Main Article Content

Authors

Introduction: Silvopastoral systems (SPS) are a key strategy for restoring degraded soils and enhancing the sustainability of tropical livestock systems. In Colombia’s Magdalena Medio region, the use of native forest species offers an opportunity to integrate production and conservation. In this context, an SPS incorporating Cariniana pyriformis (Abarco) as the main forest component was evaluated.
Objectives: To assess the performance of a silvopastoral system with Cariniana pyriformis on degraded soils in the Magdalena Medio region of Colombia, focusing on forest growth, forage production, and soil quality recovery.
Materials and Methods: The system included grasses (Brachiaria humidicola and Brachiaria decumbens) and forage shrubs (Morus alba L., Trichanthera gigantea, Gliricidia sepium), arranged in a functional design and managed under agroecological principles. Growth of Abarco trees was monitored over 40 months, along with forage production and several soil quality indicators (pH, organic matter, available phosphorus, soil macrofauna, and microbial activity).
Results: Abarco trees reached an average height of 6.36 m and a diameter at breast height (DBH) of 12.19 cm, with a mean diameter growth rate of 0.31 cm/month, allowing for timber harvesting projections at 12 years. The species showed good stem architecture and produced leaf litter rich in N, P, K, Ca, and Mg, contributing to nutrient recycling. Grasses yielded up to 14,960 kg fresh matter/hayear, and forage shrubs exceeded 13 kg fresh matter/shrubyear, with high palatability for livestock. Notable improvements in soil fertility were recorded, including increases in pH, organic matter, and available phosphorus, as well as enhanced soil macrofauna density and microbial activity.
Conclusions: The evaluated silvopastoral system provided both productive and ecological benefits, including biomass generation, functional soil restoration, and shade provision, which reduced animal heat stress and promoted biodiversity. This approach, known as the “Praderas de Felicidad” model, demonstrates the potential of SPS with native species as a viable strategy for transforming tropical livestock systems into more resilient, sustainable, and multifunctional systems.

Federación Colombiana de Ganaderos - FEDEGAN. Acción de mitigación nacionalmente apropiada NAMA. De la ganadería bovina sostenible en Colombia. 2021;150. https://cipav.org.co/wp-content/uploads/2021/10/Reporte-NAMA-Bovina-de-Colombia.pdf

Sánchez-Romero R, Balvanera P, Castillo A, Mora F, García-Barrios LE, González-Esquivel CE. Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. For Ecol Manage. 2021;479:118506. https://doi.org/10.1016/j.foreco.2020.118506 DOI: https://doi.org/10.1016/j.foreco.2020.118506

Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manage. 2011;261(10):1654-63. http://dx.doi.org/10.1016/j.foreco.2010.09.027 DOI: https://doi.org/10.1016/j.foreco.2010.09.027

Varela E, Olaizola AM, Blasco I, Capdevila C, Lecegui A, Casasús I, et al. Unravelling opportunities, synergies, and barriers for enhancing silvopastoralism in the Mediterranean. Land use policy. 2022;118:106140. https://doi.org/10.1016/j.landusepol.2022.106140 DOI: https://doi.org/10.1016/j.landusepol.2022.106140

Schinato F, Munka MC, Olmos VM, Bussoni AT. Microclimate, forage production and carbon storage in a eucalypt-based silvopastoral system. Agric Ecosyst Environ. 2023;344:108290. https://doi.org/10.1016/j.agee.2022.108290 DOI: https://doi.org/10.1016/j.agee.2022.108290

Nahed-Toral J, Valdivieso-Pérez A, Aguilar-Jiménez R, Cámara-Cordova J, Grande-Cano D. Silvopastoral systems with traditional management in southeastern Mexico: A prototype of livestock agroforestry for cleaner production. J Clean Prod. 2013;57:266-79. http://dx.doi.org/10.1016/j.jclepro.2013.06.020 DOI: https://doi.org/10.1016/j.jclepro.2013.06.020

Silva-Olaya AM, Olaya-Montes A, Polanía-Hincapié KL, Cherubin MR, Duran-Bautista EH, Ortiz-Morea FA. Silvopastoral systems enhance soil health in the amazon region. Sustainability. 2022;14:1-19. https://doi.org/10.3390/su14010320 DOI: https://doi.org/10.3390/su14010320

Rivera J, Chará J, Barahona R. Análisis del ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Trop Subtrop Agroecosystems. 2016;19:237-51. https://doi.org/10.56369/tsaes.2178 DOI: https://doi.org/10.56369/tsaes.2178

Apan-Salcedo GW, Jiménez-Ferrer G, Nahed-Toral J, Pérez-Luna E, Piñeiro-Vázquez T. Massification of Silvopastoral Systems: a Long and Winding Road. Trop Subtrop Agroecosystems. 2021;24(103):1-17. https://doi.org/10.56369/tsaes.3524 DOI: https://doi.org/10.56369/tsaes.3524

Roncallo B, Murillo J, Bonilla R, Barros J. Evolution of soil properties in agroforestry arrangement based on red Ceiba (Pachira quinata (Jacq.) W.S. Alverson). Rev Corpoica - Cienc y Tecnol Agropecu. 2012;13(2):167-78. https://doi.org/10.21930/rcta.vol13_num2_art:252 DOI: https://doi.org/10.21930/rcta.vol13_num2_art:252

Barbosa GF, Marques Filho WC, Ensinas SC, Flávio DC, Lima IM de O, Silva MFG, et al. Silvicultural performance of eucaliptus and animal behavior in a silvopastoral system. Biosci J. 2019;35(4):1179-87. https://doi.org/10.14393/BJ-v35n4a2019-42110 DOI: https://doi.org/10.14393/BJ-v35n4a2019-42110

Teutscherová N, Vázquez E, Sotelo M, Villegas D, Velásquez N, Baquero D, et al. Intensive short-duration rotational grazing is associated with improved soil quality within one year after establishment in Colombia. Appl Soil Ecol. 2021;159:103835. https://doi.org/10.1016/j.apsoil.2020.103835 DOI: https://doi.org/10.1016/j.apsoil.2020.103835

Medina CA, Escobar I, Corrales Alvarez JD, Navas Panadero A, Tenjo AI, Borrás Sandoval LM. Efecto de practicas agroecologicos sobre las caracteristicas del suelo de lecheria especializada del Tropico alto colombiano. Livest Res Rural Dev. 2020;32(5):68-84. https://surl.li/ujtrpa

Alexander M. Introducción a la microbiología del suelo. In: AGT. 1994. p. 491.

de Aguiar Júnior AL, de Oliveira Neto SN, Müller MD, Soares CPB, Pena RF, Calsavara LHF. Eucalypt modeling as a function of spatial arrangement in agrosilvopastoral systems. Agrofor Syst. 2023;97(4):495-508. https://doi.org/10.1007/s10457-023-00805-7 DOI: https://doi.org/10.1007/s10457-023-00805-7

Gomez-Castro H, Pinto-Ruiz R, Guevara-Hernandez F, Gonzalez-Reyna A. Estimations of aerial biomass and secuestred carbon in Gliricidia sepium (lam.) and Leucaena leucocephala (jacq.) and its application in silvopastoral systems. Infor Tec Econ Agrar. 2010;106(4):256-70. https://www.cabidigitallibrary.org/doi/full/10.5555/20113077366

Giweta M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J Ecol Environ. 2020;44(1):1-9. https://doi.org/10.1186/s41610-020-0151-2 DOI: https://doi.org/10.1186/s41610-020-0151-2

López-Vigoa O, Sánchez-Santana T, Iglesias-Gómez M, Lamela-López L, Soca-Pérez M, Arece-García J, et al. Silvopastoral systems as alternative for sustainable animal production in the current context of tropical livestock production. Pastos y Forrajes. 2017;40(2):83-95. https://www.cabidigitallibrary.org/doi/full/10.5555/20173323275

Buitrago-Guillen ME, Ospina-Daza LA, Narváez-Solarte W. Silvopastoral systems: An alternative in the mitigation and adaptation of bovine production to climate change. Bol Cient del Cent Museos. 2018;22(1):31-42. https://doi.org/10.17151/bccm.2018.22.1.2 DOI: https://doi.org/10.17151/bccm.2018.22.1.2

Almeida LL de S, Frazão LA, Lessa TAM, Fernandes LA, Veloso ÁL de C, Lana AMQ, et al. Soil carbon and nitrogen stocks and the quality of soil organic matter under silvopastoral systems in the Brazilian Cerrado. Soil Tillage Res. 2021;205:104785. https://doi.org/10.1016/j.still.2020.104785 DOI: https://doi.org/10.1016/j.still.2020.104785

Polanía-Hincapié KL, Olaya-Montes A, Cherubin MR, Herrera-Valencia W, Ortiz-Morea FA, Silva-Olaya AM. Soil physical quality responses to silvopastoral implementation in Colombian Amazon. Geoderma. 2021;386:114900. https://doi.org/10.1016/j.geoderma.2020.114900 DOI: https://doi.org/10.1016/j.geoderma.2020.114900

Vargas-sánchez JE, Estrada-álvarez J. Evaluación de la producción y la calidad nutricional de cinco especies forrajeras (arbustivas y arbóreas) para corte en condiciones de bosque seco tropical. Rev Vet Y Zootec. 2011;5(2):55-67. https://revistasojs.ucaldas.edu.co/index.php/vetzootec/article/view/4457

Sánchez-Romero R, Mora-Ardila F, Val-Arreola D, González-Esquivel CE. Estimation of the forage potential of trees in silvopastoral systems of a dry tropical forest in Jalisco, Mexico. Agrofor Syst. 2022;96(1):129-45. https://doi.org/10.1007/s10457-021-00704-9 DOI: https://doi.org/10.1007/s10457-021-00704-9

Gonzalez Quintero R, García EH, Florez F, Burkart S, Arango J. A case study on enhancing dairy cattle sustainability: The impact of silvopastoral systems and improved pastures on milk carbon footprint and farm economics in Cauca department, Colombia. Agrofor Syst. 2024;98(8):3001-18. https://doi.org/10.1007/s10457-024-01070-y DOI: https://doi.org/10.1007/s10457-024-01070-y

Sandoval DF, Florez JF, Enciso Valencia KJ, Sotelo Cabrera ME, Stefan B. Economic-environmental assessment of silvo-pastoral systems in Colombia: An ecosystem service perspective. Heliyon. 2023;9(8):e19082. https://doi.org/10.1016/j.heliyon.2023.e19082 DOI: https://doi.org/10.1016/j.heliyon.2023.e19082

Soons MB, Hefting MM, Dorland E, Lamers LPM, Versteeg C, Bobbink R. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol Conserv. 2017;212:390-7. http://dx.doi.org/10.1016/j.biocon.2016.12.006 DOI: https://doi.org/10.1016/j.biocon.2016.12.006

Ågren GI, Wetterstedt JÅM, Billberger MFK. Nutrient limitation on terrestrial plant growth - modeling the interaction between nitrogen and phosphorus. New Phytol. 2012;194(4):953-60. https://doi.org/10.1111/j.1469-8137.2012.04116.x DOI: https://doi.org/10.1111/j.1469-8137.2012.04116.x

Arrobas M, Conceição N, Pereira E, Martins S, Raimundo S, Brito C, et al. Dolomitic limestone was more effective than calcitic limestone in increasing soil pH in an untilled olive orchard. Soil Use Manag. 2023;39(4):1437-52. https://doi.org/10.1111/sum.12948 DOI: https://doi.org/10.1111/sum.12948

Gálvez-Cerón A, Reina-López A, Meneses-Estrada E. Cuantificación de macrofauna edáfica en un sistema silvopastoril y uno convencional en bosque seco. Rev Invest Pecu. 2016;4(2):13-25. https://revistas.udenar.edu.co/index.php/revip/article/view/2564

Sathya A, Vijayabharathi RB, Gopalakrishnan S. Soil Microbes: The Invisible Managers of Soil Fertility. Microbial Inoculants in Sustainable Agricultural Productivity. 2016;2:1-16. https://doi.org/10.1007/978-81-322-2644-4_1 DOI: https://doi.org/10.1007/978-81-322-2644-4_1

1.
Palencia Blanco CG, Palencia Calderón GE, Palencia Calderón LE. Comprehensive evaluation of a silvopastoral system with Abarco (Cariniana pyriformis). inycomp [Internet]. 2025 Jun. 11 [cited 2025 Dec. 7];27(2):e-20814501. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14501

Downloads

Download data is not yet available.