA, USA: IEEE; 2018. p. 1–2. https://doi.org/10.1109/IPCon.2018.8527306.
(12) Rijal K, Leung A, Shankar PM, Mutharasan R. Detection of pathogen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors and Bioelectronics. 2005;21(6):871–80. https://doi.org/10.1016/j.bios.2005.02.006.
(13) Chiavaioli F, Trono C, Giannetti A, Brenci M, Baldini F. Characterisation of a label-free biosensor based on long period grating. Journal of biophotonics. 2014;7(5):312–22. https://doi.org/10.1002/jbio.201200135.
(14) Dudley R, Edwards P, Ekins R, Finney D, McKenzie I, Raab G, et al. Guidelines for immunoassay data processing. Clinical chemistry.1985;31(8):1264–71.https://doi.org/10.1093/clinchem/31.8.1264.
(15) Stefan Melanie I., Novère NL. Cooperative binding. PLOS Computational Biology. 2013 Jun;9(6):e1003106. https://doi.org/10.1371/journal.pcbi.1003106.
(16) HILL AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 1910;40:4–7. Available from: https://ci.nii.ac.jp/naid/10020096935/en/.
(17) Wang C, Li W, Drabek D, Okba NM, Haperen R van, Osterhaus AD, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nature communications. 2020;11(1):2251. https://doi.org/10.1038/s41467-020-16256-y.
(18) Matushek SM, Beavis KG, Abeleda A, Bethel C, Hunt C, Gillen S, et al. Evaluation of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. Journal of Clinical Virology. 2020;129:104468. https://doi.org/10.1016/j.jcv.2020.104468
(19) Nguyen T, Duong Bang D, Wolff A. 2019 novel coronavirus disease (COVID-19): paving the road for rapid detection and point-of-care diagnostics. Micromachines. 2020;11(3):306. https://doi.org/10.3390/mi11030306.
(20) Kakodkar P, Kaka N, Baig M. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 2020;12(4):e7560. https://dx.doi.org/10.7759%2Fcureus.7560.
(21) Bachelet VC. ¿Conocemos las propiedades diagnósticas de las pruebas usadas en COVID-19? Una revisión rápida de la literatura recientemente publicada. Medwave. 2020;20(3):e7891. https://doi.org/10.5867/medwave.2020.03.7891.
(22) Cai X, Chen J, Hu J, Long Q, Deng H, Fan K, et al. A Peptide-based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Corona Virus Disease 2019 (COVID-19). The Journal of Infectious Diseases. 2020;222(2):189-93. https://doi.org/10.1093/infdis/jiaa243.
(23) Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020;6(5):591–605. https://doi.org/10.1021/acscentsci.0c00501.
(24) Chen X, Tang Y, Mo Y, Li S, Lin D, Yang Z, et al. A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study. European radiology. 2020;30:4893–902. https://doi.org/10.1007/s00330-020-06829-2.
(25) Guo L, Lili R, Siyuan Y, Meng X, Chang D, Fan Y, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical Infectious Diseases. 2020 Jul 28;71(15):778-85. https://doi.org/10.1093/cid/ciaa31
Accepted 2021-03-01
Published 2021-05-18
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).