3d printing applied to building development around the world: a systematic literature review
Main Article Content
The construction industry is undergoing a transformation towards automation, and 3D printing is at the forefront of this revolution. However, to optimise 3D printing in construction, it is crucial to consider the printer’s scale, the printing material’s rheological properties, and the printed structure’s mechanical properties. This paper provides an overview of the state of the art in this field, including the promising technologies, such as D-Shape and Contour Crafting, used in building applications. The paper also compares the use in 3D printing of conventional materials, like concrete, with non-conventional earth-based materials, such as sand, clay, and mud, or combinations with cementing materials. This review highlights the need for more research on alternative materials to concrete, particularly in developed countries. Nevertheless, earth-based materials offer significant potential for 3D printing in developing countries, where they are readily available. However, further research is necessary to improve the mechanical properties of 3D-printed elements, particularly for large-scale structures, to ensure their reliability and safety, making 3D printing a mainstream building method.
UN-Habitat . World cities report 2022: Envisaging the future of cities. Publisher: United Nations Human Settlements Programme (UN-Habitat) 2022;
Acevedo P, Vera F, Zambrano-Barraga´n P, Poskus MA, Alonso Pastor L, Azcona G, et al. Informing the informal: strategies to generate information in precarious settlements 2021;doi:10.18235/0003784. DOI: https://doi.org/10.18235/0003784
Afolabi A, Ojelabi R, Omuh I, Tunji-Olayeni P. 3d house printing: A sustainable housing solution for nigeria’s housing needs. In: Journal of Physics: Conference Series; vol. 1299. IOP Publishing; 2019, p. 012012. DOI: https://doi.org/10.1088/1742-6596/1299/1/012012
IEA . Buildings - sectoral overview. 2021. URL: https://www.iea.org/ reports/buildings; (accessed Jun. 22, 2023).
IEA . Global energy review: Co2 emissions in 2021 – analysis. 2021. URL: https://www.iea.org/reports/ global-energy-review-co2-emissions-in-2021-2; (accessed Jun. 22, 2023).
Tabassum T, Mir AA. A review of 3d printing technology-the future of sustainable construction. Materials Today: Proceedings 2023;. DOI: https://doi.org/10.1016/j.matpr.2023.08.013
Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive man- ufacturing (3d printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012. DOI: https://doi.org/10.1016/j.compositesb.2018.02.012
Gomaa M, Jabi W, Soebarto V, Min Y. Digital manufacturing for earth construction: A critical review. J Clean Prod 2022;338(January):130630,. doi:10.1016/j.jclepro.2022.130630. DOI: https://doi.org/10.1016/j.jclepro.2022.130630
Wu P, Wang J, Wang X. A critical review of the use of 3-d printing in the construction industry material finished. Autom Constr 2016;68:21–31,. doi:10.1016/j.autcon.2016.04.005. DOI: https://doi.org/10.1016/j.autcon.2016.04.005
Vyncke J, Kupers L, Denies N. Earth as building material–an overview of rilem activities and recent innovations in geotechnics. In: MATEC Web of Conferences; vol. 149. EDP Sciences; 2018, p. 02001. DOI: https://doi.org/10.1051/matecconf/201714902001
Scopus . Scopus. Elsevier 2022;URL: https://www.scopus.com/home. uri; (accessed Feb. 14, 2022).
Zˇ ujović M, Obradović R, Rakonjac I, Miloŝević J. 3d printing technologies in architectural design and construction: a systematic literature review. Buildings 2022;12(9):1319. DOI: https://doi.org/10.3390/buildings12091319
VOSviewer . Welcome to vosviewer. Centre for Science and Tech- nology Studies - Leiden Universiteit 2021;:22–24,URL: https://www. vosviewer.com/.
Vyavahare S, Teraiya S, Panghal D, Kumar S. Fused deposition mod- elling: a review. Rapid Prototyp J 2020;26(1):176–201,. doi:10.1108/ RPJ-04-2019-0106. DOI: https://doi.org/10.1108/RPJ-04-2019-0106
Mehrpouya M, Tuma D, Vaneker T, Afrasiabi M, Bambach M, Gib- son I. Multimaterial powder bed fusion techniques. Rapid Prototyp J 2022;28(11):1–19,. doi:10.1108/RPJ-01-2022-0014. DOI: https://doi.org/10.1108/RPJ-01-2022-0014
Kruth J, Mercelis P, Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 2005;11(1):26–36,. doi:10.1108/13552540510573365. DOI: https://doi.org/10.1108/13552540510573365
Wang X, Laoui T. Lasers and materials in selective laser sintering. Rapid Prototyp J 2006;23(4):357–371,. URL: https://www.emerald.com/ insight/content/doi/10.1108/13552549710191836/full/html. doi:10.1108/13552549710191836. DOI: https://doi.org/10.1108/01445150310698652
Schmidleithner C, Kalaskar D. Stereolithography - chapter 1. In: 3D Print. 2018, p. 1–22,. doi:10.5772/intechopen.78147. DOI: https://doi.org/10.5772/intechopen.78147
Shim D, Baek G, Seo J, Shin G, Kim K, Lee K. Optics & laser technology effect of layer thickness setting on deposition characteristics in direct energy deposition ( ded ) process. Opt Laser Technol 2016;86:69–78,. doi:10. 1016/j.optlastec.2016.07.001. DOI: https://doi.org/10.1016/j.optlastec.2016.07.001
Park J, Tari MJ, Hahn HT. Characterization of the laminated object manu- facturing (lom) process. Rapid Prototyping Journal 2000;. DOI: https://doi.org/10.1108/13552540010309868
Travitzky N. Additive manufacturing of ceramic-based materials. Adv Eng Mater 2014;16(6):729–754,. doi:10.1002/adem.201400097. DOI: https://doi.org/10.1002/adem.201400097
Pegna J. Exploratory investigation of solid freeform construction. Automa- tion in construction 1997;5(5):427–37. DOI: https://doi.org/10.1016/S0926-5805(96)00166-5
Gosselin C, Duballet R, Roux P, Gaudillie`re N, Dirrenberger J, Morel P. Large-scale 3d printing of ultra-high performance concrete - a new processing route for architects and builders. Mater Des 2016;100:102–109,. doi:10.1016/j.matdes.2016.03.097. DOI: https://doi.org/10.1016/j.matdes.2016.03.097
Panda B, Paul S, Hui L, Tay Y, Tan M. Additive manufacturing of geopoly- mer for sustainable built environment. J Clean Prod 2017;167:281–288,. doi:10.1016/j.jclepro.2017.08.165. DOI: https://doi.org/10.1016/j.jclepro.2017.08.165
Paul S, Tay Y, Panda B, Tan M. Fresh and hardened properties of 3d printable cementitious materials for building and construction. Arch Civ Mech Eng 2018;18(1):311–319,. doi:10.1016/j.acme.2017.02.008. DOI: https://doi.org/10.1016/j.acme.2017.02.008
Zhang X. Large-scale 3d printing by a team of mobile robots. Autom Constr 2018;95:98–106,. doi:10.1016/j.autcon.2018.08.004. DOI: https://doi.org/10.1016/j.autcon.2018.08.004
Hwang D, Khoshnevis B. Concrete wall fabrication by contour crafting. Proc 2004;doi:10.22260/isarc2004/0057. DOI: https://doi.org/10.22260/ISARC2004/0057
Le T, Austin S, Lim S, Buswell R, Gibb A, Thorpe T. Mix design and fresh properties for high-performance printing concrete. 2012. doi:10.1617/ s11527-012-9828-z.
Zareiyan B, Khoshnevis B. Interlayer adhesion and strength of structures in contour crafting - e ff ects of aggregate size , extrusion rate , and layer thick- ness. Autom Constr 2017;81(March):112–121,. doi:10.1016/j.autcon. 2017.06.013. DOI: https://doi.org/10.1016/j.autcon.2017.06.013
Lim S, Le T, Webster J, Buswell R, Austin A, Gibb A, et al. Fabricat- ing construction components using layered manufacturing technology. In: Global Innovation in Construction Conference. Loughborough University Leicestershire, UK; 2009, p. 512–20.
Panda B, Unluer C, Tan M. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3d printing. Cem Concr Compos 2018;94:307–314,. doi:10.1016/j.cemconcomp.2018.10.002. DOI: https://doi.org/10.1016/j.cemconcomp.2018.10.002
Yuan P. Smart dynamic casting: Slipforming with flexible formwork - inline measurement and control. Autom Constr 2018;16(1):165–185,. doi:10. 1108/13552540510573365.
Bici A, Yunitsyna A. Analysis of 3d printing techniques for building con- struction: a review. Construction Robotics 2023;7(2):107–23. DOI: https://doi.org/10.1007/s41693-023-00108-4
Cesaretti G, Dini E, Kestelier X, Colla V, Pambaguian L. Building compo- nents for an outpost on the lunar soil by means of a novel 3d printing tech- nology. Acta Astronaut 2014;93:430–450,. doi:10.1016/j.actaastro. 2013.07.034. DOI: https://doi.org/10.1016/j.actaastro.2013.07.034
Buswell R, Silva W, Jones S, Dirrenberger J. 3d printing using con- crete extrusion: A roadmap for research. Cement and Concrete Research 2018;112:37–49,. doi:10.1016/j.cemconres.2018.05.006. DOI: https://doi.org/10.1016/j.cemconres.2018.05.006
Bos F, Wolfs R, Ahmed Z, Salet T. Additive manufacturing of concrete in construction: potentials and challenges of 3d concrete printing. Virtual Phys Prototyp 2016;11(3):209–225,. doi:10.1080/17452759.2016.1209867. DOI: https://doi.org/10.1080/17452759.2016.1209867
Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based ma- terials used for 3d-printing extrusion techniques. Mater Struct Constr 2016;49(4):1213–1220,. doi:10.1617/s11527-015-0571-0.
Tay Y, Panda B, Paul S, Mohamed N, Tan M, Leong K. 3d printing trends in building and construction industry: a review. Virtual and Physical Proto- typing 2017;12(3):261–276,. doi:10.1080/17452759.2017.1326724. DOI: https://doi.org/10.1080/17452759.2017.1326724
Schutter G, Lesage K, Mechtcherine V, Nerella V, Habert G, Agusti-Juan I. Vision of 3d printing with concrete — technical, economic and envi- ronmental potentials. Cement and Concrete Research 2018;112:25–36,. doi:10.1016/j.cemconres.2018.06.001. DOI: https://doi.org/10.1016/j.cemconres.2018.06.001
Wolfs R, Bos F, Salet T. Early age mechanical behaviour of 3d printed concrete: Numerical modelling and experimental testing. Cem Concr Res 2018;106:103–116,. doi:10.1016/j.cemconres.2018.02.001. DOI: https://doi.org/10.1016/j.cemconres.2018.02.001
Kazemian A, Yuan X, Cochran E, Khoshnevis B. Cementitious materials for construction-scale 3d printing: Laboratory testing of fresh printing mixture 2017;145:639–647,. DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.015
Panda B, Paul S, Tan M. Anisotropic mechanical performance of 3d printed fiber reinforced sustainable construction material. Mater Lett 2017;209:146–149,. doi:10.1016/j.matlet.2017.07.123. DOI: https://doi.org/10.1016/j.matlet.2017.07.123
Panda B, Tan M. Experimental study on mix proportion and fresh prop- erties of fly ash based geopolymer for 3d concrete printing. Ceram Int 2018;44(9):10258–10265,. doi:10.1016/j.ceramint.2018.03.031. DOI: https://doi.org/10.1016/j.ceramint.2018.03.031
Sanjayan J, Nematollahi B, Xia M, Marchment T. Effect of surface mois- ture on inter-layer strength of 3d printed concrete. Constr Build Mater 2018;172:468–475,. doi:10.1016/j.conbuildmat.2018.03.232. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.232
Panda B, Paul S, Mohamed N, Tay Y, Tan M. Measurement of tensile bond strength of 3d printed geopolymer mortar. Meas J Int Meas Confed 2018;113:108–116,. doi:10.1016/j.measurement.2017.08.051. DOI: https://doi.org/10.1016/j.measurement.2017.08.051
Hager I, Golonka A, Putanowicz R. 3d printing of buildings and building components as the future of sustainable construction? Procedia Engineering 2016;151:292–299. doi:10.1016/j.proeng.2016.07.357. DOI: https://doi.org/10.1016/j.proeng.2016.07.357
Buchanan C, Gardner L. Metal 3d printing in construction: A review of methods, research, applications, opportunities and challenges. Eng Struct 2019;180(January):332–348,. doi:10.1016/j.engstruct.2018. 11.045. DOI: https://doi.org/10.1016/j.engstruct.2018.11.045
Wolfs R, Bos F, Salet T. Hardened properties of 3d printed concrete: The influence of process parameters on interlayer adhesion. Cem Concr Res 2019;119:132–140,. doi:10.1016/j.cemconres.2019.02.017. DOI: https://doi.org/10.1016/j.cemconres.2019.02.017
Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B. Particle-bed 3d printing in concrete construction–possibilities and challenges. Cement and concrete research 2018;112:50–65. DOI: https://doi.org/10.1016/j.cemconres.2018.05.018
Ali MH, Issayev G, Shehab E, Sarfraz S. A critical review of 3d printing and digital manufacturing in construction engineering. Rapid Prototyping Journal 2022;28(7):1312–24. DOI: https://doi.org/10.1108/RPJ-07-2021-0160
Khoshnevis B. Automated construction by contour crafting — related robotics and information technologies. 2004. doi:10.1016/j.autcon. 2003.08.012.
Buswell R, Soar R, Gibb A, Thorpe A. Freeform construction : Mega-scale rapid manufacturing for construction. 2007. doi:10.1016/j.autcon. 2006.05.002. DOI: https://doi.org/10.1016/j.autcon.2006.05.002
Lim S, Buswell R, Le T, Austin S, Gibb A, Thorpe T. Developments in construction-scale additive manufacturing processes. 2012. DOI: https://doi.org/10.1016/j.autcon.2011.06.010
Gardiner J. Exploring the emerging design territory of construction 3d printing – project led architectural research rmit exploring the emerging design territory of construction 3d printing – project led for the degree of doctor of philosophy. 2011.
Robayo-Salazar R, Mejía de Gutie´rrez R, Villaquira´n-Caicedo MA, Del- vasto Arjona S. 3d printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Con- struction 2023;146:104693. URL: https://www.sciencedirect.com/ science/article/pii/S0926580522005635. doi:https://doi.org/ 10.1016/j.autcon.2022.104693. DOI: https://doi.org/10.1016/j.autcon.2022.104693
Guama´n-Rivera R, Martínez-Rocamora A, García-Alvarado R, Mun˜oz- Sanguinetti C, Gonza´lez-Bo¨hme LF, Auat-Cheein F. Recent developments and challenges of 3d-printed construction: A review of research fronts. Buildings 2022;12(2):229. DOI: https://doi.org/10.3390/buildings12020229
Malkin A, Ya A. Isayev. Rheology 2012;2.
Soltan D, Li V. A self-reinforced cementitious composite for building- scale 3d printing. Cem Concr Compos 2018;90:1–13,. doi:10.1016/j. cemconcomp.2018.03.017. DOI: https://doi.org/10.1016/j.cemconcomp.2018.03.017
Zhang Y, Zhang Y, Liu G, Yang Y, Wu M, Pang B. Fresh properties of a novel 3d printing concrete ink. Constr Build Mater 2018;174:263–271,. doi:10.1016/j.conbuildmat.2018.04.115. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.115
Panda B, Ruan S, Unluer C, Tan M. Improving the 3d printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos Part B Eng 2019;165:75–83,. doi:10.1016/j.compositesb.2018.11.109. DOI: https://doi.org/10.1016/j.compositesb.2018.11.109
Jianchao Z, Zhang T, Faried M, Wengang C. 3d printing cement based ink, and it ’ s application within the construction industry. 2017. DOI: https://doi.org/10.1051/matecconf/201712002003
Nerella V, Hempel S, Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion- based 3d-printing. Constr Build Mater 2019;205:586–601,. doi:10.1016/ j.conbuildmat.2019.01.235. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.235
Hambach M, Volkmer D. Properties of 3d-printed fiber-reinforced portland cement paste. Cement and Concrete Composites 2017;79:62–70,. doi:10. 1016/j.cemconcomp.2017.02.001. DOI: https://doi.org/10.1016/j.cemconcomp.2017.02.001
Paul SC, Van Zijl GP, Tan MJ, Gibson I. A review of 3d concrete print- ing systems and materials properties: Current status and future research prospects. Rapid Prototyping Journal 2018;. DOI: https://doi.org/10.1108/RPJ-09-2016-0154
Nerella V, Mechtcherine V. Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology ( CONPrint3D. Elsevier Inc; 2019. doi:10.1016/B978-0-12-815481-6.00016-6. DOI: https://doi.org/10.1016/B978-0-12-815481-6.00016-6
Feng P, Meng X, Chen J, Ye L. Mechanical properties of structures 3d printed with cementitious powders mechanical properties of structures 3d printed with cementitious powders. Constr Build Mater 2022;93:486–497,. doi:10.1016/j.conbuildmat.2015.05.132. DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.132
Robayo-Salazar R, Martínez F, Vargas A, Mejía de Gutie´rrez R. 3d printing of hybrid cements based on high contents of powders from concrete, ce- ramic and brick waste chemically activated with sodium sulphate (na2so4). Sustainability 2023;15(13):9900. DOI: https://doi.org/10.3390/su15139900
Watkin H. Dus architects build 3d printed urban cabin in amsterdam. 2016. URL: https://all3dp.com/ dus-architects-3d-printed-urban-cabin/; (accessed Jun. 25, 2022).
Svenson B. Shanghai-based winsun 3d prints 6-story apartment building and an incredible home. 2015. URL: https://3dprint.com/38144/ 3d-printed-apartment-building/; (accessed Jun. 25, 2022).
Scott C. Chinese construction company 3d prints an entire two-story house on-site in 45 days - 3dprint.com: The voice of 3d printing / ad- ditive manufacturing. 2016. URL: https://3dprint.com/138664/ huashang-tengda-3d-print-house/; (accessed Jun. 12, 2023).
Augur H. This on-site 3d printed house took only 45 days. 2016. URL: https://all3dp.com/21776-2/; (accessed Jun. 25, 2022).
Costanzi C. 3d printing concrete onto flexible surfaces. TU Delft; 2016.
XtreeE . Double sine wall. 2016. URL: https://xtreee.com/en/ project/mur-sinusoidal/; (accessed Jun. 25, 2022).
Anton A, Bedarf P, Reiter L, Wangler T. Vertical modulations: Computa- tional design for concrete 3d printed columns. 2019. doi:10.52842/conf. acadia.2019.596. DOI: https://doi.org/10.52842/conf.acadia.2019.596
Lloret E, Reiter L, Wangler T, Gramazio F, Kohler M, Flatt R. Smart dynamic casting: Slipforming with flexible formwork - inline mea- surement and control. Second Concr Innov Conf 2017;doi:10.3929/ ethz-b-000219663.
TotalKustom . 3d concrete house printer. URL: http://www. totalkustom.com/; (accessed Jun. 25, 2022).
printer D, printing news D. Spain unveils world’s first 3d printed pedes- trian bridge made of concrete. 2016. URL: https://www.3ders.org; (accessed Nov. 07, 2022).
Yuan P, Chen Z, Zhang L. Form finding for 3d printed pedestrian bridges. 2018. DOI: https://doi.org/10.52842/conf.caadria.2018.1.225
MX3D . Mx3d bridge. 2018. URL: https://www.jorislaarman.com/ work/mx3d-bridge/; (accessed Jun. 26, 2022).
Salet T. Design of a 3d printed concrete bridge by testing. 2018. doi:10. 1080/17452759.2018.1476064.
Vantyghem G, Corte W, Shakour E, Amir O. 3d printing of a post- tensioned concrete girder designed by topology optimization. Autom Constr 2019;112:103084,. doi:10.1016/j.autcon.2020.103084. DOI: https://doi.org/10.1016/j.autcon.2020.103084
Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based ma- terials used for 3d-printing extrusion techniques. Mater Struct Constr 2016;49(4):1213–1220,. doi:10.1617/s11527-015-0571-0. DOI: https://doi.org/10.1617/s11527-015-0571-0
Lei Y, Zhou H, Lai Z. A computationally efficient algorithm for real-time tracking the abrupt stiffness degradations of structural elements. Computer- Aided Civil and Infrastructure Engineering 2016;31(6):465–480,. doi:10. 1111/mice.12217. DOI: https://doi.org/10.1111/mice.12217
Jagoda J, Diggs-mcgee B, Kreiger M, Schuldt S. The viability and simplicity of 3d-printed construction : A military case study. 2020. DOI: https://doi.org/10.3390/infrastructures5040035
Mueller RP, Gelino NJ, Smith JD, Buckles BC, Lippitt T, Schuler JM, et al. Zero launch mass three-dimensional print head. In: Earth and Space 2018: Engineering for Extreme Environments. American Society of Civil Engineers Reston, VA; 2018, p. 219–32. DOI: https://doi.org/10.1061/9780784481899.022
Post N. Army researchers refine 3d-printed concrete bar- racks. 2018. URL: https://www.enr.com/articles/ 45002-army-researchers-refine-3d-printed-concrete-barracks; (accessed Jun. 25, 2022).
Dixit M. 3-d printing in building construction: a literature review of opportunities and challenges of reducing life cycle energy and carbon of buildings. In: IOP Conference Series: Earth and Environmental Science; vol. 290. IOP Publishing; 2019, p. 012012. DOI: https://doi.org/10.1088/1755-1315/290/1/012012
Mueller RP, Fikes JC, Case MP, Khoshnevis B, Fiske MR, Edmunson JE, et al. Additive construction with mobile emplacement (acme). In: 68th International Astronautical Congress (IAC). Space Industry Association of Australia Adelaide, Australia; 2017, p. 25–9.
Scott A, Oze C, Hughes W, Matthew S, Wisbey C. Performance of a magne- sia silica cement for martian construction. Earth and Space 2018;:629–636. DOI: https://doi.org/10.1061/9780784481899.060
Soto B. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom Constr 2018-08;92:297–311,. doi:10.1016/j.autcon.2018.04.004. DOI: https://doi.org/10.1016/j.autcon.2018.04.004
Cao L. How rammed earth walls are built. 2020. URL: https://www. archdaily.com/933353/how-rammed-earth-walls-are-built; (accessed Jun. 25, 2022).
Donelly E. Is rammed earth construction the answer to ghana’s housing crisis? 2019. URL: https://www.azuremagazine.com/article/ rammed-earth-housing-ghana/; (accessed Jun. 25, 2022).
Kratzer C. A¨ıt ben haddou. 2020. URL: https://www. sientemarruecos.viajes/blog/kasbah-de-ait-ben-haddou/; (accessed Jun. 25, 2022).
Perrot A. 3d printing of concrete: state of the art and challenges of the digital construction revolution 2019;. DOI: https://doi.org/10.1002/9781119610755
Alhumayani H, Gomaa M, Soebarto V, Jabi W. Environmental assessment of large-scale 3d printing in construction : A comparative study between cob and concrete. J Clean Prod 2020;270:122463,. doi:10.1016/j.jclepro. 2020.122463. DOI: https://doi.org/10.1016/j.jclepro.2020.122463
Coutinho B. 152 travessera de gracia. 2020. URL: https://www. iaacblog.com/programs/152-travessera-de-gracia/; (accessed Jun. 26, 2022).
Chiusoli A. Tecla. 2019. URL: https://www.3dwasp.com/ casa-stampata-in-3d-tecla/; (accessed Jun. 26, 2022).
Giannakopoulos S. 3d printing with soil and natural materials. 2015. URL: http://pylos.iaac.net/main.html#material; (accessed Jun. 27, 2023).
Chukkappali S. Terraperforma 3d printed performative wall. 2017. URL: https://iaac.net/project/terraperforma/; (accessed Jun. 26, 2022).
Asal A. Building with Earth - Sustainable Stabilization and Additive Man- ufacturing for Rammed Earth Construction. Ph.D. thesis; HTWG Konstanz- University of Applied Sciences Civil; 2021.
- Johannio Marulanda A., Peter Thomson, Johannio Marulanda C., Monitoreo de Salud Estructural , Ingeniería y Competitividad: Vol. 2 No. 2 (2000)
- Johanio Marulanda, Peter Thomson, Julio Cesar Tocoche, Seismic retrofitting of academic buildings using roof isolation as a tuned mass damper , Ingeniería y Competitividad: Vol. 25 No. 1 (2023): Ingeniería y Competitividad.
- Claudia P. Moreno, Peter Thomson, Parametric uncertainty in dynamic models of civil structures , Ingeniería y Competitividad: Vol. 12 No. 1 (2010)
- Horacio A. Coral, José M. Ramírez, Esteban E. Rosero, Peter Thomson, Daniel Gómez, Johannio Marulanda, Design, construction and control of a unidirectional tele-operated seismic simulator for testing small scale structural models , Ingeniería y Competitividad: Vol. 12 No. 2 (2010)
- Albert R. Ortiz, Daniel Gómez, Peter Thomson, Effects of human-structure interaction on the dynamic properties of a grandstand , Ingeniería y Competitividad: Vol. 14 No. 1 (2012): Ingeniería y Competitividad
- Lizeth Tello-Cifuentes, Johannio Marulanda, Peter Thomson, Computer vision and machine learning for the detection and classification of pavement cracks , Ingeniería y Competitividad: Vol. 25 No. 2 (2023): Ingeniería y Competitividad
- Johannio Marulanda, Juan M. Caicedo, Peter Thomson, Mode shapes identification under harmonic excitation using mobile sensors , Ingeniería y Competitividad: Vol. 19 No. 1 (2017): Revista Ingeniería y Competitividad
- Helene Tischer, Peter Thomson, Johannio Marulanda A., comparision of there transforms for time-frequency distributions from their application to ambient vibration records , Ingeniería y Competitividad: Vol. 9 No. 2 (2007)
- Diana C. Millán-Yusti, Peter Thomson, Johannio Marulanda, Evaluation of the structural reliability of a grandstand subjected to anthropic loads , Ingeniería y Competitividad: Vol. 18 No. 1 (2016): Ingeniería y Competitividad
- Albert R. Ortíz, Johannio Marulanda C., Peter Thomson, Characterization of the dynamic behavior of the western grandstand Pascual Guerrero stadium during a musical concert , Ingeniería y Competitividad: Vol. 9 No. 2 (2007)
Accepted 2024-11-08
Published 2024-11-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).