Evaluación comparativa de tecnologías de remediación para optimizar la calidad de aguas grises en economía circular
Contenido principal del artículo
Introducción: las aguas grises contienen contaminantes que alteran el equilibrio ecológico, reducen la disponibilidad de agua para usos productivos y limitan el acceso a este recurso en diversas regiones. Su tratamiento es esencial para mitigar impactos ambientales y fomentar la gestión sostenible de los recursos hídricos.
Objetivo: comparar la eficiencia de la electrorremediación (ER), fitorremediación (PR) y electrofitorremediación (EPR) en el tratamiento de aguas grises bajo un enfoque de economía circular en la comunidad de Los Otates, Huanímaro, Guanajuato.
Metodología: se trataron aguas grises mediante sistemas de ER, PR y EPR, utilizando Zantedeschia aethiopica en PR y EPR. Se analizaron quince parámetros fisicoquímicos, incluyendo fosfatos, nitratos, oxígeno disuelto, pH y conductividad eléctrica. La eficacia del tratamiento se evaluó mediante el Índice de Calidad del Agua (ICA).
Resultados: la PR alcanzó la mayor reducción del ICA (59,59%), seguida por la EPR (40,32%) y la ER (27,4%). Los procesos electrocinéticos generaron coágulos de hidróxidos de hierro y aluminio, que favorecieron la remoción de contaminantes. Los cristales de oxalato de calcio extraídos de Z. aethiopica se reutilizaron con fines insecticidas, reforzando el concepto de economía circular.
Conclusiones: la fitorremediación fue la tecnología más eficaz para mejorar la calidad de las aguas grises, mientras que los procesos electrocinéticos aportaron mecanismos complementarios de remoción. La combinación de tratamiento y aprovechamiento de subproductos respalda la gestión hídrica sostenible, contribuyendo a la restauración ambiental y al mejoramiento de las condiciones de vida en comunidades vulnerables.
- Aguas Grises
- Contaminantes Ambientales
- Zantedeschia aethiopica
- Oxalato de Calcio
- Calidad del Agua
Bashir I, Lone F, Ahmad R, Mir S, Dar Z, Ahmad S. Concerns and threats of contamination on aquatic ecosystems. In: Rehman R, Ahmad R, Qadri H, editors. Bioremediation and Biotechnology [Internet]. Springer Nature Switzerland AG; 2020 [cited 2025 Aug 18]. https://doi.org/10.1007/978-3-030-35691-0_1 DOI: https://doi.org/10.1007/978-3-030-35691-0_1
Ejiohuo O, Onyeaka H, Akinsemolu A, Nwabor OF, Siyanbola KF, Tamasiga P, et al. Ensuring water purity: Mitigating environmental risks and safeguarding human health. Water Biology and Security [Internet]. 2024 Dec 20 [cited 2025 Aug 18];4(2):100341. https://doi.org/10.1016/j.watbs.2024.100341 DOI: https://doi.org/10.1016/j.watbs.2024.100341
Manasa RL, Mehta A. Wastewater: sources of pollutants and its remediation. In: Gothandam K, Ranjan S, Dasgupta N, Lichtfouse E, editors. Environmental biotechnology. Vol. 2. Environmental chemistry for a sustainable world, vol 45. Cham: Springer; 2020 [cited 2025 Aug 18]. p. 197–219. https://doi.org/10.1007/978-3-030-38196-7_9 DOI: https://doi.org/10.1007/978-3-030-38196-7_9
Van de Walle A, Kim M, Alam MK, Wang X, Wu D, Dash SR, et al. Greywater reuse as a key enabler for improving urban wastewater management. Environmental Science and Ecotechnology [Internet]. 2023 Oct 1 [cited 2025 Aug 18]; 16:100277. https://doi.org/10.1016/j.ese.2023.100277 DOI: https://doi.org/10.1016/j.ese.2023.100277
Bautista MI, Rodríguez DA, Castañeda IE, González M, Escalante JE. Tratamiento de aguas grises para viviendas de interés social popular. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI [Internet]. 2023 Nov 20 [cited 2025 Aug 18];11(Especial3):151-6. https://doi.org/10.29057/icbi.v11iEspecial3.11509 DOI: https://doi.org/10.29057/icbi.v11iEspecial3.11509
Li B, Feng L, Chouari R, Samoili S, Giannakis S. Trace metals induce microbial risk and antimicrobial resistance in biofilm in drinking water. npj Clean Water [Internet]. 2025 Feb 3 [cited 2025 Aug 18];8(1). https://doi.org/10.1038/s41545-025-00436-8 DOI: https://doi.org/10.1038/s41545-025-00436-8
Tabla-Vázquez CG, Chávez-Mejía AC, Orta Ledesma MT, Ramírez-Zamora RM. Wastewater Treatment in Mexico. In: World Water Resources [Internet]. Cham: Springer; 2020 [cited 2025 Aug 19]. https://doi.org/10.1007/978-3-030-40686-8_8 DOI: https://doi.org/10.1007/978-3-030-40686-8_8
Kumar D, Kumar R, Sharma M, Awasthi A, Kumar M. Global water quality indices: development, implications, and limitations. Total Environment Advances [Internet]. 2024 Mar 1 [cited 2025 Aug 19]; 9:200095. https://doi.org/10.1016/j.teadva.2023.200095 DOI: https://doi.org/10.1016/j.teadva.2023.200095
Barrantes Barrantes EA, Cartín Nuñez M. Eficacia del tratamiento de aguas residuales de la Universidad de Costa Rica en la Sede de Occidente, San Ramón, Costa Rica. UNED Research Journal [Internet]. 2017 Mar 14 [cited 2025 Aug 15];9(1):193-7. http://dx.doi.org/10.22458/urj.v9i1.1697 DOI: https://doi.org/10.22458/urj.v9i1.1697
Awa SH, Hadibarata T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water, Air, & Soil Pollution [Internet]. 2020 Jan 21 [cited 2025 Aug 15];231(2). https://doi.org/10.1007/s11270-020-4426-0 DOI: https://doi.org/10.1007/s11270-020-4426-0
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, et al. Emerging contaminants: a one health perspective. The Innovation [Internet]. 2024 Jul 1 [cited 2025 Aug 15];5(4):100612. https://doi.org/10.1016/j.xinn.2024.100612 DOI: https://doi.org/10.1016/j.xinn.2024.100612
Khajvand M, Mostafazadeh AK, Drogui P, Tyagi RD. Management of greywater: environmental impact, treatment, resource recovery, water recycling, and decentralization. Water Science and Technology [Internet]. 2022 Jul 28 [cited 2025 Aug 15];86(5):909–37. https://doi.org/10.2166/wst.2022.226 DOI: https://doi.org/10.2166/wst.2022.226
Budeli P, Sibali LL. Greywater reuse: contaminant profile, health implications, and sustainable solutions. International Journal of Environmental Research and Public Health [Internet]. 2025 May 7 [cited 2025 Aug 21];22(5):740. https://doi.org/10.3390/ijerph22050740 DOI: https://doi.org/10.3390/ijerph22050740
Chakraborty SK. River pollution and perturbation: perspectives and processes. In: Riverine ecology. Vol. 2. Cham: Springer; 2021 [cited 2025 Aug 15]. p. 443–530. https://doi.org/10.1007/978-3-030-53941-2_5 DOI: https://doi.org/10.1007/978-3-030-53941-2_5
Velázquez-Chávez L, Ortiz-Sánchez I, Chávez-Simental J, Pámanes-Carrasco G, Carrillo-Parra A, Pereda-Solís M. Influencia de la contaminación del agua y el suelo en el desarrollo agrícola nacional e internacional. TIP Revista especializada en ciencias químico-biológicas [Internet]. 2022 Jan 1 [cited 2025 Aug 18];25:1–13. https://doi.org/10.22201/fesz.23958723e.2022.482 DOI: https://doi.org/10.22201/fesz.23958723e.2022.482
Perez C, Maquera C. Tratamiento de aguas grises automotrices con lechos filtrantes de cáscara de maíz y bagazo. Sciencevolution [Internet]. 2024 Dec 5 [cited 2025 Aug 21];4(12):170–80. https://doi.org/10.61325/ser.v4i12.140 DOI: https://doi.org/10.61325/ser.v4i12.140
Silva JA. Wastewater treatment and reuse for sustainable water resources management: a systematic literature review. Sustainability [Internet]. 2023 Jan 1 [cited 2025 Aug 22];15(14):1–31. https://doi.org/10.3390/su151410940 DOI: https://doi.org/10.3390/su151410940
Ansari A, Naeem M, Gill S, AlZuaibr F. Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research [Internet]. 2020 Dec 1 [cited 2025 Aug 20];46(4):371–6. https://doi.org/10.1016/j.ejar.2020.03.002 DOI: https://doi.org/10.1016/j.ejar.2020.03.002
Nuñez E, Saboya N, Cruz M. Phytoremediation through the palustre and floating species, Zantedeschia aethiopica and Eichhornia crassipes in the treatment of domestic wastewater in the area of the natural region Quechua-Cajamarca. Revista de Investigación Ciencia Tecnología y Desarrollo [Internet]. 2019 Dec 18 [cited 2025 Aug 21];5(2). https://doi.org/10.17162/rictd.v5i2.886 DOI: https://doi.org/10.17162/rictd.v5i2.886
Rodríguez Díaz YJ, Fuentes Guevara MD, Beleño Díaz ÓD, Montoya Armenta LH. Electrocoagulación como proceso de tratabilidad de aguas residuales de una planta de lácteos y cárnicos. Tecnura [Internet]. 2021 Jan 1 [cited 2025 Aug 21];25(67):26–39. https://doi.org/10.14483/22487638.15769 DOI: https://doi.org/10.14483/22487638.15769
Ebba M, Asaithambi P, Alemayehu E. Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology. Heliyon [Internet]. 2022 May [cited 2025 Aug 20];8(5):e09383. https://doi.org/10.1016/j.heliyon.2022.e09383 DOI: https://doi.org/10.1016/j.heliyon.2022.e09383
Kashi G. Electrocoagulation/flotation process for removing copper from an aqueous environment. Scientific Reports [Internet]. 2023 Aug 16 [cited 2025 Aug 21];13(1):13334. https://doi.org/10.1038/s41598-023-40512-y DOI: https://doi.org/10.1038/s41598-023-40512-y
Tawfik E, Fathy M, Albalawi D, Aljuaid B, Eldin D, Mahmoud S, et al. Molecular identification of Zantedeschia culture with determination of its morphometric and metabolic activities for mediterranean acclimatization. Plants [Internet]. 2022 Sep 3 [cited 2025 Aug 15];11(17):2311. https://doi.org/10.3390/plants11172311 DOI: https://doi.org/10.3390/plants11172311
Nakata P. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science [Internet]. 2003 Jun [cited 2025 Aug 20];164(6):901–9. https://doi.org/10.1016/S0168-9452(03)00120-1 DOI: https://doi.org/10.1016/S0168-9452(03)00120-1
Retana Sánchez K, Castro Zúñiga O, Blanco Meneses M. Determinación de la presencia de cristales de oxalato de calcio asociados a la enfermedad abiótica conocida como “Mancha Blanca” en Hylocereus costaricensis. Agronomía Costarricense [Internet]. 2019 Jul 1 [cited 2025 Aug 21];43(2). https://doi.org/10.15517/rac.v43i2.37950 DOI: https://doi.org/10.15517/rac.v43i2.37950
Solis-Marcial OJ, Talavera-López A, Ruelas-Leyva JP, Hernández-Maldonado JA, Najera-Bastida A, Zarate-Gutierrez R, et al. Clarification of mining process water using electrocoagulation. Minerals [Internet]. 2024 Apr 17 [cited 2025 Aug 21];14(4):412. https://doi.org/10.3390/min14040412 DOI: https://doi.org/10.3390/min14040412
Boinpally S, Kolla A, Kainthola J, Kodali R, Vemuri J. A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle [Internet]. 2023 Jan [cited 2025 Aug 20];4. https://doi.org/10.1016/j.watcyc.2023.01.001 DOI: https://doi.org/10.1016/j.watcyc.2023.01.001
Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The circular economy: a new sustainability paradigm? Journal of Cleaner Production [Internet]. 2017 Feb 1 [cited 2025 Aug 21];143(1):757–68. https://doi.org/10.1016/j.jclepro.2016.12.048 DOI: https://doi.org/10.1016/j.jclepro.2016.12.048
Kirchherr J, Reike D, Hekkert M. Conceptualizing the circular economy: an analysis of 114 definitions. Resources, Conservation and Recycling [Internet]. 2017 Dec [cited 2025 Aug 21];127(1):221–32. https://doi.org/10.1016/j.resconrec.2017.09.005 DOI: https://doi.org/10.1016/j.resconrec.2017.09.005
Ghisellini P, Cialani C, Ulgiati S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production [Internet]. 2016 Feb [cited 2025 Aug 21];114(7):11–32. https://doi.org/10.1016/j.jclepro.2015.09.007 DOI: https://doi.org/10.1016/j.jclepro.2015.09.007
Korhonen J, Nuur C, Feldmann A, Birkie SE. Circular economy as an essentially contested concept. Journal of Cleaner Production [Internet]. 2018 Feb [cited 2025 Aug 21];175(175):544–52. https://doi.org/10.1016/j.jclepro.2017.12.111 DOI: https://doi.org/10.1016/j.jclepro.2017.12.111
Bocken NMP, de Pauw I, Bakker C, van der Grinten B. Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering [Internet]. 2016 Apr 26 [cited 2025 Aug 21];33(5):308–20. https://doi.org/10.1080/21681015.2016.1172124 DOI: https://doi.org/10.1080/21681015.2016.1172124
Zurita F, Del Toro-Sánchez CL, Gutierrez-Lomelí M, Rodriguez-Sahagún A, Castellanos-Hernandez OA, Ramírez-Martínez G, et al. Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecological Engineering [Internet]. 2012 Oct [cited 2025 Aug 21];47:101–4. https://doi.org/10.1016/j.ecoleng.2012.06.018 DOI: https://doi.org/10.1016/j.ecoleng.2012.06.018
Sandoval L, Zamora-Castro S, Vidal-Álvarez M, Marín-Muñiz J. Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: a review. Applied Sciences [Internet]. 2019 Feb 17 [cited 2025 Aug 21];9(4):685. https://doi.org/10.3390/app9040685 DOI: https://doi.org/10.3390/app9040685
Maroyi A. Zantedeschia aethiopica (L.) Spreng.: a review of its medicinal uses, phytochemistry, and biological activities. Asian Journal of Pharmaceutical and Clinical Research [Internet]. 2019 Jun 24 [cited 2025 Aug 21];12(8):30–6. https://doi.org/10.22159/ajpcr.2019.v12i18.34353 DOI: https://doi.org/10.22159/ajpcr.2019.v12i18.34353
Paiva ÉAS. Do calcium oxalate crystals protect against herbivory? Naturwissenschaften [Internet]. 2021 May 27 [cited 2025 Aug 21];108(3):24. https://doi.org/10.1007/s00114-021-01735-z DOI: https://doi.org/10.1007/s00114-021-01735-z
Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology [Internet]. 2005 Jun [cited 2025 Aug 21];56(1):41–71. https://doi.org/10.1146/annurev.arplant.56.032604.144106 DOI: https://doi.org/10.1146/annurev.arplant.56.032604.144106
Beltrán-Dávalos A, Rosero-Erazo C, Cargua F, Echeverría M. Potencial de Zantedeschia aethiopica L. para la rehabilitación de suelos contaminados con cromo hexavalente en zonas alto andinas de Ecuador. Acta Agronómica [Internet]. 2019 [cited 2025 Aug 21];68(2):92–8. https://doi.org/10.15446/acag.v68n2.77859 DOI: https://doi.org/10.15446/acag.v68n2.77859
Tsiftsoglou OS, Stefanakis MK, Lazari DM. Chemical constituents isolated from the rhizomes of Helleborus odorus subsp. cyclophyllus (Ranunculaceae). Biochemical Systematics and Ecology [Internet]. 2018 Apr 30 [cited 2025 Aug 21];79:8–11. https://doi.org/10.1016/j.bse.2018.04.010 DOI: https://doi.org/10.1016/j.bse.2018.04.010
Méndez-Zambrano PV, Arcos-Logroño JP, Cazorla-Vinueza XR. Determinación del índice de calidad del agua (NSF) del río Copueno ubicado en Cantón Morona. Dominio de las Ciencias [Internet]. 2020 Jun 25 [cited 2025 Aug 21];6(2):734–46. https://doi.org/10.23857/dc.v6i2.1245
Pérez JI, Nardini AG, Galindo AA. Análisis comparativo de índices de calidad del agua aplicados al río Ranchería, La Guajira-Colombia. Información Tecnológica [Internet]. 2018 Jun [cited 2025 Aug 21];29(3):47–58. http://dx.doi.org/10.4067/S0718-07642018000300047 DOI: https://doi.org/10.4067/S0718-07642018000300047
Chirumalla K, Balestrucci F, Sannö A, Oghazi P. The transition from a linear to a circular economy through a multi-level readiness framework: an explorative study in the heavy-duty vehicle manufacturing industry. Journal of Innovation & Knowledge [Internet]. 2024 Aug 24 [cited 2025 Aug 21];9(4):100539. https://doi.org/10.1016/j.jik.2024.100539 DOI: https://doi.org/10.1016/j.jik.2024.100539
Uddin MdG, Nash S, Olbert AI. A review of water quality index models and their use for assessing surface water quality. Ecological Indicators [Internet]. 2021 Mar [cited 2025 Sep 2];122(107218):107218. https://doi.org/10.1016/j.ecolind.2020.107218 DOI: https://doi.org/10.1016/j.ecolind.2020.107218
Brown AW. The role of government in the encouragement of research in industry. Australian Journal of Public Administration [Internet]. 1970 Dec 1 [cited 2025 Sep 3];29(4):339–55. https://doi.org/10.1111/j.1467-8500.1970.tb00199.x DOI: https://doi.org/10.1111/j.1467-8500.1970.tb00199.x
Abou-Shady A, Saboor Siddique M, Yu W. A critical review of recent progress in global water reuse during 2019–2021 and perspectives to overcome future water crisis. Environments [Internet]. 2023 Sep 14 [cited 2025 Sep 2];10(9):159–9. https://doi.org/10.3390/environments10090159 DOI: https://doi.org/10.3390/environments10090159
Descargas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).