Contenido principal del artículo

En los últimos años el óxido de grafeno ha sido motivo de estudio debido a sus propiedades electrónicas, magnéticas, térmicas y mecánicas. Este estudio presenta dos métodos diferentes de funcionalización química para la obtención óxidos de grafeno (GO) adheridos a una superficie de grafito pirolítico de alta densidad (HOPG) por spray coating ácido. Para el rociado en el primer método, se utilizaron dos ácidos fuertes (H2SO4 y HNO3). En el segundo método de rociado, se utilizaron tres ácidos fuertes (H2SO4/HNO3/HCl). Para los dos casos el intervalo de rociado fue de 2, 4 y 6 horas. Se caracterizaron las placas de HOPG mediante análisis de SEM–EDS, FTIR. Se pudo determinar la presencia de óxido de grafeno en la superficie de la placa. Este método demuestra la capacidad de funcionalizar la superficie del (HOPG), rompiendo su estructura sp2 y formando defectos donde se encuentran los grupos funcionales característicos del GO.

Ruben Jesus Camargo Amado, Universidad del Valle

Director Escuela de Ingeniería Química

1.
Camargo Amado RJ, Sevilla-Abarca ME. Método de funcionalización química para la obtención de óxido de grafeno adherido a la superficie de placas de grafito pirolítica de alta densidad por spray coating ácido. inycomp [Internet]. 4 de julio de 2021 [citado 16 de agosto de 2022];23(2):e21010838. Disponible en: //revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10838

(1) Wu L, Ji H, Guan Y, Ran X, Ren J, Qu X. A graphene-based chemical nose / tongue approach for the identi fi cation of normal , cancerous and circulating tumor cells. NPG Asia Materials. 2017;9:e356. https://doi.org/10.1038/am.2017.11.

(2) Yu H, Zha B, Chaoke B, Li R, Xing R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Scientific Reports. 2016;6:36143. https://doi.org/10.1038/srep36143.

(3) Lonkar SP, Deshmukh YS, Abdala AA. Recent advances in chemical modifications of graphene. Nano Res. 2015;8:1039–74. https://doi.org/10.1007/s12274-014-0622-9.

(4) Paulchamy B, Arthi G, Bd L. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J Nanomed Nanotechnol. 2015;6(1):1000253.https://doi.org/10.4172/2157-7439.1000253.

(5) Zhou M, Tang J, Cheng Q, Xu G, Cui P, Qin L. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chemical Physics Letters. 2013;572:61–5. https://doi.org/10.1016/j.cplett.2013.04.013.

(6) Karimipour M, Heydari-bafrooei E, Sanjari M, Johansson MB, Molaei M. A glassy carbon electrode modified with TiO2 (200)-rGO hybrid nanosheets for aptamer based impedimetric determination of the prostate specific antigen. Mikrochim Acta. 2018;186(1):33. https://doi.org/10.1007/s00604-018-3141-7.

(7) Mcallister MJ, Li J, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007;19(18):4396–404. https://doi.org/10.1021/cm0630800.

(8) Gilje S, Han S, Wang M, Wang KL, Kaner RB. Chemical Route to Graphene for Device Applications. Nano Lett. 2007;7(11):3394–98. https://doi.org/10.1021/nl0717715.

(9) Poniatowska A, Trzaskowski M, Ciach T. Production and properties of top-down and bottom-up graphene oxide. Colloids Surfaces A Physicochem Eng Asp. 2018;561:315-24. https://doi.org/10.1016/j.colsurfa.2018.10.049.

(10) Osorio AG, Silveira ICL, Bueno VL, Bergmann CP. H2SO4/HNO3/HCl — Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl Surf Sci 2008;255(5-Part 1):2485–9. https://doi.org/10.1016/j.apsusc.2008.07.144.

(11) Compton OC, Nguyen ST. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small. 2010;6(6):711–23. https://doi.org/10.1002/smll.200901934.

(12) Chen J, Yao B, Li C, Shi G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon. 2013;64:225–9. https://doi.org/10.1016/j.carbon.2013.07.055.

(13) Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W, Voon CH. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017;184:469–77. https://doi.org/10.1016/j.proeng.2017.04.118.

(14) Zhu BY, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials. 2010:22(35):3906–24. https://doi.org/10.1002/adma.201001068.

(15) Yu P, Lowe SE, Simon GP, Zhong YL. Current Opinion in Colloid & Interface Science Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid & Interface Science. 2015;20(5-6):329–38. https://doi.org/10.1016/j.cocis.2015.10.007.

(16) Marcano DC, Kosynkin D V, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved Synthesis of Graphene Oxide. ACS Nano 2010;4(8):4806–14. https://doi.org/10.1021/nn1006368.

(17) Osorio AG, Silveira ICL, Bueno VL, Bergmann CP. H2SO4 / HNO3 / HCl — Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Applied Surface Science. 2008;255:(5):2485–9. https://doi.org/10.1016/j.apsusc.2008.07.144.

(18) Liu J, Kok C, Zhan D, Lai L, Hua S, Wang L, et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy. 2013;2(3):377–86. https://doi.org/10.1016/j.nanoen.2012.11.003.

(19) Mir A, Shukla A. Bilayer-rich graphene suspension from electrochemical exfoliation of graphite. Mater Des. 2018;156:62-70. https://doi.org/10.1016/j.matdes.2018.06.035.

(20) Singh R, Tripathi CC. Electrochemical Exfoliation of Graphite into Graphene for Flexible Supercapacitor Application. Mater Today Proc. 2018;5(1):1125–30. https://doi.org/10.1016/j.matpr.2017.11.192.

(21) Vartak R, Adarsh Rag, De S, Bhat S. A Facile Synthesis of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) by Electrochemical Exfoliation of Battery Electrode. In: Ray K, Sharan SN, Rawat S, Jain SK, Srivastava S, Bandyopadhyay A, editors. Engineering Vibration, Communication and Information Processing Lecture Notes in Electrical Engineering, vol 478. Singapore: Springer; 2019. p. 537–47. https://doi.org/10.1007/978-981-13-1642-5_48.

(22) He D, Marsden AJ, Li Z, Zhao R, Xue W, Bissett MA. A single step strategy to fabricate graphene fibres via electrochemical exfoliation for micro-supercapacitor applications. Electrochim Acta 2019.299:645-53. https://doi.org/10.1016/j.electacta.2019.01.034.

(23) Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, et al. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew Chemie - Int Ed 2011;50(14):3173–7. https://doi.org/10.1002/anie.201007520.

(24) Staudenmaier L. Method for the preparation of the graphite acid. Eur J Inorg Chem 1898;31:1481–7.

(25) Wang Y, Alsmeyer DC, Mccreery RL. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater.1990;2(5):557–63. https://doi.org/10.1021/cm00011a018.

(26) Shin Y, Jung S, Jeon I, Baek J. The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid / sulfuric acid mixture. Carbon. 2019;52:493–8. https://doi.org/10.1016/j.carbon.2012.10.001.

(27) Venugopal G, Krishnamoorthy K, Mohan R, Kim S. An investigation of the electrical transport properties of graphene-oxide thin films. Mater Chem Phys 2012;132(1):29–33. https://doi.org/10.1016/j.matchemphys.2011.10.040.

(28) Channei D, Nakaruk A, Phanichphant S. Controlled oxidative ageing time of graphite / graphite oxide to graphene oxide in aqueous media. Journal of the Australian Ceramic Society. 2018;54:91–6. https://doi.org/10.1007/s41779-017-0130-y.

(29) Adetayo A, Runsewe D. Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open Journal of Composite Materials. 2019;9(2):207–29. https://doi.org/10.4236/ojcm.2019.92012.

(30) Sheshmani S, Fashapoyeh MA. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chimica Slovenica. 2013;60(4):813–25