Artificial Intelligence Techniques for Quality of Life Analysis: Systematic Mapping
Main Article Content
Introduction: Quality of life is a complex concept that encompasses multiple dimensions, from health and education to economic and social well-being. In recent years, the use of Artificial Intelligence (AI) has made it possible to analyze large volumes of data to better understand the factors that influence quality of life. However, although various applications have been developed in this field, there are still challenges in integrating different approaches and data sources.
Objective: This study analyzes how AI is being used in the assessment of quality of life. The main techniques used, the areas of application and the gaps in the literature are identified, in order to propose future lines of research.
Methods: A systematic review was conducted following Kitchenham's methodology, compiling studies from scientific databases such as Scopus, IEEE Xplore and Google Scholar. Inclusion and exclusion criteria, formulation of research questions, and other steps were applied to select relevant research on AI and quality of life.
Results: The most commonly used algorithms include Decision Trees (DT), Random Forest (RF), Neural Networks, and Support Vector Machines (SVM), applied in health, education, and socioeconomic conditions. However, most studies analyze factors in isolation, without integrating multiple dimensions.
Conclusions: Although AI is a promising tool for assessing quality of life, more integrative approaches need to be developed that combine diverse data sources and reflect the complexity of the concept.
- Artificial intelligence
- Deep Learning
- Machine Learning
- Systematic Mapping
How’s Life? 2020 [Internet]. New York: OECD; 2020. 247 p. (How’s Life?). Available from: https://www.oecd.org/en/publications/how-s-life/volume-/issue-_9870c393-en.html
Walther CC, editor. Handbook of Quality of Life and Social Change. Cham: Springer International Publishing, 2024. Available from: https://link.springer.com/book/10.1007/978-3-031-39507-9
Dimitrova B, Carr A J, Higginson I J, Robinson P G, (editors). Quality of life. London: BMJ Books, 2003. 133 pp. ISBN 0-7279-1544-4. Eur J Public Health. 2005;15(6):668–668. https://doi.org/10.1093/eurpub/cki178 DOI: https://doi.org/10.1093/eurpub/cki178
Mounir Mesbah, Bernard F Cole, Mei-Ling Ting Lee. Statistical Methods for Quality of Life Studies. Statistical Methods for Quality of Life Studies. Springer US; 2002; 358. Available from: https://doi.org/10.1007/978-1-4757-3625-0 DOI: https://doi.org/10.1007/978-1-4757-3625-0
Peddisetty N, Reddy A. Leveraging Artificial Intelligence for Predictive Change Management in Information Systems Projects. Distributed Learning and Broad Applications in Scientific Research. 2024; 10:88–94. Available from: https://dlabi.org/index.php/journal/article/view/56
Zhang T. Mathematical Analysis of Machine Learning Algorithms. 2023. https://doi.org/10.1017/9781009093057 DOI: https://doi.org/10.1017/9781009093057
Marans RW, Stimson RJ, Webster NJ. Handbook of Quality of Life Research. Cham: Edward Elgar Publishing; 2024. 443 p. https://doi.org/10.4337/9781789908794 DOI: https://doi.org/10.4337/9781789908794
Maggino F, editor. Encyclopedia of Quality of Life and Well-Being Research. Cham: Springer International Publishing; 2023. https://doi.org/10.1007/978-3-031-17299-1 DOI: https://doi.org/10.1007/978-3-031-17299-1
Stoyanov Stoyan. An analysis of Abraham Maslow’s A theory of human motivation. Routledge, 2017; 87 p. Available from: https://pureportal.strath.ac.uk/en/publications/an-analysis-of-abraham-maslows-a-theory-of-human-motivation?utm_source=chatgpt.com
Max-Neef M, Elizalde A, Hopenhayn M, Herrera F, Zemelman H, Jatoba J, et al. Desarrollo a Escala Humana una opcion para el future version de Cepaur Fundacion Dag Hammarskjold. Development Dialogue,1986. Available from: https://www.researchgate.net/publication/233808811_Desarrollo_a_Escala_Humana_Una_opcion_para_el_futuro
Shelton L G. The Bronfenbrenner Primer: A Guide to Develecology. London; 2019. https://doi.org/10.4324/9781315136066 DOI: https://doi.org/10.4324/9781315136066
Fayers PMMD. Quality of Life: Assessment, Analysis and Interpretation. New York: Wiley & Sons; 2000. Available from: https://www.researchgate.net/publication/23309217_Quality_of_Life_The_Assessment_Analysis_and_Interpretation_of_Patient-Reported_Outcomes_by_FAYERS_P_M_and_MACHIN_D DOI: https://doi.org/10.1002/0470846283
Shek DTL, Hollister RM. University social responsibility and quality of life. Springer; 2017. Available from: https://link.springer.com/book/10.1007/978-981-10-3877-8
Shukla K, Patil YB, Estoque RC, López de Haro PA, editors. Quality of life and climate change: Impacts, sustainable adaptation, and social-ecological resilience. IGI Global, 2024; 1043 p. https://doi.org/10.4018/978-1-6684-9863-7 DOI: https://doi.org/10.4018/978-1-6684-9863-7
D’Antonio W V, Sasaki M, Yonebayashi Y. Ecology, Society & the Quality of Social Life. New York: Routledge, 2022; 239 p. https://doi.org/10.4324/9780429334115 DOI: https://doi.org/10.4324/9780429334115
Myridis NE, editor. Poverty and Quality of Life in the Digital Era. Cham: Springer International Publishing; 2022. Available from: https://link.springer.com/book/10.1007/978-3-031-04711-4#about-authors
Henao M, Mario J, Véliz O. Segregation and Inequality in the Access to Education, Culture, and Recreation Services in Bogotá, Colombia. Bogotá; 2020 Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-215X2020000100171
Ordoñez-Eraso HA, Pardo-Calvache CJ, Cobos-Lozada CA. Detección de tendencias de homicidios en Colombia usando Machine Learning. Revista Facultad de Ingeniería. 2019 ;29(54): e11740. https://doi.org/10.19053/01211129.v29.n54.2020.11740 DOI: https://doi.org/10.19053/01211129.v29.n54.2020.11740
Rodrigues A, González JA, Mateu J A. Conditional machine learning classification approach for spatio-temporal risk assessment of crime data. Stochastic Environmental Research and Risk Assessment. 2023 ;37(7): 2815–28. https://doi.org/10.1007/s00477-023-02420-5 DOI: https://doi.org/10.1007/s00477-023-02420-5
Gelvez Ferreira JD, Nieto-Rodríguez MP, Rocha-Ruiz CA. Prediciendo el crimen en ciudades intermedias: un modelo de “machine learning” en Bucaramanga, Colombia. URVIO Revista Latinoamericana de Estudios de Seguridad. 2022;(34):83–98. https://doi.org/10.17141/urvio.34.2022.5395 DOI: https://doi.org/10.17141/urvio.34.2022.5395
Forero-Corba W, Bennasar FN. Design and simulation of a predictive model for the evaluation of teachers’ digital competence using Machine Learning techniques. Edutec. 2024;(89):18–43. https://doi.org/10.21556/edutec.2024.89.3201 DOI: https://doi.org/10.21556/edutec.2024.89.3201
Dimotikalis Y, Karagrigoriou A, Parpoula C, Skiadas CH. Applied Modeling Techniques and Data Analysis 1.1st ed. Wiley; 2021. https://doi.org/10.1002/9781119821588 DOI: https://doi.org/10.1002/9781119821588
Singh PK, Wierzchoń ST, Pawłowski W, Kar AK, Kumar Y, editors. IoT, Big Data and AI for Improving Quality of Everyday Life: Present and Future Challenges. Cham: Springer International Publishing; 2023; 1104:386 p. https://doi.org/10.1007/978-3-031-35783-1 DOI: https://doi.org/10.1007/978-3-031-35783-1
David William Bates. An Artificial History of Natural Intelligence. Chicago: University of Chicago Press; 2024; 408 p. Available from: https://press.uchicago.edu/ucp/books/book/chicago/A/bo212878817.html
Smith C, Yang G, Huang T, McGuire B. The History of Artificial Intelligence. Washington, 2006. Available from: https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf
Robert H Chen, Chelsea Chen. Artificial Intelligence: An Introduction to the Big Ideas and their Development. Chapman and Hall, 2025. Available from: https://www.routledge.com/Artificial-Intelligence-An-Introduction-to-the-Big-Ideas-and-their-Development/Chen-Chen/p/book/9781032715964?srsltid=AfmBOoqxGHMEBkIJPm70fW3dEFJaSJx3N8mAA3R__goLUVfO2CS9O6lV
Dharmapriya M S, Preetham Reddy Y, Sai Praneeth Chapala, Kolachalama Venkata. Thesis on Machine Learning Methods and Its Applications. Int J Res Appl Sci Eng Technol. 2021;9(10):746–57. https://doi.org/10.22214/ijraset.2021.38506 DOI: https://doi.org/10.22214/ijraset.2021.38506
Joshi A. Artificial Intelligence and Human Evolution. Berkeley, CA: Apress, 2024. https://doi.org/10.1007/978-1-4842-9807-7 DOI: https://doi.org/10.1007/978-1-4842-9807-7
Ying X, editor. Human Brain and Artificial Intelligence. Singapore: Springer Nature Singapore, 2023; 1692. Available from: https://link.springer.com/book/10.1007/978-981-19-8222-4
Yueming Wang, editor. Human Brain and Artificial Intelligence. Communications in Computer and Information Science. Springer Singapore; 2021. 1369 p. Available from: http://www.springer.com/series/7899
An Zeng, Dan Pan, Tianyong Hao. Human Brain and Artificial Intelligence. Communications in Computer and Information Science. London: Springer; 2019. 1369. https://doi.org/10.1007/978-981-15-1398-5 DOI: https://doi.org/10.1007/978-981-15-1398-5
Robert Kozma, Cesare Alippi, Yoonsuck Choe, Francesco Carlo Morabito. Artificial Intelligence in the Age of Neural Networks and Brain Computing. second. Elsevier, 2024. Available from: https://linkinghub.elsevier.com/retrieve/pii/C20210017600
Krauss P. Artificial Intelligence and Brain Research. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. Available from: https://link.springer.com/book/10.1007/978-3-662-68980-6
Hinton A. AI and ML for Coders. New York, 2023. Available from: https://books.google.com.co/books/about/AI_and_ML_for_Coders.html?id=Ej7sEAAAQBAJ&redir_esc=y
Pan Z, Cutumisu M. Using machine learning to predict UK and Japanese secondary students’ life satisfaction in PISA 2018. British Journal of Educational Psychology. 2024;94(2):474–98. https://doi.org/10.1111/bjep.12657 DOI: https://doi.org/10.1111/bjep.12657
Sadeghi H, Gharib M, Borhaninejad V, Rashedi V. Predicting quality of life based on mental health state : A machine learning approach using Urban-HEART 2. Med Psychol Public Health, 2024;1(3):133–42. Available from: https://ampphealthjournal-network.org/wp-content/uploads/2024/04/AMPPH_2024_133_142.pdf
Carrizo D, Moller C. Estructuras metodológicas de revisiones sistemáticas de literatura en Ingeniería de Software: un estudio de mapeo sistemático. Ingeniare. Rev. chil. Ing, 2018;26, suppl.1: 45-54. http://dx.doi.org/10.4067/S0718-33052018000500045. DOI: https://doi.org/10.4067/S0718-33052018000500045
Idrissi A, editor. Modern Artificial Intelligence and Data Science [Internet]. Vol. 1102. Cham: Springer Nature Switzerland; 2023 [cited 2025 May 15]. Available from: https://link.springer.com/book/10.1007/978-3-031-33309-5
Ali O, Abdelbaki W, Shrestha A, Elbasi E, Alryalat MAA, Dwivedi YK. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. Journal of Innovation and Knowledge. 2023;8(1). https://doi.org/10.1016/j.jik.2023.100333 DOI: https://doi.org/10.1016/j.jik.2023.100333
Diago Alfes III Z, Leonor Galarza Chicaiza GI, José Terán MI. El papel de la inteligencia artificial en la promoción de la salud mental y el bienestar: una revisión sistemática. Pol. Con, 2024; 9(12):1997-2014 https://polodelconocimiento.com/ojs/index.php/es/article/view/8598
Jannani A, Sael N, Benabbou F. Artificial Intelligence for Quality of Life Study: A Systematic Literature Review. IEEE Access, 2024;12:62059–88. https://doi.org/10.1109/ACCESS.2024.3395369 DOI: https://doi.org/10.1109/ACCESS.2024.3395369
Hopcan S, Polat E, Ozturk ME, Ozturk L. Artificial intelligence in special education: a systematic review. Interactive Learning Environments, 2023;31(10):7335–53. https://doi.org/10.1080/10494820.2022.2067186 DOI: https://doi.org/10.1080/10494820.2022.2067186
Salas-Pilco SZ, Yang Y. Artificial intelligence applications in Latin American higher education: a systematic review. Int J Educ Technol High Educ, 2022;19. https://doi.org/10.1186/s41239-022-00326-w DOI: https://doi.org/10.1186/s41239-022-00326-w
Lin CC, Huang AYQ, Lu OHT. Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments. Springer, 2023; 10 https://doi.org/10.1186/s40561-023-00260-y DOI: https://doi.org/10.1186/s40561-023-00260-y
Bovkir R, Ustaoglu E, Aydinoglu AC. Assessment of Urban Quality of Life Index at Local Scale with Different Weighting Approaches. Soc Indic Res, 2023;165(2):655–78. https://doi.org/10.1007/s11205-022-03036-y DOI: https://doi.org/10.1007/s11205-022-03036-y
Tao X, Chi O, Delaney PJ, Li L, Huang J. Detecting depression using an ensemble classifier based on Quality of Life scales. Brain Inform. 2021;8(1). https://doi.org/10.1186/s40708-021-00125-5 DOI: https://doi.org/10.1186/s40708-021-00125-5
Celbiş MG, Wong PH, Kourtit K, Nijkamp P. Job Satisfaction and the ‘Great Resignation’: An Exploratory Machine Learning Analysis. Soc Indic Res. 2023;170(3):1097–118. https://doi.org/10.1007/s11205-023-03233-3 DOI: https://doi.org/10.1007/s11205-023-03233-3
Erdoğan Z, Namlı E. A living environment prediction model using ensemble machine learning techniques based on quality of life index. J Ambient Intell Humaniz Comput. 2019; https://doi.org/10.1007/s12652-019-01432-w DOI: https://doi.org/10.1007/s12652-019-01432-w
Jannani A, Sael N, Benabbou F. Machine learning for the analysis of quality of life using the World Happiness Index and Human Development Indicators. Mathematical Modeling and Computing. 2023;10(2):534–46. Available from: https://science.lpnu.ua/mmc/all-volumes-and-issues/volume-10-number-2-2023/machine-learning-analysis-quality-life-using
Kumar Y, Koul A, Kaur S, Hu YC. Machine Learning and Deep Learning Based Time Series Prediction and Forecasting of Ten Nations’ COVID-19 Pandemic. SN Comput Sci. 2023;4(1). https://doi.org/10.1007/s42979-022-01493-3 DOI: https://doi.org/10.1007/s42979-022-01493-3
Mahesh B. Machine Learning Algorithms - A Review. International Journal of Science and Research (IJSR). 2020;9(1):381–6. https://doi.org/10.21275/ART20203995 DOI: https://doi.org/10.21275/ART20203995
Savić M, Kurbalija V, Ilić M, Ivanović M, Jakovetić D, Valachis A, et al. The Application of Machine Learning Techniques in Prediction of Quality of Life Features for Cancer Patients. Computer Science and Information Systems, 2023;29(1):381–404. Available from: https://doiserbia.nb.rs/Article.aspx?id=1820-02142200061S
Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science. Springer, 2021; 2. https://doi.org/10.1007/s42979-021-00592-x DOI: https://doi.org/10.1007/s42979-021-00592-x
Khan AE, Hasan MJ, Anjum H, Mohammed N, Momen S. Predicting life satisfaction using machine learning and explainable AI. Heliyon. 2024;10(10). https://doi.org/10.1016/j.heliyon.2024.e31158 DOI: https://doi.org/10.1016/j.heliyon.2024.e31158
Kaur M, Dhalaria M, Sharma PK, Park JH. Supervised machine-learning predictive analytics for national quality of life scoring. Applied Sciences (Switzerland), 2019;9(8). https://doi.org/10.3390/app9081613 DOI: https://doi.org/10.3390/app9081613
Yadav GK, Vidales BM, Rashwan HA, Oliver J, Puig D, Nandi GC, et al. Effective ML-based quality of life prediction approach for dependent people in guardianship entities. Alexandria Engineering Journal, 2023;65:909–19. https://doi.org/10.1016/j.aej.2022.10.028 DOI: https://doi.org/10.1016/j.aej.2022.10.028
Forero-Corba W, Bennasar FN. Techniques and applications of Machine Learning and Artificial Intelligence in education: a systematic review. RIED-Revista Iberoamericana de Educacion a Distancia, 2024;27(1):209–53. https://doi.org/10.5944/ried.27.1.37491 DOI: https://doi.org/10.5944/ried.27.1.37491
Bheda A, Sanchez A. Predictive Analytics of Active Learning Based Education, 2017. Available from: https://dspace.mit.edu/handle/1721.1/113509
Benjamin Johnston, Ishita Mathur. Applied supervised learning with Python: use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning. 2019 Available from: https://www.packtpub.com/en-us/product/applied-supervised-learning-with-python-9781789954920
Xu X, Wang J, Peng H, Wu R. Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Comput Human Behav, 2019;98:166–73. https://doi.org/10.1016/j.chb.2019.04.015 DOI: https://doi.org/10.1016/j.chb.2019.04.015
Deepti Chopra. Building Machine Learning Systems Using Python: Practice to Train Predictive Models and Analyze Machine Learning Results with Real Use-Cases (English Edition). 2021 Available from: https://sciendo.com/chapter/9789389423617/10.0000/9789389423617-001
de Véricourt F, Perakis G. Frontiers in service science: The management of data analytics services: New challenges and future directions. Serv Sci, 2020;12(4):121–9. https://doi.org/10.1287/serv.2020.0262 DOI: https://doi.org/10.1287/serv.2020.0262
B Tk, Annavarapu CSR, Bablani A. Machine learning algorithms for social media analysis: A survey. Computer Science Review. Elsevier Ireland Ltd; 2021; 40. https://doi.org/10.1016/j.cosrev.2021.100395 DOI: https://doi.org/10.1016/j.cosrev.2021.100395
Simester D, Timoshenko A, Zoumpoulis SI. Targeting prospective customers: Robustness of machine-learning methods to typical data challenges. Manage Sci. 2020;66(6):2495–522. https://doi.org/10.1287/mnsc.2019.3308 DOI: https://doi.org/10.1287/mnsc.2019.3308
del Pilar Quiñones-Rozo L, Canaval-Erazo GE. Quality of work life for health professions in Colombia’s adult critical care: An integrative analysis. BMC Health Serv Res, 2024;24(1). https://doi.org/10.1186/s12913-024-10780-z DOI: https://doi.org/10.1186/s12913-024-10780-z
Spiga O, Cicaloni V, Fiorini C, Trezza A, Visibelli A, Millucci L, et al. Machine learning application for development of a data-driven predictive model able to investigate quality of life scores in a rare disease. Orphanet J Rare Dis, 2020;15(1). https://doi.org/10.1186/s13023-020-1305-0 DOI: https://doi.org/10.1186/s13023-020-1305-0
Zhao N, Charland K, Carabali M, Nsoesie EO, Maheu-Giroux M, Rees E, et al. Machine learning and dengue forecasting: Comparing random forests and artificial neural networks for predicting dengue burden at national and sub-national scales in Colombia. PLoS Negl Trop Dis, 2020;14(9):1–16. https://doi.org/10.1371/journal.pntd.0008056 DOI: https://doi.org/10.1371/journal.pntd.0008056
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).