Electricity generation with biogas from sugarcane vinasse in Colombia
Main Article Content
Introduction: The consumption of bioenergy has increased in recent years, contributing to the reduction of greenhouse gas (GHG) emissions. In particular, sugarcane waste has been evaluated in several studies as a potential source of renewable energy. The sugar industry primarily produces sugar and ethanol, and for each liter of ethanol produced, between 10 and 15 liters of vinasse are generated. This residue is highly polluting and, although it is traditionally used for fertigation or disposed of, it holds significant potential for biogas production.
Objectives:The main objective of this study was to assess the electricity generation potential from vinasse produced in ethanol plants in Colombia and calculate the CO2 emissions avoided by substituting local electricity use with this renewable energy source.
Materials and Methods: Four different scenarios were evaluated based on the percentage of sugarcane juice used for ethanol production. For each scenario, the electricity generation potential from biogas produced by vinasse biodigestion was calculated. Additionally, the CO2 emissions avoided were estimated by comparing the use of vinasse-based electricity with local conventional electricity sources.
Results: The results from the different scenarios show that the electricity generation potential ranges between 249,840.36 MWh/year and 437,156.37 MWh/year, depending on the percentage of sugarcane juice used for ethanol production. CO2 emissions avoided ranged from 31,475.26 to 55,081.70 tons of CO2/year. These results indicate that electricity generation from vinasse has a significant impact on reducing greenhouse gas emissions compared to local conventional electricity.
Conclusions: The valorization of sugarcane vinasse for electricity generation represents a significant step forward in the production of clean electricity in the sugar sector. The results show that this approach not only has high potential for renewable energy generation but also contributes significantly to reducing CO2 emissions, enhancing the sustainability of the sector.
- Energy
- Sustainability
- Methane
- Sustainable production
- Biodigester
- Renewable source
Tena M, Buller LS, Sganzerla WG, Berni M, Forster-Carneiro T, Solera R, et al. Techno-economic evaluation of bioenergy production from anaerobic digestion of by-products from ethanol flex plants. 2022; 309:122171. https://doi.org/10.1016/j.fuel.2021.122171 DOI: https://doi.org/10.1016/j.fuel.2021.122171
Stegmann P, Londo M, Junginger M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resources, Conservation & Recycling: X , 2020;6:100029. https://doi.org/10.1016/j.rcrx.2019.100029 DOI: https://doi.org/10.1016/j.rcrx.2019.100029
Bechara R, Gomez A, Saint-Antonin V, Schweitzer JM, Maréchal F, Ensinas A. Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity. Renewable and Sustainable Energy Reviews. 2018; 91:152-64. https://doi.org/10.1016/j.rser.2018.02.020 DOI: https://doi.org/10.1016/j.rser.2018.02.020
Wani AK, Rahayu F, Fauziah L, Suhara C. Advances in safe processing of sugarcane and bagasse for the generation of biofuels and bioactive compounds. Journal of Agriculture and Food Research. 2023;12:100549. https://doi.org/10.1016/j.jafr.2023.100549 DOI: https://doi.org/10.1016/j.jafr.2023.100549
Almeida RPA, Cordeiro GC. Sustainable approach to simultaneously improve the pozzolanic activity of sugarcane bagasse ash and the vinasse fertilization potential. Cleaner Engineering and Technology 2023;13:100617. https://doi.org/10.1016/j.clet.2023.100617 DOI: https://doi.org/10.1016/j.clet.2023.100617
Ministerio de Agricultura y Desarrollo Rural. [citado 6 de octubre de 2024]. Disponible en: https://www.minagricultura.gov.co/paginas/default.aspx
Rueda-Ordóñez DA, Leal MRLV, Bonomi A, Cortez LAB, Cavalett O, Rincón JM. Simulating scenarios for compost and vinasse use to improve the economics and environmental aspects of representative Colombian sugarcane production systems. Renew Agric Food Syst. 2019;35(5):579-93. https://doi.org/10.1017/S1742170519000188 DOI: https://doi.org/10.1017/S1742170519000188
Asocaña. Asocaña - Sector Agroindustrial de la Caña. 2023 [citado 7 de octubre de 2024]. Sector Agroindustrial de la Caña. Disponible en: https://asocana.org/publico/info.aspx?Cid=215
Molina-Cortés A, Quimbaya M, Toro-Gomez A, Tobar-Tosse F. Bioactive compounds as an alternative for the sugarcane industry: Towards an integrative approach. Heliyon. 2023;9(2):e13276. https://doi.org/10.1016/j.heliyon.2023.e13276 DOI: https://doi.org/10.1016/j.heliyon.2023.e13276
Thomaz EL, Marcatto FS, Antoneli V. Soil erosion on the Brazilian sugarcane cropping system: An overview. Geography and Sustainability. 2022;3(2):129-38. https://doi.org/10.1016/j.geosus.2022.05.001 DOI: https://doi.org/10.1016/j.geosus.2022.05.001
Bettani SR, De Oliveira Ragazzo G, Leal Santos N, Kieckbusch TG, Gaspar Bastos R, Soares MR, et al. Sugarcane vinasse and microalgal biomass in the production of pectin particles as an alternative soil fertilizer. Carbohydrate Polymers. 2019; 203:322-30. https://doi.org/10.1016/j.carbpol.2018.09.041 DOI: https://doi.org/10.1016/j.carbpol.2018.09.041
Moraes BS, Junqueira TL, Pavanello LG, Cavalett O, Mantelatto PE, Bonomi A, et al. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Applied Energy. 2014; 113:825-35. https://doi.org/10.1016/j.apenergy.2013.07.018 DOI: https://doi.org/10.1016/j.apenergy.2013.07.018
Junior JA, Vieira YA, Cruz IA, Da Silva Vilar D, Aguiar MM, Torres NH, et al. Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. Biotechnology Reports 2020; 25: e00411. https://doi.org/10.1016/j.btre.2019.e00411 DOI: https://doi.org/10.1016/j.btre.2019.e00411
Montoya G, Gutierrez MI, Giraldo JD, Jaramillo LD, Ruiz-Sandoval J, Orozco S, et al. Sustainable sugarcane vinasse biorefinement for trans-aconitic acid-based biopolymer synthesis and bioenergy generation. Bioresource Technology Reports. 2021;15:100786. https://doi.org/10.1016/j.biteb.2021.100786 DOI: https://doi.org/10.1016/j.biteb.2021.100786
Soto MF, Diaz CA, Zapata AM, Higuita JC. BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation. Biochemical Engineering Journal. 2021;176:108191. https://doi.org/10.1016/j.bej.2021.108191 DOI: https://doi.org/10.1016/j.bej.2021.108191
Bayu AI, Lestary RA, Dewayanto N, Mellyanawaty M, Wicaksono A, Alvania Kartika RW, et al. Kinetic study of thermophilic anaerobic digestion of sugarcane vinasse in a single-stage continuous stirred tank reactor. Results in Engineering. 2022; 14:100432. https://doi.org/10.1016/j.rineng.2022.100432 DOI: https://doi.org/10.1016/j.rineng.2022.100432
Fuess LT, Zaiat M. Economics of anaerobic digestion for processing sugarcane vinasse: Applying sensitivity analysis to increase process profitability in diversified biogas applications. Process Safety and Environmental Protection. 2018;115:27-37. https://doi.org/10.1016/j.psep.2017.08.007 DOI: https://doi.org/10.1016/j.psep.2017.08.007
Sydney EB, Neto CJD, De Carvalho JC, Vandenberghe LPDS, Sydney ACN, Letti LAJ, et al. Microalgal biorefineries: Integrated use of liquid and gaseous effluents from bioethanol industry for efficient biomass production. Bioresource Technology. 2019;292:121955. https://doi.org/10.1016/j.biortech.2019.121955 DOI: https://doi.org/10.1016/j.biortech.2019.121955
Nakashima RN, De Oliveira Junior S. Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation. Renewable Energy. 2020;147:1969-78. https://doi.org/10.1016/j.renene.2019.09.124 DOI: https://doi.org/10.1016/j.renene.2019.09.124
Santos LSRD, Tamashiro JR, Zanelotti DS, Silva LHP, Paiva FFGD, Oliveira DVMD, et al. Treatment of agro-industrial effluents with silver nanoparticles to reduce chemical oxygen demand and microorganisms. Cleaner Waste Systems [Internet]. diciembre de 2022 [citado 6 de octubre de 2024];3:100058. Disponible en: https://doi.org/10.1016/j.clwas.2022.100058 DOI: https://doi.org/10.1016/j.clwas.2022.100058
Aragão MS, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Romanholo Ferreira LF, et al. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere [Internet]. abril de 2020 [citado 6 de octubre de 2024];244:125432. Disponible en: https://doi.org/10.1016/j.chemosphere.2019.125432 DOI: https://doi.org/10.1016/j.chemosphere.2019.125432
Harirchi S, Etemadifar Z, Yazdian F, Taherzadeh MJ. Efficacy of polyextremophilic Aeribacillus pallidus on bioprocessing of beet vinasse derived from ethanol industries. Bioresource Technology. 2020; 313:123662. https://doi.org/10.1016/j.biortech.2020.123662 DOI: https://doi.org/10.1016/j.biortech.2020.123662
Canizales L, Rojas F, Pizarro CA, Caicedo-Ortega NelsonH, Villegas-Torres MF. SuperPro Designer®, User-Oriented Software Used for Analyzing the Techno-Economic Feasibility of Electrical Energy Generation from Sugarcane Vinasse in Colombia. Processes. 2020;8(9):1180. https://doi.org/10.3390/pr8091180 DOI: https://doi.org/10.3390/pr8091180
Dias MF, Colturato LF, De Oliveira JP, Leite LR, Oliveira G, Chernicharo CA, et al. Metagenomic analysis of a desulphurisation system used to treat biogas from vinasse methanisation. Bioresource Technology. 2016; 205:58-66. https://doi.org/10.1016/j.biortech.2016.01.007 DOI: https://doi.org/10.1016/j.biortech.2016.01.007
Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science. 2008;34(6):755-81. https://doi.org/10.1016/j.pecs.2008.06.002 DOI: https://doi.org/10.1016/j.pecs.2008.06.002
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, et al. Biogas upgrading and utilization: Current status and perspectives. Biotechnol Adv. 2018;36(2):452-66. https://doi.org/10.1016/j.biotechadv.2018.01.011 DOI: https://doi.org/10.1016/j.biotechadv.2018.01.011
Santos PS, Zaiat M, Oller Do Nascimento CA, Fuess LT. Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems? A dual kinetic-energetic assessment. Journal of Cleaner Production. 2019;240:118005. https://doi.org/10.1016/j.jclepro.2019.118005 DOI: https://doi.org/10.1016/j.jclepro.2019.118005
Volpi MPC, Fuess LT, Moraes BS. Anaerobic co-digestion of residues in 1G2G sugarcane biorefineries for enhanced electricity and biomethane production. Bioresource Technology. 2021; 330:124999. https://doi.org/10.1016/j.biortech.2021.124999 DOI: https://doi.org/10.1016/j.biortech.2021.124999
Furtado LA, Guerreiro Ribeiro S, Pradelle F, Parise JAR. Modeling and techno-economic analysis of a hybrid sugarcane plant fed by vinasse biogas and bagasse surplus for electricity generation. Journal of Cleaner Production. 2023; 413:137511. https://doi.org/10.1016/j.jclepro.2023.137511 DOI: https://doi.org/10.1016/j.jclepro.2023.137511
De Carvalho JC, De Souza Vandenberghe LP, Sydney EB, Karp SG, Magalhães AI, Martinez-Burgos WJ, et al. Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations. Fermentation. 2023; 9(4):349. https://doi.org/10.3390/fermentation9040349 DOI: https://doi.org/10.3390/fermentation9040349
Zanellati A, Spina F, Poli A, Rollé L, Varese GC, Dinuccio E. Fungal pretreatment of non-sterile maize silage and solid digestate with a Cephalotrichum stemonitis strain selected from agricultural biogas plants to enhance anaerobic digestion. Biomass and Bioenergy. 2021; 144:105934. Disponible en: https://doi.org/10.1016/j.biombioe.2020.105934 DOI: https://doi.org/10.1016/j.biombioe.2020.105934
Cevallos-Molina ER, Vélez-Vélez TV, Baquerizo-Crespo RJ, Gómez-Salcedo Y. Anaerobic treatment of sugarcane bagasse. An opportunity for sustainability in rural environments? Environmental Advances. 2023; 13:100427. https://doi.org/10.1016/j.envadv.2023.100427 DOI: https://doi.org/10.1016/j.envadv.2023.100427
Orgeda R, Yoshi HCMH, Bonfim-Rocha L, Ravagnani MADSS, Camilo R, Lima OCDM, et al. Techno-economic Assessment of Syngas Production from Sugarcane Vinasse Compared to the Natural Gas Route: A Biorefinery Concept. Waste Biomass Valor. 2021;12(2):699-710. https://doi.org/10.1007/s12649-020-01014-4 DOI: https://doi.org/10.1007/s12649-020-01014-4
Alfonso-Cardero A, Pagés-Díaz J, Contino F, Rajendran K, Lorenzo-LLanes J. Process simulation and techno-economic assessment of vinasse-to-biogas in Cuba: Deterministic and uncertainty analysis. Chemical Engineering Research and Design. 202;169:33-45. https://doi.org/10.1016/j.cherd.2021.02.031 DOI: https://doi.org/10.1016/j.cherd.2021.02.031
Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresource Technology. 2008;99(10):4044-64. https://doi.org/10.1016/j.biortech.2007.01.057 DOI: https://doi.org/10.1016/j.biortech.2007.01.057
Brown D, Li Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology. 2013;127:275-80. https://doi.org/10.1016/j.biortech.2012.09.081 DOI: https://doi.org/10.1016/j.biortech.2012.09.081
Banks CJ, Chesshire M, Heaven S, Arnold R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology. 2011;102(2):612-20. https://doi.org/10.1016/j.biortech.2010.08.005 DOI: https://doi.org/10.1016/j.biortech.2010.08.005
Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource Technology. 2009;100(22):5478-84. https://doi.org/10.1016/j.biortech.2008.12.046 DOI: https://doi.org/10.1016/j.biortech.2008.12.046
Bouallagui H. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology. 2003;86(1):85-9. https://doi.org/10.1016/S0960-8524(02)00097-4 DOI: https://doi.org/10.1016/S0960-8524(02)00097-4
Scarlat N, Dallemand JF, Fahl F. Biogas: Developments and perspectives in Europe. Renewable Energy 2018;129:457-72. https://doi.org/10.1016/j.renene.2018.03.006 DOI: https://doi.org/10.1016/j.renene.2018.03.006
de Castro JM. Estudo do potencial de geração de bioeletricidade a partir de biogás proveniente de biodigestão de vinhaça no estado de Minas Gerais. Universidade Federal de Minas Gerais; 2018. https://repositorio.ufmg.br/handle/1843/RAOA-BCZHRY
Germano B da N. Produção de biogás a partir da vinhaça: uma análise de bem-estar social usando modelagem econômico-hidrológica integrada. Universidade Federal de Pernambuco; 2011. https://iwra.org/proceedings/congress/resource/PAP00-5529.pdf
Granato EF [UNESP. Geração de energia através da biodigestão anaeróbica da vinhaça. Universidade Estadual Paulista (Unesp); 2003 http://hdl.handle.net/11449/90820
Silva Dos Santos IF, Braz Vieira ND, De Nóbrega LGB, Barros RM, Tiago Filho GL. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resources, Conservation and Recycling. 2018;131:54-63. https://doi.org/10.1016/j.resconrec.2017.12.012 DOI: https://doi.org/10.1016/j.resconrec.2017.12.012
Lamo PD. Sistema Produtor de Gás Metano Através de Tratamento de Efluentes Industriais.
Menezes MBCD, Salomon KR. Aproveitamento dos efluentes domésticos para geração de energia em condomínios residenciais de baixa renda. RDAE. 2018;66(213):85-99. https://doi.org/10.4322/dae.2018.034 DOI: https://doi.org/10.4322/dae.2018.034
UPME. Total de emisiones CO2. http://www.upme.gov.co/calculadora_emisiones/aplicacion/calculadora.html
de Melo LR, Demasi BZ, de Araujo MN, Rogeri RC, Grangeiro LC, Fuess LT. Methane Production from Sugarcane Vinasse Biodigestion: An Efficient Bioenergy and Environmental Solution for the State of São Paulo, Brazil. Methane. 2024;3(2):314-30. https://doi.org/10.3390/methane3020017 DOI: https://doi.org/10.3390/methane3020017
Marcucci SMP, Santos EDND, Fuziki MEK, Lenzi GG, Balthazar JM, Tusset AM. Techno-Economic Analysis of Biogas Production with Vinasse and Co-Digestion with Vinasse and Filter Cake for Annexed Plants: Case Study in Paraná State, Brazil. Biomass. 2025;5(1):10. https://doi.org/10.3390/biomass5010010 DOI: https://doi.org/10.3390/biomass5010010
Bernal AP, Dos Santos IFS, Moni Silva AP, Barros RM, Ribeiro EM. Vinasse biogas for energy generation in Brazil: An assessment of economic feasibility, energy potential and avoided CO2 emissions. Journal of Cleaner Production. 2017; 151:260-71. https://doi.org/10.1016/j.jclepro.2017.03.064 DOI: https://doi.org/10.1016/j.jclepro.2017.03.064
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).