Contenido principal del artículo

El desarrollo industrial ha generado la creación de nuevos productos que han mejorado la calidad de vida. De tal forma, se ha impulsado el consumo de fármacos, cosméticos, artículos de limpieza y de cuidado personal, entre otros. Éstos denominados contaminantes emergentes han sido de uso frecuente en las últimas décadas ocasionando una fuerte presión para los hábitats acuáticos y considerándose como factores de riesgo para la salud de los seres vivos. Un ejemplo es el triclosán (TCS), reconocido por su acción fungicida y presente en productos de aseo como antibacteriales, cuidado personal, jabones líquidos y enjuagues bucales. Desafortunadamente se ha encontrado en aguas crudas y residuales teniendo interacción con los ecosistemas acuáticos e incidiendo en la calidad de vida de los individuos, alterando funciones metabólicas y en consecuencia a la cadena trófica por efecto de bioacumulación. De tal forma, en esta investigación se evaluó el efecto del triclosán en la movilidad espermática de machos sexualmente maduros de Oreochromis spp. que fueron sometidos a un diseño experimental con tres factores: concentración de triclosán (0, 50, 120 y 190 µg/L), pH (7 y 9) y tiempo de exposición (0, 3 y 7 días). Los resultados evidenciaron una disminución significativa en la movilidad rápida y por lo tanto un aumento significativo para algunos tratamientos en la movilidad media y lenta. Los resultados permiten concluir que la interacción entre los factores evaluados pudo incidir en la alteración de la estructura celular espermática y a nivel mitocondrial disminuyendo su movilidad por una baja síntesis de adenosin trifosfato.

1.
Cacua-Ortiz SM, Aguirre Ramírez NJ, Peñuela Mesa GA. Efectos del triclosán sobre la movilidad espermática en Oreochromis spp. inycomp [Internet]. 10 de noviembre de 2020 [citado 25 de septiembre de 2022];23(1):e10031. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10031

(1) Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006; 40(17): 3297-303. https://doi.org/10.1016/j.watres.2006.06.039.

(2) Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009;30(4): 293–342. https://doi.org/10.1210/er.2009-0002.

(3) Dhillon GS, Kaur S, Pulicharla R, Brar SK, Cledón M, Verma M, et al. Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health. 2015; 12(5): 5657-84. https://doi.org/10.3390/ijerph120505657.

(4) Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ Sci Technol. 2002; 36(6):1202-11. https://doi.org/10.1021/es011055j.

(5) Thomas PM, Foster GD. Determination of nonsteroidal antiinflammatory drugs, caffeine, and triclosan in wastewater by gas chromatography–mass spectrometry. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2004; 39 (8): 1969–78. https://doi.org/10.1081/ese-120039368.

(6) Johnson PI, Koustas E, Vesterinen HM, Sutton P, Atchley DS, Kim AN, et al. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ Int. 2016; 92-93: 716–28. https://doi.org/10.1016/j.envint.2016.03.009.

(7) Hill RL, Janz DM. Developmental estrogenic exposure in zebra fish (Danio rerio): Effects on sex ratio and breeding success. Aquat. Toxicol. 2003; 63 (4): 417-29. https://doi.org/10.1016/s0166-445x(02)00207-2.

(8) Van den Belt K, Verheyen R, Witters H. Comparison of vitellogenin responses in zebra fish and rainbow trout following exposure to environmental estrogens. Ecotoxicol. Environ. Saf. 2003; 56 (2): 271-81. https://doi.org/10.1016/s0147-6513(03)00004-6.

(9) Aranami K, Readman JW. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 2007; 66(6):1052-56. https://doi.org/10.1016/j.chemosphere.2006.07.010.

(10) Den Hond E, Tournaye H, De Sutter P, Ombelet W, Baeyens W, Covaci A, et al. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. Environt Int 2015; 84: 154-60. https://doi.org/10.1016/j.envint.2015.07.017.

(11) Hontela A, Habibi HR. Personal Care Products in the Aquatic Environment: A Case Study on the Effects of Triclosan in Fish. Fish Physiology. 2013; 33: 411-437. https://doi.org/10.1016/B978-0-12-398254-4.00008-X.

(12) Goodbred SL, Patiño R, Torres L, Echols KR, Jenkins JA, Rosen MR, et al. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA? Gen. Comp. Endocrinol. 2015;219:125-35. https://doi.org/10.1016/j.ygcen.2015.02.015.

(13) Ryan R, Zhou X. TDS and selenium projections for the Las Vegas Wash, post completion of the Systems Conveyance and Operations Program (SCOP). Lake and Reservoir Manag. 2010; 26(4): 249–257. https://doi.org/10.1080/07438141.2010.541374.

(14) FAO. El estado mundial de la pesca y la acuicultura 2016. Contribución a la seguridad alimentaria y la nutrición para todos. 2016. [cited 2020 Mar 12]. Roma. 224 p. Available in: http://www.fao.org/3/a-i5555s.pdf.

(15) Rurangwa E, Kime DE, Ollevier F, Nash JP. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture. 2004; 234 (1–4): 1–28. https://doi.org/10.1016/j.aquaculture.2003.12.006.

(16) Leiker TJ, Abney SR, Goodbred SL, Rosen MR. Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada. Sci. Total Environ. 2009; 407(6): 2102–14. https://doi.org/10.1016/j.scitotenv.2008.11.009.

(17) Fair PA, Lee HB, Adams J, Darling C, Pacepavicius G, Alaee M, et al. Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ. Pollut. 2009; 157(8–9): 2248–54. https://doi.org/10.1016/j.envpol.2009.04.002.

(18) Wei Q, Li P, Psenicka M, Alavi SM, Shen L, Liu J, Peknicova J, Linhart O. Ultrastructure and morphology of spermatozoa in Chinese sturgeon (Acipenser sinensis Gray 1835) using scanning and transmission electron microscopy. Theriogenology. 2007; 67(7): 1269–78. https://doi.org/10.1016/j.theriogenology.2007.02.003.

(19) Ajao C, Andersson MA, Teplova VV, Nagy S, Gahmberg CG, Andersson LC, et al. Mitochondrial toxicity of triclosan on mammalian cells. Toxicol. Rep. 2015; 2: 624–37. https://doi.org/10.1016/j.toxrep.2015.03.012.

(20) Raut SA, Angus RA. Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environ. Toxicol. Chem. 2010; 29(6): 1287-91. https://doi.org/10.1002/etc.150.

(21) Tabares CJ, Tarazona AM, Olivera M. Fisiología de la activación del espermatozoide en peces de agua dulce. Revista Colombiana de Ciencias Pecuarias. 2005; 18(2): 149-61.

(22) Navarro R, Navarro F, Felizardo V, Solis-Murgas L, Pereira M. Cryopreservation of semen of Thailand tilapia (Oreochromis spp) fed diet with different oil soucer. Acta Scientiarum Technology. 2014; 36(3): 399-404. https://doi.org/10.4025/actascitechnol.v36i3.20076.

(23) Guerrero-Quiroz LA, Roa-Vidal JJ, Moreno-Martínez JM, Taylor-Preciado J de J, León-Sánchez R, Avalos-García O. Evaluación de la calidad del semen de tilapia en reproductores (Oreochromis spp.). In: Carvajal S, Pimienta E, editors. Avances en la investigación científica en el CUCBA. 1st ed. Guadalajara, MX: Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias; 2009. p. 537–42.

(24) Triastuti J, Kintani D, Luqman EM, Pujiastuti DY. The motility and motion duration of jatimbulan tilapia (Oreochromis niloticus) spermatozoa in different salinity. IOP Conference Series: Earth and Environmental Science. 2018; 137(1):012023. https://doi.org/10.1088/1755-1315/137/1/012023.

(25) Dallinga JW, Moonen EJ, Dumoulin JC, Evers JL, Geraedts JP, Kleinjans JC. Decreased human semen quality and organochlorine compounds in blood. Hum. Reprod. 2002; 17(8): 1973–79. https://doi.org/10.1093/humrep/17.8.1973.

(26) Shimidzu T, Iyoda T, Ando M, Ohtani A, Kaneko T, Honda K. A novel anisotropic conducting thin film having a conducting and insulating layered structure. Thin Solid Films. 1988; 160(1–2): 67–79. https://doi.org/10.1016/0040-6090(88)90048-X.

(27) Wang L, Asimakopoulos AG, Kannan K. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environ Int. 2015; 78: 45–50. https://doi.org/10.1016/j.envint.2015.02.015.

(28) Reporte Dinamarca. Regulation (EU) No 528 2012 concernig the making avaliable on the market and use of biocidal products. Triclosan. June 2012.

(29) Nathanailides C, Perdikaris C, Chantzaropoulos A, Kokokiris L, Barbouti A. Effect of triclosan on sperm quality parameters and vitellogenin levels of goldfish. In: Miccoli A, editor. 5th International Workshop on the Biology of Fish Gametes. Ancona, Italy: Università Politecnica delle Marche; 2015.

(30) Van Look KJW, Kime DE. Automated sperm morphology analysis in fishes: The effect of mercury on goldfish sperm. J. Fish Biol. 2003; 63(4): 1020–33. https://doi.org/10.1046/j.1095-8649.2003.00226.x.

(31) Cosson MP, Cosson J, Billard R. cAMP dependence of Movement initiation intact and demembranated trout spermatozoa. Bull Inst Zool Acad Sinica. 1991; 16: 263-66.

(32) Cosson MP, Cosson J, André F, Billard R. cAMP/ATP relationship in the activation of trout sperm motility: their interaction in membrane-deprived models andin live spermatozoa. Cell Motil Cytoskel 1995; 31(2): 159-76. https://doi.org/10.1002/cm.970310208.

(33) Dreanno C, Suquet M, Quemener L, Cosson J, Fierville F, et al. Cryopreservation of turbot (Scophthalmus maximus) spermatozoa. Theriogenology. 1997; 48(4): 589-603. https://doi.org/10.1016/S0093-691X(97)00276-8.

(34) Fraser L, Strzezek J. Effect of different procedures of ejaculate collection, extenders and packages on DNA integrity of boar spermatozoa following freezing-thawing. Anim. Reprod. Sci. 2007; 99: 317-29. https://doi.org/10.1016/j.anireprosci.2006.06.003.

(35) Singh PB, Sahu V, Singh V, Nigam SK, Singh HK. Sperm motility in the fishes of pesticide exposed and from polluted rivers of Gomti and Ganga of north India. Food Chem. Toxicol. 2008; 46(12): 3764–69. https://doi.org/10.1016/j.fct.2008.09.066.

(36) Pflieger-Bruss S, Schill WB. Effects of chlorinated hydrocarbons on sperm function in vitro. Andrologia. 2000; 32(4–5): 311–15. https://doi.org/10.1046/j.1439-0272.2000.00399.x.

(37) Flammarion P, Brion F, Babut M, Garric J, Migeon B, Noury P, et al. Induction of fish vitellogenin and alterations in testicular structure: Preliminary results of estrogenic effects in chub (Leuciscus cephalus). Ecotoxicology. 2000; 9(1–2): 127–35. https://doi.org/10.1023/A:1008984616206.

(38) Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ. Toxicol. Chem. 1996; 15(2): 194–202. https://doi.org/10.1002/etc.5620150218.