The sense of presence in virtual environments: an analysis based on EEG, ECG, and GSR signals
Main Article Content
Introduction: the sense of presence refers to the subjective experience of being immersed in a virtual or simulated environment. These sensations can be objectively assessed using electrophysiological signals such as electroencephalography (EEG), electrocardiography (ECG), and galvanic skin response (GSR). However, psychological characteristics also significantly influence the degree of presence experienced in virtual environments.
Objectives: this study proposes a methodology for quantifying the sense of presence during immersion in virtual environments by combining multiple electrophysiological features validated by current scientific literature.
Methodology: a total of 14 virtual experiences related to tourist locations in the Magdalena region of Colombia were evaluated. These experiences were segmented into 20-second time windows, during which EEG, ECG, and GSR signals were recorded. Each virtual scenario was evaluated six times by different users, yielding 84 biosignal recordings. From each recording, six presence-related indicators were extracted. Additionally, users were classified as either High or Low in their psychological capacity to engage with the experience, based on a qualitative assessment involving five presence indicators.
Results: users with a high engagement capacity experienced a sense of presence in 15% more of the virtual environments compared to users with low engagement capacity.
Conclusions: the findings support that a user’s sense of presence in a virtual environment is not solely determined by the level of virtual reality immersion but is also influenced by psychological profile and prior experience with immersive technologies.
- electrophysiology
- virtual immersion
- signal processing
- virtual reality
- sense of presence
W. M. Felton and R. E. Jackson, “Presence: A review”, Int. J. Human--Comput. Interaction, vol. 38, n.º 1, 2022. https://doi.org/10.1080/10447318.2021.1921368 DOI: https://doi.org/10.1080/10447318.2021.1921368
M. Slater y. S. Wilbur, “A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments”, Presence (Camb), vol. 6, n.º 6, 1997. doi: https://doi.org/10.1162/pres.1997.6.6.603 DOI: https://doi.org/10.1162/pres.1997.6.6.603
M. Kuri S. A. Karre y. Y. R. Reddy, “Understanding software quality metrics for virtual reality products - A mapping study”, en En 14th Innov. Softw. Eng. Conf. (Formerly Known as India Softw. Eng. Conf.). https://doi.org/10.1145/3452383.3452391 DOI: https://doi.org/10.1145/3452383.3452391
M. Athif et al, “Using biosignals for objective measurement of presence in virtual reality environments”, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc, 2020. doi: 10.1109/EMBC44109.2020.9176022 DOI: https://doi.org/10.1109/EMBC44109.2020.9176022
M. Á. Gandarillas Solinís y. M. Montañés Serrano, “Perfiles psicosociales de usuarios de entornos virtuales: Motivaciones, conductas y consecuencias”, Univ. Psychol, vol. 18, n.º 3, pp. 1–14, 2019. https://doi.org/10.11144/Javeriana.upsy18-3.ppue DOI: https://doi.org/10.11144/Javeriana.upsy18-3.ppue
A. Katifori C. Lougiakis y. M. Roussou, “Exploring the effect of personality traits in VR interaction: The emergent role of perspective-taking in task performance”, Front. Virtual Real, vol. 3, 2016. https://doi.org/10.3389/frvir.2022.860916 DOI: https://doi.org/10.3389/frvir.2022.860916
C. D. Murray J. Fox y. S. Pettifer, “Absorption, dissociation, locus of control and presence in virtual reality”, Comput. Hum. Behav, vol. 23, n.º 3, pp. 1347–1354, 2007. https://doi.org/10.1016/j.chb.2004.12.010. DOI: https://doi.org/10.1016/j.chb.2004.12.010
W. Wei R. Qi y. L. Zhang, “Effects of virtual reality on theme park visitors’ experience and behaviors: A presence perspective”, Tour. Manag, vol. 71, pp. 282–293, 2019. https://doi.org/10.1016/j.tourman.2018.10.024 DOI: https://doi.org/10.1016/j.tourman.2018.10.024
F. Aardema K. O’Connor S. Côté y. A. Taillon, “Virtual reality induces dissociation and lowers sense of presence in objective reality”, Cyberpsychol. Behav. Soc. Netw, vol. 13, n.º 4, pp. 429–435, 2010. https://doi.org/10.1089/cyber.2009.0164 DOI: https://doi.org/10.1089/cyber.2009.0164
H. G. Hoffman T. Richards B. Coda A. Richards y. S. R. Sharar, “He illusion of presence in immersive virtual reality during an fMRI brain scan”, Cyberpsychol. Behav, vol. 6, n.º 2, pp. 127–131, 2004. https://doi.org/10.1089/109493103321640310 DOI: https://doi.org/10.1089/109493103321640310
W. B. Kim y. H. O. J. Choo, “How virtual reality shopping experience enhances consumer creativity: The mediating role of perceptual curiosity”, SSRN Electron, 2023. https://doi.org/10.1016/j.jbusres.2022.113378 DOI: https://doi.org/10.2139/ssrn.4012813
M. Aristeidou E. Scanlon y. M. Sharples, “Profiles of engagement in online communities of citizen science participation”, Comput. Hum. Behav., vol. 74, pp. 246–25, 2017. https://doi.org/10.1016/j.chb.2017.04.044 DOI: https://doi.org/10.1016/j.chb.2017.04.044
H. S. Wallach M. P. Safir y. R. Samana, “Personality variables and presence”, Virtual Real, vol. 14, n.º 1, pp. 3–13, 2010. DOI: https://doi.org/10.1007/s10055-009-0124-3
Laarni Jari et al, “Personality-related differences in subjective presence”, en Proc. Seventh Annu. Int. Workshop Presence. Valencia: UPV, Valencia, 2004.
Caspi Avshalom Brent W. Roberts and Rebecca L. Shiner, “Personality development: Stability and change”, Annu. Rev. Psychol, pp. 453–484, 2005. https://doi.org/10.1146/annurev.psych.55.090902.141913 DOI: https://doi.org/10.1146/annurev.psych.55.090902.141913
Kober Silvia Erika and Christa Neuper, “Personality and presence in virtual reality: Does their relationship depend on the used presence measure”, Int. J. Human-Comput. Interaction, vol. 29, n.º 1, pp. 13–25, 2013. https://doi.org/10.1080/10447318.2012.668131 DOI: https://doi.org/10.1080/10447318.2012.668131
Huang Han-Chung et al, “Influence of temperament and character on online gamer loyalty: Perspectives from personality and flow theories”, Comput. Human Behav., vol. 70, pp. 398–406, 2017. https://doi.org/10.1016/j.chb.2017.01.009 DOI: https://doi.org/10.1016/j.chb.2017.01.009
A. Sepúlveda F. Castillo C. Palma y. M. Rodriguez-Fernandez, “Emotion recognition from ECG signals using wavelet scattering and machine learning”, Appl. Sci. (Basel), vol. 11, n.º 11, 2021. https://doi.org/10.3390/app11114945 DOI: https://doi.org/10.3390/app11114945
R. Castaldo P. Melillo U. Bracale M. Caserta M. Triassi y. L. Pecchia, “Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis”, Biomed. Signal Process. Control, vol. 18, pp. 370–377, 2015. https://doi.org/10.1016/j.bspc.2015.02.012 DOI: https://doi.org/10.1016/j.bspc.2015.02.012
R. F. Navea P. J. Buenvenida y. C. D. Cruz, “Stress detection using galvanic skin response: An android application”, J. Phys. Conf. Ser., vol. 1372, n.º 1, 2019. doi: 10.1088/1742-6596/1372/1/012001 DOI: https://doi.org/10.1088/1742-6596/1372/1/012001
C.-A. Wang T. Baird J. Huang J. D. Coutinho D. C. Brien y. D. P. Munoz, “Arousal effects on pupil size, heart rate, and skin conductance in an emotional face task”, Front. Neurol, vol. 9, p. 1029, 2018. https://doi.org/10.3389/fneur.2018.01029 DOI: https://doi.org/10.3389/fneur.2018.01029
S. Grassini K. Laumann S. Thorp y. V. de M. Topranin, “Using electrophysiological measures to evaluate the sense of presence in immersive virtual environments: An event-related potential study”, Brain Behav, vol. 11, n.º 8, p. 2269, 2021. https://doi.org/10.1002/brb3.2269 DOI: https://doi.org/10.1002/brb3.2269
E. Baka K. E. Stavroulia N. Magnenat-Thalmann y. A. Lanitis, “An EEG-based evaluation for comparing the sense of presence between virtual and physical environments”, Proc. Comput. Graph. Int., 2018. https://doi.org/10.1145/3208159.3208179 DOI: https://doi.org/10.1145/3208159.3208179
P. G. Malghan y. M. K. Hota, “A review on ECG filtering techniques for rhythm analysis”, Res. Biomed. Eng, vol. 36, n.º 2, pp. 171–186, 2020. DOI: https://doi.org/10.1007/s42600-020-00057-9
M. Z. Zadeh S. Niketeghad and R. Amirfattahi, “A pll based adaptive power line interference filtering from ecg signals”, en 16th CSI Int. Symp. Artif. Intell. Signal Process. (AISP 2012). pp. 490–496. DOI: 10.1109/AISP.2012.6313797. DOI: https://doi.org/10.1109/AISP.2012.6313797
Mirza K. Bhole and P. Singh, “Fetal ecg extraction and qrs detection using independent component analysis”, en 2020 16th IEEE Int. Colloq. Signal Process. Its Appl. (CSPA). pp. 157–161. DOI: 10.1109/CSPA48992.2020.9068696. DOI: https://doi.org/10.1109/CSPA48992.2020.9068696
P. Kligfield et al, “Recommendations for the standardization and interpretation of the electrocardiogram: Part I: The electrocardiogram and its technology: A scientific statement from the american heart association electrocardiography and arrhythmias committee, council on clinical cardiology; the american college of cardiology foundation; and the heart rhythm society: Endorsed by the international society for computer”, Circulation, vol. 115, n.º 10, pp. 1306–1324, 2007. https://doi.org/10.1161/CIRCULATIONAHA.106.180200 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.180201
T. Baumgartner D. Speck D. Wettstein O. Masnari G. Beeli y. L. Jäncke, “Feeling present in arousing virtual reality worlds: Prefrontal brain regions differentially orchestrate presence experience in adults and children”, Front. Hum. Neurosci, vol. 2, p. 8, 2008. https://doi.org/10.3389/neuro.09.008.2008 DOI: https://doi.org/10.3389/neuro.09.008.2008
G. Beeli G. Casutt T. Baumgartner y. L. Jäncke, “Modulating presence and impulsiveness by external stimulation of the brain”, Behav. Brain Funct, vol. 4, n.º 1, 2008. DOI: https://doi.org/10.1186/1744-9081-4-33
A. Perkis et al, “QUALINET white paper on definitions of immersive media experience (IMEx)”, ArXiv [cs.MM], 2020.
D. Archer y A. Steed, “Optimizing performance through stress and induction levels in virtual reality using autonomic responses”, en 2022 IEEE Int. Symp. Mixed Augmented Reality Adjunct (ISMAR-Adjunct),2022. doi: 10.1109/ISMAR-Adjunct57072.2022.00129 DOI: https://doi.org/10.1109/ISMAR-Adjunct57072.2022.00129
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).