Superficial stabilization of volcanic-ash derived soils with cement on road infrastructure slopes
Main Article Content
Introduction: this project proposes an alternative solution to mitigate unfavorable behaviors typical of volcanic ash-derived soils (VADS), especially in slope configurations. These soils often present stability challenges, limiting their use in engineering projects. The aim is to provide a solution that allows for the stabilization of such soils in areas where they are needed for infrastructure projects.
Objetive: the goal of this study was to evaluate the effectiveness of VADS-cement mixtures as a solution to improve the strength and stability of these soils, particularly under extreme weathering conditions, such as those occurring in slopes.
Methodology: laboratory tests were conducted using VADS samples mixed with cement in various proportions. These samples were subjected to cycles simulating the action of weathering to assess their behavior under extreme conditions. The tests included unconfined compressive strength and mass loss analysis due to immersion and drying cycles, simulating the effects of wear over time
Results: the results showed a significant increase in the strength of VADS treated with cement, with an increase of up to 400% in unconfined compressive strength when using 12-15% cement. Additionally, the samples showed good performance under weathering conditions, especially those with 15% cement, which exhibited an acceptable mass loss after the immersion and drying cycles.
Conclusions: treating VADS with cement in proportions ranging from 13% to 15% significantly improves the physical properties of the soils, enhancing their strength and durability. This improvement makes it feasible to use these soils in the construction of infrastructure, particularly in slope stabilization, offering an effective alternative for projects in areas with volcanic ash-derived soils.
- Portland cement
- Volcanic ash
- Stabilization
- Strength
- Slope
Huaman Carrion J. Caracterización morfogenética y clasificación por su capacidad de uso mayor de suelos con pastos. Chiara, Ayacucho [Tesis de pregrado]. Ayacucho: Universidad Nacional de San Cristóbal de Huamanga; 2024. Disponible en: https://repositorio.unsch.edu.pe/items/24398842-531e-4b10-9246-ac540b37ee9a
Ramírez Castillo JA. Estudio bibliográfico sobre las propiedades físico – químicas de Suelos Andisoles en el departamento de Nariño [Tesis de pregrado]. Manizales: Universidad de Caldas; 2024. Disponible en: https://repositorio.ucaldas.edu.co/handle/ucaldas/20002
Valencia Ocampo M. Evaluación de la escorrentía y calidad de aguas en áreas de ribera de fuentes hídricas con diferentes usos en Andisoles de la zona media del río Chinchiná [Tesis de pregrado]. Manizales: Universidad de Caldas; 2023. Disponible en: https://repositorio.ucaldas.edu.co/handle/ucaldas/19500
Melentijević S, López-Andrés S, Estaire J. Chemical, mineralogical and geotechnical properties of volcanic ash of Tajogaite (La Palma, Canary Islands, Spain). Transp Geotech [Internet]. 2024 [Consultado 1 Oct 2024]; 48: 101326. Disponible en: https://doi.org/10.1016/j.trgeo.2024.101326 DOI: https://doi.org/10.1016/j.trgeo.2024.101326
Sigurdsson H. The Encyclopedia of Volcanoes. 2nd. ed. [Internet]. Academic Press; 2015 [revisado 2015; citado 2024 Jul 10]. Disponible en: https://doi.org/10.1016/C2015-0-00175-7 DOI: https://doi.org/10.1016/C2015-0-00175-7
Latorre Balaguera AM. Comportamiento Volumétrico de un Suelo no Saturado Derivado de Cenizas Volcánicas del Departamento del Cauca, Colombia [Tesis de maestría]. Bogotá: Universidad Nacional de Colombia; 2020. Disponible en: https://repositorio.unal.edu.co/handle/unal/77532
Berdesí Jaimes AF. Dinámica geoquímica en andisoles alto andinos, caso de estudio, la microcuenca Las Palmas [Tesis de maestría]. Medellín: Universidad Nacional de Colombia; 2023. Disponible en: https://repositorio.unal.edu.co/handle/unal/85460
Herrera Ardila MC. Suelos Derivados de Cenizas Volcánicas en Colombia: Estudio fundamental e implicaciones en Ingeniería [Tesis doctoral]. Bogotá: Universidad de Los Andes; 2006. Disponible en: http://hdl.handle.net/1992/7812
Guerrero Castro CC, Cruz Velasco LG. Clasificación de suelos finos de Popayán: Basada en la sensibilidad química de los fluidos de poro - suelos derivados de cenizas volcánicas. 1st. ed. Popayán: Universidad del Cauca; 2018. https://doi.org/10.2307/j.ctvpv5123 DOI: https://doi.org/10.2307/j.ctvpv5123
Paul A, Chakrabortty P. Microstructural Characterization of Alluvial Sand Containing Cohesive Soil Lumps During Loading and Inundating. Int J Civ Eng [Internet]. 2024 [Consultado 1 Oct 2024]; 22: p. 2041–2058. Disponible en: https://doi.org/10.1007/s40999-024-00974-1 DOI: https://doi.org/10.1007/s40999-024-00974-1
Ruge Cárdenas JC, Molina-Gómez F, Pinto da Cunha R. Comparación experimental entre la sensitividad y la cementación en el comportamiento no drenado de suelos arcillosos. Ingeniare. Rev. chil. Ing [Internet]. 2021 [Consultado 1 Oct 2024]; 29(1): p. 109-119. Disponible en: http://dx.doi.org/10.4067/S0718-33052021000100109 DOI: https://doi.org/10.4067/S0718-33052021000100109
Reddy AS, Iyer KKR, Dave TN. Alkali Activated Soil Stabilization as a Sustainable Pathway for the Development of Resilient Geotechnical Infrastructure. Indian Geotech J [Internet]. 2024 [Consultado 1 Oct 2024]; 54: p. 945-970. Disponible en: https://doi.org/10.1007/s40098-024-00893-x DOI: https://doi.org/10.1007/s40098-024-00893-x
Gómez CM. Suelo cemento: Alternativas de pavimentación para vías de bajo tráfico. Noticreto Virtual [Internet]. 2017 [Consultado 10 Jul 2024]; (143). Disponible en: https://www.asocretovirtual.com/noticreto-virtual/noticreto-143/noticreto-143.html
Anburuvel A. L The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review. Geotech Geol Eng [Internet]. 2024 [Consultado 1 Oct 2024]; 42: pp. 1-42. Disponible en: https://doi.org/10.1007/s10706-023-02554-x DOI: https://doi.org/10.1007/s10706-023-02554-x
Shinde B, Sangale A, Pranita M, Sanagle J, Roham C. Utilization of waste materials for soil stabilization: A comprehensive review. Prog Eng Sci [Internet]. 2024 [Consultado 15 Nov 2024]; 1 (2-3): 100009. Disponible en: https://doi.org/10.1016/j.pes.2024.100009 DOI: https://doi.org/10.1016/j.pes.2024.100009
Roshan MJ, Rashid ASBA Geotechnical characteristics of cement stabilized soils from various aspects: A comprehensive review. Arab J Geosci [Internet]. 2024 [Consultado 1 Oct 2024]; 17 (1). Disponible en: https://doi.org/10.1007/s12517-023-11796-1 DOI: https://doi.org/10.1007/s12517-023-11796-1
Pantoja Quiscualtud O, Cruz Velasco LG, Muñoz-Mendez V. Estudio básico de suelos derivados de ceniza volcánica modificados con cemento (bajos contenidos de cemento. Rev. UIS Ing [Internet]. 2024 [Consultado 15 Nov 2024]; 23(4): p. 1-16. Disponible en: https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/15377 DOI: https://doi.org/10.18273/revuin.v23n4-2024001
Niu W, Guo B, Li K, Ren Z, Zheng Y, Liu J, Lin H, Men X. Cementitous material based stabilization of soft soils by stabilizer: Feasibility and durabiliy assessment. Constr Build Mater [Internet]. 2024 [Consultado 15 Nov 2024]; 425: 136046. Disponible en: https://doi.org/10.1016/j.conbuildmat.2024.136046 DOI: https://doi.org/10.1016/j.conbuildmat.2024.136046
Niroumand H, Balachowski L, Parviz R. Nano soil improvement technique using cement. Sci Rep [Internet]. 2023 [Consultado 15 Nov 2024]; 13: 10724. Disponible en: https://doi.org/10.1038/s41598-023-37918-z DOI: https://doi.org/10.1038/s41598-023-37918-z
Rohmatun, Suparma LB, Rifa’I A, Rochmadi. Determination of optimum cement content for silty sand soil stabilization as the base course. Int J Geomate [Internet]. 2024 [Consultado 15 Nov 2024]; 26(115): p. 124-33. Disponible en: https://geomatejournal.com/geomate/article/view/4215 DOI: https://doi.org/10.21660/2024.115.4215
Portland Cement Association. Engineering Bulletin: Soil-cement construcion handbook. United States: PCA, 1995.
Guerrero C, Cruz L. Estudio experimental de clasificación de suelos derivados de cenizas volcánicas en el suroccidente colombiano con el método SUCS, el AASHTO y un nuevo método de clasificación de suelos. Ing Desarrollo [Internet]. 2018 [Consultado 10 Jul 2024]; 36(2): p. 378-397. Disponible en: https://www.redalyc.org/journal/852/85259689007/movil/ DOI: https://doi.org/10.14482/inde.36.2.10377
Colmenares J, Jaramillo M, Rave D, Rubio G. Estudio sobre los parámetros de sensibilidad y compresibilidad de suelos derivados de cenizas volcánicas en el área de expansión de Pereira [Internet]. 2020 [Consultado 3 Oct 2024]. Disponible en: https://repository.unilibre.edu.co/bitstream/handle/10901/20252/TrabajoDeGrado-GeraldineRubio.pdf?sequence=1&isAllowed=y
_Baena Salazar D, Fuentes Hernández J, Pino Reyes L, Marín Durán S, Horta Pérez S, Fonseca González W. Contexto Regional Andina [Internet]. Observatorio Regional ODS; 2020 [Consultado 26 Nov 2024]. Disponible en: http://hdl.handle.net/1992/47782
Instituto Geográfico Agustín Codazzi. Subdirección de Agrología. Estudio General De Suelos y Zonificación De Tierras. En: Estudio General De Suelos y Zonificación De Tierras. Bogotá: Imprenta Nacional de Colombia; 2009. p. 102. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=78211
Gómez J, Montes NE, Marín E., compiladores. 2023. Mapa Geológico de Colombia 2023. Escala 1:1 500 000. Bogotá: Servicio Geológico Colombiano, 2023. Disponible en: https://www2.sgc.gov.co/MGC/Paginas/mgc_1_5M2023.aspx
Instituto Nacional de Vías. Normas de ensayo de materiales para carreteras [Internet]. 2013 [Consultado 10 Jul 2024]. Disponible en: https://www.invias.gov.co/index.php/documentos-tecnicos/139-documento-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-y-normas-de-ensayo-para-materiales-de-carreteras
ASTM International. C150/C150M-22: Standard Specification for Portland Cement. [Internet]. West Conshohocken, PA: ASTM International; 2024. Disponible en: https://www.astm.org/c0150_c0150m-22.html
Portland Cement Association. Soil Cement Inspector´s Manual. Skokie: Portland Cement Association; 2001. 64 p. https://www.cement.org/wp-content/uploads/2024/07/pa050-03_reduced-size.pdf
Nimmo JR. Porosity and Pore Size Distribution. Encyclopedia of Soils in the Environment: Elsevier. 2024; 3: p.295-303. https://doi.org/10.1016/B0-12-348530-4/00404-5 DOI: https://doi.org/10.1016/B0-12-348530-4/00404-5
Richard G, Cousin I, Sillon JF, Bruand A, Guerif J. Effect of compaction on the porosity of a silty soil: infuence on unsaturated hydraulic properties. Eur J Soil Sci [Internet]. 2001 [Consultado 15 Nov 2024]; 52 (1): p. 49-58. Disponible en: https://doi.org/10.1046/j.1365-2389.2001.00357.x DOI: https://doi.org/10.1046/j.1365-2389.2001.00357.x
Fondjo AA, Theron E, Ray RP. Unsaturated Shear Strength Assessment Based on Soil Index Properties. En: Theory and Applications of Engineering Research Vol. 2. 2024. p. 67-94. Disponible en: https://doi.org/10.9734/bpi/taer/v2/8340A DOI: https://doi.org/10.9734/bpi/taer/v2/8340A
Yusoff S, Bakar I, Wijeyesekera D, Zainorabidin A, Azmi M, Ramli H. The Effects of Dıfferent Compactıon Energy on Geotechnıcal Propertıes of Kaolın and Laterıte. En: International Conference on Applied Physics and Engineering (ICAPE2016); 2017; Penang, Malasia. Disponible en: https://aip.scitation.org/doi/pdf/10.1063/1.4998380 DOI: https://doi.org/10.1063/1.4998380
Viveros Rosero L. Influencia del proceso de compactación en la resistencia al corte de un suelo derivado de ceniza volcánica [Tesis de maestría]. Bogotá: Universidad Nacional de Colombia; 2014. https://repositorio.unal.edu.co/handle/unal/60252
Fathipour H, Tajani SB, Payan M, Chenari RJ, Senetakis K. Impact of Transient Infiltration on the Ultimate Bearing Capacity of Obliquely and Eccentrically Loaded Strip Footings on Partially Saturated Soils. Int J Geomech [Internet]. 2022 [Consultado 1 Oct 2024]; 23 (2): 04022290. Disponible en: https://doi.org/10.1061/IJGNAI.GMENG-7463 DOI: https://doi.org/10.1061/IJGNAI.GMENG-7463
Pande P, Giri J, Ali MS, Mohammad F, Raut J, Raut S, Sathish T, Giri P. Comparative analysis of saturated–unsaturated shear strength under undrained loading: Experimental validation and ANN prediction of clayey soils. AIP Advances [Internet]. 2024 [Consultado 1 Oct 2024]; 14 (7): 075118. Disponible en: https://doi.org/10.1063/5.0206783 DOI: https://doi.org/10.1063/5.0206783
Lince, L. A. y Sadeghian, S. (2023). Propiedades hidrofísicas de suelos de la zona cafetera colombiana y su relación con el material parental. Rev Invest Agraria y Ambiental [Internet]. 2023 [citado 3 oct 2024]; 14(1): p. 51 - 84. Disponible en: https://doi.org/10.22490/21456453.5891 DOI: https://doi.org/10.22490/21456453.5891
Das BM. Advanced Soil Mechanics. 5th ed. CRC Press, Taylor & Francis Group; 2019. https://doi.org/10.1201/9781351215183 DOI: https://doi.org/10.1201/9781351215183
Rojas JW, Consoli NC, Heineck KS. Durabilidad de un suelo contaminado y tratado con cemento. Rev Ing Constr. 2008; 23 (3), 8. https://www.scielo.cl/scielo.php?script=sci_
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).