A review on the treatment of landfill leachate by coupling advanced oxidation and biological processes
Main Article Content
The treatment of landfill leachate requires processes that efficiently remove the different contaminants present in this type of liquid waste. To treat this type of waste, a great diversity of biological processes have been used, which take advantage of the capacity to transform the different components of the liquid medium into biomass; however, these processes have limitations due to the intrinsic characteristics of the leachate. In recent years, the integration of biological processes with Advanced Oxidation Processes has been promoted, which would significantly reduce the toxic characteristics of these wastes to comply with the legal conditions to be discharged into the environment without causing damage. In this work, the authors present a review (2015 to 2021) concerning the biological treatment, and Advanced Oxidation Processes (based on ozone, electrochemical processes, and photocatalysis) are investigated. These processes are analyzed in combination to describe the optimal conditions under which pollutant loads of landfill leachate are reduced. Finally, it is possible to identify that the treatment processes under study are technologies that can be coupled, registering higher efficiency and lower generation of waste by-products or sludge.
Hassan M, Zhao Y, Xie B. Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development. Chem Eng J. 2016;285:264–75. Disponible en: http://dx.doi.org/10.1016/j.cej.2015.09.093 DOI: https://doi.org/10.1016/j.cej.2015.09.093
Bolyard SC, Reinhart DR. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag. 2016;55:22–30. Disponible en: http://dx.doi.org/10.1016/j.wasman.2016.01.024 DOI: https://doi.org/10.1016/j.wasman.2016.01.024
Moradian F, Ramavandi B, Jaafarzadeh N, Kouhgardi E. Effective treatment of high-salinity landfill leachate using ultraviolet / ultrasonication / peroxymonosulfate system. Waste Manag. 2020;118:591–9. Disponible en: https://doi.org/10.1016/j.wasman.2020.09.018 DOI: https://doi.org/10.1016/j.wasman.2020.09.018
Müller GT, Giacobbo A, dos Santos Chiaramonte EA, Rodrigues MAS, Meneguzzi A, Bernardes AM. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. Waste Manag. 2015;36:177–83. Disponible en: https://doi.org/10.1016/j.wasman.2014.10.024 DOI: https://doi.org/10.1016/j.wasman.2014.10.024
Cheng W, Quan X, Huang X, Cheng C, Yang L, Cheng Z. Enhancement of micro-filtration performance for biologically-treated leachate from municipal solid waste by ozonation in a micro bubble reactor. Sep Purif Technol. 2018;207(June):535–42. Disponible en: https://doi.org/10.1016/j.seppur.2018.07.005 DOI: https://doi.org/10.1016/j.seppur.2018.07.005
Peng Y. Perspectives on technology for landfill leachate treatment. Arab J Chem. 2017;10:S2567–74. Disponible en: http://dx.doi.org/10.1016/j.arabjc.2013.09.031 DOI: https://doi.org/10.1016/j.arabjc.2013.09.031
Hassan M, Wang X, Wang F, Wu D, Hussain A, Xie B. Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82−) techniques to deal with sanitary landfill leachate. Waste Manag. 2017;63:292. Disponible en: http://dx.doi.org/10.1016/j.wasman.2016.09.003 DOI: https://doi.org/10.1016/j.wasman.2016.09.003
Ma C, Yuan P, Jia S, Liu Y, Zhang X, Hou S, et al. Catalytic micro-ozonation by Fe3O4 nanoparticles @ cow-dung ash for advanced treatment of biologically pre-treated leachate. Waste Manag. 2019;83:23–32. Disponible en: https://doi.org/10.1016/j.wasman.2018.10.045 DOI: https://doi.org/10.1016/j.wasman.2018.10.045
Mandal P, Dubey BK, Gupta AK. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope. Waste Manag. 2017;69:250–73. Disponible en: https://doi.org/10.1016/j.wasman.2017.08.034 DOI: https://doi.org/10.1016/j.wasman.2017.08.034
Youcai Z. Leachate Generation and Characteristics. In: Inc. E, editor. Pollution Control Technology for Leachate from Municipal Solid Waste. 2018. p. 1–30. DOI: https://doi.org/10.1016/B978-0-12-815813-5.00001-2
Yu M, Xi B, Zhu Z, Zhang L, Yang C, Geng C. Fate and removal of aromatic organic matter upon a combined leachate treatment process. Chem Eng J. 2020;401(June):126157. Disponible en: https://doi.org/10.1016/j.cej.2020.126157 DOI: https://doi.org/10.1016/j.cej.2020.126157
Ogata Y, Ishigaki T, Ebie Y, Sutthasil N, Witthayaphirom C, Chiemchaisri C, et al. Design considerations of constructed wetlands to reduce landfill leachate contamination in tropical regions. J Mater Cycles Waste Manag. 2018;20(4):1961–8. Disponible en: http://dx.doi.org/10.1007/s10163-018-0755-0 DOI: https://doi.org/10.1007/s10163-018-0755-0
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ. 2020;703:135468. Disponible en: https://doi.org/10.1016/j.scitotenv.2019.135468
Gao J, Oloibiri V, Chys M, Audenaert W, Decostere B, He Y, et al. The present status of landfill leachate treatment and its development trend from a technological point of view. Rev Environ Sci Biotechnol. 2015;14(1):93–122. Disponible en: https://doi.org/10.1007/s11157-014-9349-z DOI: https://doi.org/10.1007/s11157-014-9349-z
Becerra D, Soto J, Villamizar S, Machuca-Martínez F, Ramírez L. Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process. Top Catal. 2020;63(11–14):1336–49. Disponible en: https://doi.org/10.1007/s11244-020-01284-1 DOI: https://doi.org/10.1007/s11244-020-01284-1
Baiju A, Gandhimathi R, Ramesh ST, Nidheesh P V. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate. J Environ Manage. 2018;210:328–37. Disponible en: https://doi.org/10.1016/j.jenvman.2018.01.019 DOI: https://doi.org/10.1016/j.jenvman.2018.01.019
Del Moro G, Prieto-Rodríguez L, De Sanctis M, Di Iaconi C, Malato S, Mascolo G. Landfill leachate treatment: Comparison of standalone electrochemical degradation and combined with a novel biofilter. Chem Eng J. 2016;288:87–98. Disponible en: http://dx.doi.org/10.1016/j.cej.2015.11.069 DOI: https://doi.org/10.1016/j.cej.2015.11.069
Chys M, Oloibiri VA, Audenaert WTM, Demeestere K, Van Hulle SWH. Ozonation of biologically treated landfill leachate: Efficiency and insights in organic conversions. Chem Eng J. 2015;277:104–11. Disponible en: http://dx.doi.org/10.1016/j.cej.2015.04.099 DOI: https://doi.org/10.1016/j.cej.2015.04.099
Kow S, Fahmi MR, Abidin CZA, Soon‐An O. Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment. Water Environ Res. 2016;88(11):2047–58. Disponible en: https://doi.org/10.2175/106143016X14733681695285 DOI: https://doi.org/10.2175/106143016X14733681695285
Gao JL, Oloibiri V, Chys M, De Wandel S, Decostere B, Audenaert W, et al. Integration of autotrophic nitrogen removal, ozonation and activated carbon filtration for treatment of landfill leachate. Chem Eng J. 2015;275:281–7. Disponible en: https://doi.org/10.1016/j.cej.2015.04.012 DOI: https://doi.org/10.1016/j.cej.2015.04.012
Xu Q, Siracusa G, Di Gregorio S, Yuan Q. COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs). Process Saf Environ Prot. 2018;120:278–85. Disponible en: https://doi.org/10.1016/j.psep.2018.09.014 DOI: https://doi.org/10.1016/j.psep.2018.09.014
Han M, Duan X, Cao G, Zhu S, Ho SH. Graphitic nitride-catalyzed advanced oxidation processes (AOPs) for landfill leachate treatment: A mini review. Process Saf Environ Prot. 2020;139:230–40. Disponible en: https://doi.org/10.1016/j.psep.2020.04.046 DOI: https://doi.org/10.1016/j.psep.2020.04.046
Labiadh L, Fernandes A, Ciríaco L, Pacheco MJ, Gadri A, Ammar S, et al. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate. J Environ Manage. 2016;181:515–21. Disponible en: https://doi.org/10.1016/j.jenvman.2016.06.069 DOI: https://doi.org/10.1016/j.jenvman.2016.06.069
Wang H, Wang Y nan, Li X, Sun Y, Wu H, Chen D. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Manag. 2016;56:271–9. Disponible en: http://dx.doi.org/10.1016/j.wasman.2016.07.040 DOI: https://doi.org/10.1016/j.wasman.2016.07.040
Tasnim G, Sheikh Y, Mahtab M. Photocatalytic (UV-TiO2) Degradation Process For Landfill Leachate Treatment. In: International Conference on Recent Advances in Engineering and Science. 2020. p. 7.
Chen W, Zhang A, Jiang G, Li Q. Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation. Waste Manag. 2019;85:283–94. Disponible en: https://doi.org/10.1016/j.wasman.2018.12.038 DOI: https://doi.org/10.1016/j.wasman.2018.12.038
Ren Y, Ferraz F, Lashkarizadeh M, Yuan Q. Comparing young landfill leachate treatment e ffi ciency and process stability using aerobic granular sludge and suspended growth activated sludge. J Water Process Eng. 2017;17:161–7. Disponible en: http://dx.doi.org/10.1016/j.jwpe.2017.04.006
Azad Pashaki SG, Khojastehpour M, Ebrahimi-Nik M, Rohani A. Treatment of municipal landfill leachate: Optimization of organic loading rate in a two-stage CSTR followed by aerobic degradation. Renew Energy. 2021;163:1210–21. Disponible en: https://doi.org/10.1016/j.renene.2020.09.010 DOI: https://doi.org/10.1016/j.renene.2020.09.010
Bashir MJK, Aziz HA, Amr SSA, Sethupathi S, Ng CA, Lim JW. The competency of various applied strategies in treating tropical municipal landfill leachate. Desalin Water Treat. 2015;54(9):2382–95. Disponible en: https://doi.org/10.1080/19443994.2014.901189 DOI: https://doi.org/10.1080/19443994.2014.901189
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ. 2020;703:135468. Disponible en: https://doi.org/10.1016/j.scitotenv.2019.135468 DOI: https://doi.org/10.1016/j.scitotenv.2019.135468
Luu T Le. Post treatment of ICEAS-biologically landfill leachate using electrochemical oxidation with Ti/BDD and Ti/RuO2 anodes. Environ Technol Innov. 2020;20:101099. Disponible en: https://doi.org/10.1016/j.eti.2020.101099 DOI: https://doi.org/10.1016/j.eti.2020.101099
Gautam P, Kumar S. Characterisation of Hazardous Waste Landfill Leachate and its Reliance on Landfill Age and Seasonal Variation : A Statistical Approach. J Environ Chem Eng. 2021;9(4):105496. Disponible en: https://doi.org/10.1016/j.jece.2021.105496 DOI: https://doi.org/10.1016/j.jece.2021.105496
Chen W, Li Q. Chemosphere Elimination of UV-quenching substances from MBR- and SAARB-treated mature land fill leachates in an ozonation process : A comparative study. Chemosphere. 2020;242:125256. Disponible en: https://doi.org/10.1016/j.chemosphere.2019.125256
Ren Y, Ferraz F, Lashkarizadeh M, Yuan Q. Comparing young landfill leachate treatment efficiency and process stability using aerobic granular sludge and suspended growth activated sludge. J Water Process Eng. 2017;17(February):161–7. Disponible en: http://dx.doi.org/10.1016/j.jwpe.2017.04.006 DOI: https://doi.org/10.1016/j.jwpe.2017.04.006
Saleem M, Lavagnolo MC, Campanaro S, Squartini A. Dynamic membrane bioreactor (DMBR) for the treatment of landfill leachate; bioreactor’s performance and metagenomic insights into microbial community evolution. Environ Pollut. 2018;243:326–35. Disponible en: https://doi.org/10.1016/j.envpol.2018.08.090 DOI: https://doi.org/10.1016/j.envpol.2018.08.090
Islam M, Xu Q, Yuan Q. Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. J Environ Heal Sci Eng. 2020;18(1):285–95. Disponible en: https://doi.org/10.1007/s40201-020-00466-z DOI: https://doi.org/10.1007/s40201-020-00466-z
Wu L, Li Z, Zhao C, Liang D, Peng Y. A novel partial-denitrification strategy for post-anammox to effectively remove nitrogen from landfill leachate. Sci Total Environ. 2018;633:745–51. Disponible en: https://doi.org/10.1016/j.scitotenv.2018.03.213 DOI: https://doi.org/10.1016/j.scitotenv.2018.03.213
Miao L, Yang G, Tao T, Peng Y. Recent advances in nitrogen removal from landfill leachate using biological treatments – A review. J Environ Manage. 2019;235(January):178–85. Disponible en: https://doi.org/10.1016/j.jenvman.2019.01.057 DOI: https://doi.org/10.1016/j.jenvman.2019.01.057
Wang Z, Peng Y, Miao L, Cao T, Zhang F, Wang S, et al. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. Bioresour Technol. 2016;214:514–9. Disponible en: http://dx.doi.org/10.1016/j.biortech.2016.04.118 DOI: https://doi.org/10.1016/j.biortech.2016.04.118
Ikehata K, Li Y. Ozone-Based Processes. In: Elsevier Inc., editor. Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology. 2018. p.115-34. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00005-X
Chen W, Li Q. Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study. Chemosphere. 2020;242:125256. Disponible en: https://doi.org/10.1016/j.chemosphere.2019.125256 DOI: https://doi.org/10.1016/j.chemosphere.2019.125256
Gautam P, Kumar S, Lokhandwala S. Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. J Clean Prod. 2019;237:117639. Disponible en: https://doi.org/10.1016/j.jclepro.2019.117639 DOI: https://doi.org/10.1016/j.jclepro.2019.117639
Kattel E, Kivi A, Klein K, Tenno T, Dulova N, Trapido M. Hazardous waste landfill leachate treatment by combined chemical and biological techniques. Desalin Water Treat. 2016;57(28):13236–45. Disponible en: https://doi.org/10.1080/19443994.2015.1057539 DOI: https://doi.org/10.1080/19443994.2015.1057539
Caroline E, Kozak C, Garcia H, Mansur M. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere. 2020;251:126414. Disponible en: https://doi.org/10.1016/j.chemosphere.2020.126414 DOI: https://doi.org/10.1016/j.chemosphere.2020.126414
Selvabharathi G, Adishkumar S, Jenefa S, Ginni G, Rajesh Banu J, Yeom IT. Combined homogeneous and heterogeneous advanced oxidation process for the treatment of tannery wastewaters. J Water Reuse Desalin. 2016;6(1):59–71. DOI: https://doi.org/10.2166/wrd.2015.139
Lovato M, Buffelli JR, Abrile M, Martín C. Kinetics and efficiency of ozone for treatment of landfill leachate including the effect of previous microbiological treatment. Environ Sci Pollut Res. 2019;26(5):4474–87. DOI: https://doi.org/10.1007/s11356-018-1710-2
Sharma HB, Panigrahi S, Sarmah AK, Dubey BK. How does the pre-treatment of landfill leachate impact the performance of O3 and O3/ UVC processes? Chemosphere. 2019;135907. Disponible en: https://doi.org/10.1016/j.chemosphere.2021.130389 DOI: https://doi.org/10.1016/j.chemosphere.2021.130389
Wang H, Li X, Hao Z, Sun Y, Wang Y, Li W, et al. Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone-based oxidation processes (O3, O3/H2O2 and O3/UV). J Environ Manage. 2017;191:244–51. Disponible en: http://dx.doi.org/10.1016/j.jenvman.2017.01.021 DOI: https://doi.org/10.1016/j.jenvman.2017.01.021
Ranjbar-Vakilabadi D, Hassani AH, Omrani G, Ramavandi B. Catalytic potential of Cu/Mg/Al-chitosan for ozonation of real landfill leachate. Process Saf Environ Prot. 2017;107:227–37. Disponible en: http://dx.doi.org/10.1016/j.psep.2017.02.013 DOI: https://doi.org/10.1016/j.psep.2017.02.013
Ghahrchi M, Rezaee A. Electrocatalytic ozonation process supplemented by EDTA-Fe complex for improving the mature landfill leachate treatment. Chemosphere. 2021;263:127858. Disponible en: https://doi.org/10.1016/j.chemosphere.2020.127858 DOI: https://doi.org/10.1016/j.chemosphere.2020.127858
Umamaheswari J, Bharathkumar T, Shanthakumar S, Gothandam KM. A feasibility study on optimization of combined advanced oxidation processes for municipal solid waste leachate treatment. Process Saf Environ Prot. 2020;143:212–21. Disponible en: https://doi.org/10.1016/j.psep.2020.06.040 DOI: https://doi.org/10.1016/j.psep.2020.06.040
Barbosa ID, Gomes AI, Souza-chaves BM, Park M, Silva FC V, Boaventura RAR, et al. Incorporation of ozone-driven processes in a treatment line for a leachate from a hazardous industrial waste landfill : Impact on the bio-refractory character and dissolved organic matter distribution. J Environ Chem Eng J. 2021;9(April):105554. Disponible en: https://doi.org/10.1016/j.jece.2021.105554 DOI: https://doi.org/10.1016/j.jece.2021.105554
Huang Z, Gu Z, Wang Y, Zhang A. Improved oxidation of refractory organics in concentrated leachate by a Fe2+enhanced O3/H2O2 process. Environ Sci Pollut Res. 2019;26(35):35797-806. Disponible en: https://doi.org/10.1007/s11356-019-06592-y DOI: https://doi.org/10.1007/s11356-019-06592-y
Gomes AI, Soares TF, Silva TFCV, Boaventura RAR, Vilar VJP. Ozone-driven processes for mature urban landfill leachate treatment: Organic matter degradation, biodegradability enhancement and treatment costs for different reactors configuration. Sci Total Environ. 2020;724. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.138083 DOI: https://doi.org/10.1016/j.scitotenv.2020.138083
Soubh A, Mokhtarani N. The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. RSC Adv. 2016;6(80):76113–22. Disponible en: https://doi.org/10.1039/C6RA09539A DOI: https://doi.org/10.1039/C6RA09539A
Wang Y, Wang H, Wu Y, Sun Y, Gong Z, Liu K, et al. Effective removal of contaminants from biotreated leachate by a combined Fe(III)/O3 process: Efficiency and mechanisms. J Clean Prod. 2020;276(Iii):123379. Disponible en: https://doi.org/10.1016/j.jclepro.2020.123379 DOI: https://doi.org/10.1016/j.jclepro.2020.123379
Wu C, Chen W, Gu Z, Li Q. A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment. Sci Total Environ. 2021;762:143131. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.143131 DOI: https://doi.org/10.1016/j.scitotenv.2020.143131
Abu Amr SS, Aziz HA, Hossain MS, Bashir MJK. Simultaneous removal of COD and color from municipal landfill leachate using Ozone/Zinc sulphate oxidation process. Glob Nest J. 2017;19(3):498–504. DOI: https://doi.org/10.30955/gnj.002299
Ikhlaq A, Javed F, Akram A, Qazi UY, Masood Z, Ahmed T, et al. Treatment of leachate through constructed wetlands using Typha angustifolia in combination with catalytic ozonation on Fe-zeolite A. Int J Phytoremediation. 2020;0(0):1–9. Disponible en: https://doi.org/10.1080/15226514.2020.1858753 DOI: https://doi.org/10.1080/15226514.2020.1858753
Silva TFC V, Soares PA, Manenti DR, Fonseca A, Saraiva I, Boaventura RAR, et al. An innovative multistage treatment system for sanitary land fi ll leachate depuration : Studies at pilot-scale. Sci Total Environ. 2017;576:99–117. Disponible con: https://doi.org/10.1016/j.scitotenv.2016.10.058 DOI: https://doi.org/10.1016/j.scitotenv.2016.10.058
Chys M, Declerck W, Audenaert WTM, Van Hulle SWH. UV/H2O2, O3 and (photo-) Fenton as treatment prior to granular activated carbon filtration of biologically stabilized landfill leachate. J Chem Technol Biotechnol. 2015;90(3):525–33. Disponible en: https://doi.org/10.1002/jctb.4344 DOI: https://doi.org/10.1002/jctb.4344
Moro G Del, Mancini A, Mascolo G, Iaconi C Di. Comparison of UV / H 2 O 2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates. Chem Eng J. 2013;218:133–7. Disponible en: http://dx.doi.org/10.1016/j.cej.2012.12.086 DOI: https://doi.org/10.1016/j.cej.2012.12.086
Ghahrchi M, Rezaee A. Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate. J Environ Manage. 2020;254(October 2019):109811. Disponible en: https://doi.org/10.1016/j.jenvman.2019.109811 DOI: https://doi.org/10.1016/j.jenvman.2019.109811
Fu S, Jia H, Meng X, Guo Z, Wang J. Fe-C micro-electrolysis-electrocoagulation based on BFDA in the pre-treatment of land fi ll leachate : Enhanced mechanism and electrode decay monitoring. Sci Total Environ. 2021;781:146797. Disponible en: https://doi.org/10.1016/j.scitotenv.2021.146797 DOI: https://doi.org/10.1016/j.scitotenv.2021.146797
Guvenc SY, Dincer K, Varank G. Performance of electrocoagulation and electro-Fenton processes for treatment of nano fi ltration concentrate of biologically stabilized land fi ll leachate. J Water Process Eng. 2019;31:100863. Disponible en: https://doi.org/10.1016/j.jwpe.2019.100863 DOI: https://doi.org/10.1016/j.jwpe.2019.100863
Deng Y, Zhu X, Chen N, Feng C, Wang H, Kuang P, et al. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Sci Total Environ. 2020;745:140768. Disponible en: https://doi.org/10.1016/j.scitotenv.2020.140768 DOI: https://doi.org/10.1016/j.scitotenv.2020.140768
Lin H, Peng H, Feng X, Li X, Zhao J, Yang K, et al. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): Laboratory and pilot scale studies. Water Res. 2021;190. Disponible en: https://doi.org/10.1016/j.watres.2020.116790 DOI: https://doi.org/10.1016/j.watres.2020.116790
Wu L na, Liang D wei, Xu Y ying, Liu T, Peng Y zhen, Zhang J. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation. Bioresour Technol. 2016;212:296–301. Disponible en: https://doi.org/10.1016/j.cej.2019.02.113 DOI: https://doi.org/10.1016/j.biortech.2016.04.041
Hui H, Wang H, Mo Y, Li L, Yin Z, He B, et al. A three-stage fixed-bed electrochemical reactor for biologically treated landfill leachate treatment. Chem Eng J. 2019;376(February). Disponible en: https://doi.org/10.1016/j.cej.2019.02.113 DOI: https://doi.org/10.1016/j.cej.2019.02.113
Deng Y, Feng C, Chen N, Hu W, Kuang P, Liu H, et al. Research on the treatment of biologically treated landfill leachate by joint electrochemical system. Waste Manag. 2018;82:177–87. Disponible en: https://doi.org/10.1016/j.wasman.2018.10.028 DOI: https://doi.org/10.1016/j.wasman.2018.10.028
Madera-Parra, C. Landfill leachate treatment by technological coupling of High Rate Anaerobic Pond-BLAAT® and Subsurface horizontal flow constructed wetlands. Ingeniería y competitividad. 2020: 22(2). Disponible en: https://doi.org/10.25100/iyc.v22i2.9740 DOI: https://doi.org/10.25100/iyc.v22i2.9470
García, P. Manejo y Tratamiento de Lixiviados en Rellenos Sanitarios: Revisión bibliográfica y Experiencia en Planta de Tratamiento de Lixiviados de Navarro (Doctoral dissertation, Universidad Santiago de Cali).
Madera-Parra, C. Tratamiento de lixiviados de relleno sanitario por medio de humedales construidos sembrados con policultivos de plantas nativas. Ingeniería y Competitividad. 2016: 18(2), 183-192. Disponible en: https://doi.org/10.25100/iyc.v18i2.2166 DOI: https://doi.org/10.25100/iyc.v18i2.2166
Revelo, D, Guerrero-Flórez, M, Ordóñez, A, Sánchez-Ortiz, I, Pusapaz-Villota, N, Yela, O, Galeano, L. Bacterial diversity of leachates retained in adsorbents regenerated by wet catalytic peroxide oxidation: potential driving bioelectrochemical systems. International Journal of Environmental Science and Technology.2021: 18(10), 2913-2924. Disponible en: https://doi-org.ezproxy.unal.edu.co/10.1007/s13762-020-03058-4 DOI: https://doi.org/10.1007/s13762-020-03058-4
- Nelson Alfonso Vega, Dora Clemencia Villada Castillo, Dorance Becerra Moreno, Antimicrobial effect of polyphenolic extracts present in ananas comosus , Ingeniería y Competitividad: Vol. 26 No. 2 (2024): Ingeniería y Competitividad
- Fiderman Machuca-Martinez, Editorial , Ingeniería y Competitividad: Vol. 14 No. 2 (2012): Ingeniería y Competitividad
- Fiderman Machuca-Martinez, Editorial , Ingeniería y Competitividad: Vol. 15 No. 1 (2013): Ingeniería y Competitividad
- Fiderman Machuca-Martinez, Políticas y normas para autores , Ingeniería y Competitividad: Vol. 14 No. 2 (2012): Ingeniería y Competitividad
- Fiderman Machuca-Martinez, Editorial , Ingeniería y Competitividad: Vol. 14 No. 1 (2012): Ingeniería y Competitividad
- Jefferson E. Contreras-Ropero, Andrés F. Barajas-Solano, Janet B. García-Martínez, Crisostomo Barajas-Ferrerira, Fiderman Machuca-Martínez, Production of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimization , Ingeniería y Competitividad: Vol. 26 No. 2 (2024): Ingeniería y Competitividad
Accepted 2023-05-24
Published 2023-09-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).