Economic evaluation of Cu-impregnated manganese for CO2 capture in combustion with solid oxygen carriers
Main Article Content
Introduction: Chemical Looping Combustion (CLC) is a promising technology for CO2 capture.
Objective: this study aimed to evaluate Cu-impregnated manganese ore (OXMN009P) as an effective oxygen carrier for this process, specifically using CO and H2 as fuels.
Methodology: the methodology involved thermogravimetric analysis (TGA) and batch fluidized bed reactor (bFB) testing to assess the material’s performance.
Results: he results showed that OXMN009P exhibited a reaction rate index (RI) ranging from 6.1 to 20.1% /min. It also achieved high fuel conversion efficiencies, nearly 100% for H2 and approximately 70% for CO, demonstrating improved reactivity and oxygen transport capacity. Furthermore, the particle lifetime was extended to 2031 hours, significantly reducing the need for annual solids inventory replenishments.
Conclusions: in conclusion, the economic analysis suggests that the material cost of OXMN009P would not be a limiting factor for the implementation of CLC technology.
- Chemical looping combustion
- Manganese ore
- Copper impregnation
- Rate index
- Particles lifetime
Mendiara T, Gayán P, García-Labiano F, de Diego LF, Pérez-Astray A, Izquierdo MT, et al. Chemical Looping Combustion of Biomass: An Approach to BECCS. Energy Procedia. 2017;114:6021-9. DOI: https://doi.org/10.1016/j.egypro.2017.03.1737
Lyngfelt A, Hedayati A, Augustsson E. Fate of NO and Ammonia in Chemical Looping Combustion─Investigation in a 300 W Chemical Looping Combustion Reactor System. Energy & Fuels. 2022;36(17):9628-47. DOI: https://doi.org/10.1021/acs.energyfuels.2c00750
Gayán P, Forero CR, Abad A, de Diego LF, García-Labiano F, Adánez J. Effect of Support on the Behavior of Cu-Based Oxygen Carriers during Long-Term CLC Operation at Temperatures above 1073 K. Energy & Fuels. 2011;25(3):1316-26. DOI: https://doi.org/10.1021/ef101583w
Mendiara T, Gayán P, Abad A, García-Labiano F, de Diego LF, Adánez J. Characterization for disposal of Fe-based oxygen carriers from a CLC unit burning coal. Fuel Processing Technology. 2015;138:750-7. DOI: https://doi.org/10.1016/j.fuproc.2015.07.019
Linderholm C, Schmitz M, Knutsson P, Lyngfelt A. Chemical-looping combustion in a 100-kW unit using a mixture of ilmenite and manganese ore as oxygen carrier. Fuel. 2016;166:533-42. DOI: https://doi.org/10.1016/j.fuel.2015.11.015
Mei D, Soleimanisalim AH, Linderholm C, Lyngfelt A, Mattisson T. Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion. Fuel Processing Technology. 2021;215:106743. DOI: https://doi.org/10.1016/j.fuproc.2021.106743
Ströhle J, Orth M, Epple B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier. Applied Energy. 2015;157:288-94. DOI: https://doi.org/10.1016/j.apenergy.2015.06.035
Schmitz M, Linderholm C, Hallberg P, Sundqvist S, Lyngfelt A. Chemical-Looping Combustion of Solid Fuels Using Manganese Ores as Oxygen Carriers. Energy & Fuels. 2016;30(2):1204-16. DOI: https://doi.org/10.1021/acs.energyfuels.5b02440
Pérez-Astray A, Mendiara T, de Diego LF, Abad A, García-Labiano F, Izquierdo MT, et al. Improving the oxygen demand in biomass CLC using manganese ores. Fuel. 2020;274:117803. DOI: https://doi.org/10.1016/j.fuel.2020.117803
Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E. Chemical-looping combustion of solid fuels – Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel. 2012;102(0):808. DOI: https://doi.org/10.1016/j.fuel.2012.05.010
Frohn P, Arjmand M, Azimi G, Leion H, Mattisson T, Lyngfelt A. On the high-gasification rate of Brazilian manganese ore in chemical-looping combustion (CLC) for solid fuels. AIChE Journal. 2013;59(11):4346-54. DOI: https://doi.org/10.1002/aic.14168
Keller M, Leion H, Mattisson T. Mechanisms of Solid Fuel Conversion by Chemical-Looping Combustion (CLC) using Manganese Ore: Catalytic Gasification by Potassium Compounds. Energy Technology. 2013;1(4):273-82. DOI: https://doi.org/10.1002/ente.201200052
Arjmand M, Leion H, Mattisson T, Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Applied Energy. 2014;113:1883-94. DOI: https://doi.org/10.1016/j.apenergy.2013.06.015
Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control. 2015;43:179-88. DOI: https://doi.org/10.1016/j.ijggc.2015.10.027
Mei D, Mendiara T, Abad A, de Diego LF, García-Labiano F, Gayán P, et al. Evaluation of Manganese Minerals for Chemical Looping Combustion. Energy & Fuels. 2015;29(10):6605-15. DOI: https://doi.org/10.1021/acs.energyfuels.5b01293
Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy & Fuels. 2009;23(8):3885-92. DOI: https://doi.org/10.1021/ef9001605
Mattisson T, Järdnäs A, Lyngfelt A. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen - Application for chemical-looping combustion. Energy and Fuels. 2003;17(3):643-51. DOI: https://doi.org/10.1021/ef020151i
Cho P, Mattisson T, Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial and Engineering Chemistry Research. 2005;44(4):668-76. DOI: https://doi.org/10.1021/ie049420d
de Diego LF, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella BM, et al. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel. 2004;83(13):1749-57. DOI: https://doi.org/10.1016/j.fuel.2004.03.003
Mungse P, Saravanan G, Uchiyama T, Nishibori M, Teraoka Y, Rayalu S, et al. Copper–manganese mixed oxides: CO2-selectivity, stable, and cyclic performance for chemical looping combustion of methane. Physical Chemistry Chemical Physics. 2014;16(36):19634-42. DOI: https://doi.org/10.1039/C4CP01747A
Xu L, Edland R, Li Z, Leion H, Zhao D, Cai N. Cu-Modified Manganese Ore as an Oxygen Carrier for Chemical Looping Combustion. Energy & Fuels. 2014;28(11):7085-92. DOI: https://doi.org/10.1021/ef5017686
Mohammad Pour N, Leion H, Rydén M, Mattisson T. Combined Cu/Mn Oxides as an Oxygen Carrier in Chemical Looping with Oxygen Uncoupling (CLOU). Energy & Fuels. 2013;27(10):6031-9. DOI: https://doi.org/10.1021/ef401328u
Durango EA, Forero CR, Velasco-Sarria FJ. Use of a Low-Cost Colombian Manganese Mineral as a Solid Oxygen Carrier in Chemical Looping Combustion Technology. Energy & Fuels. 2021;35(15):12252-9. DOI: https://doi.org/10.1021/acs.energyfuels.1c00587
Forero CR, Gayán P, de Diego LF, Abad A, García-Labiano F, Adánez J. Syngas combustion in a 500 Wth chemical-looping combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology. 2009;90(12):1471-9. DOI: https://doi.org/10.1016/j.fuproc.2009.07.001
Xu L, Sun H, Li Z, Cai N. Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied Energy. 2016;162:940-7. DOI: https://doi.org/10.1016/j.apenergy.2015.10.167
Orrego AJ. Tesis de maestría: Preparación y caracterización de transportadores sólidos de oxígeno basados en Fe y Mn modificados con CuO para combustión con captura de CO2. Cali: Universidad del Valle; 2017.
Velasco-Sarria FJ, Forero CR, Arango E, Adánez J. Reduction and Oxidation Kinetics of Fe–Mn-Based Minerals from Southwestern Colombia for Chemical Looping Combustion. Energy & Fuels. 2018;32(2):1923-33. DOI: https://doi.org/10.1021/acs.energyfuels.7b02188
Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catalysis Today. 1999;47(1-4):161-7. DOI: https://doi.org/10.1016/S0920-5861(98)00296-X
Cabello A, Gayán P, García-Labiano F, de Diego LF, Abad A, Adánez J. On the attrition evaluation of oxygen carriers in Chemical Looping Combustion. Fuel Processing Technology. 2016;148:188-97. DOI: https://doi.org/10.1016/j.fuproc.2016.03.004
Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science. 2001;56(10):3101-13. DOI: https://doi.org/10.1016/S0009-2509(01)00007-0
Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P, Celaya J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science. 2007;62(1-2):533-49. DOI: https://doi.org/10.1016/j.ces.2006.09.019
Arango E, Vasquez FG. Determinación de los parámetros cinéticos para la combustión usando minerales del suroccidente colombiano como transportadores sólidos de oxígeno. Cali-Colombia: Universidad del Valle; 2016.
García-Labiano F, de Diego LF, Adánez J, Abad A, Gayán P. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Industrial and Engineering Chemistry Research. 2004;43(26):8168-77. DOI: https://doi.org/10.1021/ie0493311
Son SR, Kim SD. Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops. Industrial & Engineering Chemistry Research. 2006;45(8):2689-96. DOI: https://doi.org/10.1021/ie050919x
Fogler HS. Elements of Chemical Reaction Engineering: Prentice Hall PTR; 2006.
Zafar Q, Abad A, Mattisson T, Gevert B, Strand M. Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion. Chemical Engineering Science. 2007;62(23):6556-67. DOI: https://doi.org/10.1016/j.ces.2007.07.011
Perreault P, Patience GS. Chemical looping syngas from CO2 and H2O over manganese oxide minerals. The Canadian Journal of Chemical Engineering. 2016;94(4):703-12. DOI: https://doi.org/10.1002/cjce.22432
Ksepko E, Babiński P, Nalbandian L. The redox reaction kinetics of Sinai ore for chemical looping combustion applications. Applied Energy. 2017;190:1258-74. DOI: https://doi.org/10.1016/j.apenergy.2017.01.026
Abad A, García-Labiano F, de Diego LF, Gayán P, Adánez J. Reduction kinetics of Cu-, Ni-, and Fe-based oxygen carriers using syngas (CO + H2) for chemical-looping combustion. Energy and Fuels. 2007;21(4):1843-53. DOI: https://doi.org/10.1021/ef070025k
Abad A, Adánez J, Cuadrat A, García-Labiano F, Gayán P, de Diego LF. Kinetics of redox reactions of ilmenite for chemical-looping combustion. Chemical Engineering Science. 2011;66(4):689-702. DOI: https://doi.org/10.1016/j.ces.2010.11.010
Velasco-Sarria FJ, Forero CR, Adánez-Rubio I, Abad A, Adánez J. Assessment of low-cost oxygen carrier in South-western Colombia, and its use in the in-situ gasification chemical looping combustion technology. Fuel. 2018;218:417-24. DOI: https://doi.org/10.1016/j.fuel.2017.11.078
Linderholm C, Knutsson P, Schmitz M, Markström P, Lyngfelt A. Material balances of carbon, sulfur, nitrogen and ilmenite in a 100 kW CLC reactor system. Int J Greenhouse Gas Control. 2014;27:188. DOI: https://doi.org/10.1016/j.ijggc.2014.05.001
Carrillo A, Forero CR. Characterization for Disposal of the Residues Produced by Materials Used as Solid Oxygen Carriers in an Advanced Chemical Looping Combustion Process. Applied Sciences. 2018;8:1787. DOI: https://doi.org/10.3390/app8101787
Adánez J, Cuadrat A, Abad A, Gayán P, de Diego LF, García-Labiano F. Ilmenite activation during consecutive redox cycles in chemical-looping combustion. Energy and Fuels. 2010;24(2):1402-13. DOI: https://doi.org/10.1021/ef900856d
Abad A, Adánez J, García-Labiano F, de Diego LF, Gayán P. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combustion and Flame. 2010;157(3):602-15. DOI: https://doi.org/10.1016/j.combustflame.2009.10.010
Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in Chemical-Looping Combustion and Reforming technologies. Progress in Energy and Combustion Science. 2012;38(2):215-82. DOI: https://doi.org/10.1016/j.pecs.2011.09.001
UPME. Sistema de información minero Colombiano - SIMCO: Unidad de Planeación Minero-energética; 2024 [Available from: https://www1.upme.gov.co/simco/Cifras-Sectoriales/Paginas/manganeso.aspx.
Stevens R, Newby R, Keairns D, Woods M. Oxygen Carrier Production Cost. 5 th International Conference on Chemical Looping; The Chateaux, Park City, Utah, USA2018.
Cabello A, Mendiara T, Abad A, Adánez J. Techno-economic analysis of a chemical looping combustion process for biogas generated from livestock farming and agro-industrial waste. Energy Conversion and Management. 2022;267:115865. DOI: https://doi.org/10.1016/j.enconman.2022.115865
Fleiß B, Priscak J, Hammerschmid M, Fuchs J, Müller S, Hofbauer H. CO2 capture costs of chemical looping combustion of biomass: A comparison of natural and synthetic oxygen carrier. Journal of Energy Chemistry. 2024;92:296-310. DOI: https://doi.org/10.1016/j.jechem.2024.01.048
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).