Contenido principal del artículo

Autores

En este estudio se reportan los resultados de la transesterificación del aceite de palma (Elaeis guineensis x Elaeis oleífera) utilizando catalizadores ácidos heterogéneos como la zirconia sulfatada (ZS), óxido de grafeno lfonado (OGrS), Amberlyst 15 (A15) y zeolita beta (Zβ)ueron caracterizados mediante el uso de difracción de rayos X, área superficial, y acidez de Brønsted - Lewis. Se evaluaron parámetros de reacción tales como: temperatura, tiempo de reacción, el porcentaje en peso de carga de catalizador y la relación molar de aceite metanol para la producción de biodiesel. Adicionalmente, se comparó la agitación mecánica y la ultrasónicadonde la segunda fue el medio de agitación más eficiente. Los mejores porcentajes de rendimiento de reacción fueron obtenidos empleando 40ºC de temperatura, 4 horas de reacción, 3% en peso del catalizador respecto al volumen total de la mezcla, una relación molar 1:30 de aceite de palma: metanol y agitación ultrasónica. En cuanto a la estabilidad de los catalizadores, se evaluó el rendimiento de la reacción con la reutilización, en donde los sólidos ZS y OGrS disminuyeron 8 % y 35 %, mientras que con A15 y Zβ, se redujo a 25 % y 5 % respectivamente.

1.
Ramírez AE, Imbachí YC, Miranda CD. Transesterificación de aceite de palma (Elaeis guineensis x Elaeis oleífera) empleando catalizadores ácidos heterogéneos y agitación ultrasónica. inycomp [Internet]. 2 de junio de 2021 [citado 28 de marzo de 2024];23(2):e21211287. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11287

(1) Montpetit A, Tremblay AY. A Quantitative Method of Analysis for Sterol Glycosides in Biodiesel and FAME Using GC-FID. J. Am. Oil Chem. Soc. 2016;93(4):479–87. https://doi.org/10.1007/s11746-016-2798-5

(2) Simsek, S. Effects of biodiesel obtained from Canola, saefflower oils and waste oils on the engine performance and exhaust emissions. Fuel. 2020;265:1170262. https://doi.org/10.1016/j.fuel.2020.117026

(3) Santos, E. Principales características de las materias primas utilizadas en la producción de biodiesel: la influencia del contenido y la concentración de los ácidos grasos. Ingenium. 2020;13(25), 53-61.

(4) Kumar, M, Sharma MP. Selection of potential oils for biodiesel production. Renew. Sustain. Energy Rev. 2016;56:1129–38. https://doi.org/10.1016/j.rser.2015.12.032

(5) Olutoye MA, Hameed BH. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al₂O₃ modified MgZnO catalyst. Bioresour Technol. 2013;132:103–8. https://doi.org/10.1016/j.biortech.2012.12.171

(6) Fontalvo Gómez M. et al. El aceite de palma africana elae guineensis: Alternativa de recurso energético para la producción de biodiesel en Colombia y su impacto ambiental. Prospectiva. 2014;12(1):90. https://doi.org/10.15665/rp.v12i1.155

(7) Yan S, Kim M, Salley SO, Ng KYS. Oil transesterification over calcium oxides modified with lanthanum. Appl Catal A Gen. 2009;360(2):163–70. https://doi.org/10.1016/j.apcata.2009.03.015

(8) Mahmoud HR, El-Molla SA, Ibrahim MM. Biodiesel production via stearic acid esterification over mesoporous ZrO2/SiO2 catalysts synthesized by surfactant-assisted sol-gel auto-combustion route. Renew Energy. 2020;160:42–51. https://doi.org/10.1016/j.renene.2020.06.005

(9) Gryglewicz, S. et al. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour. Technol. 1999;70(3):249–53. https://doi.org/10.1016/S0960-8524(99)00042-5

(10) Cardeño, F. et al. Producción de biodiesel de aceite crudo de palma mediante catálisis heterogénea. Revista Facultad De Ingeniería Universidad De Antioquia. 2010;51(1):88-93.

(11) da Conceição LRV, Carneiro LM, Rivaldi JD, de Castro HF. Solid acid as catalyst for biodiesel production via simultaneous esterification and transesterification of macaw palm oil. Ind Crops Prod. 2016;89:416–24. https://doi.org/10.1016/j.indcrop.2016.05.044

(12) Meher LC, Dharmagadda VSS, Naik SN. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol. 2006;97(12):1392–7. https://doi.org/10.1016/j.biortech.2005.07.003

(13) Stavarache C, Pocsan AM, Vinatoru M, Mason TJ. A comparison between the sonochemical and thermal reaction of 5H, 5Cl-Dibenz [a,d]cycloheptatriene with nitrobenzene. Ultrason Sonochem. 2003;10(1):49–53. https://doi.org/10.1016/S1350-4177(02)00092-5

(14) Jookjantra K, Wongwuttanasatian T. Optimisation of biodiesel production from refined palm oil with heterogeneous CaO catalyst using pulse ultrasonic waves under a vacuum condition. Energy Convers Manag. 2017;154:1–10. https://doi.org/10.1016/j.enconman.2017.10.050

(15) Morterra C, Cerrato G, Pinna F, Signoretto M, Strukul G. On the acid-catalyzed isomerization of light paraffins over a ZrO2/SO4 system: The effect of hydration. J Catal. 1994;149(1):181–8. https://doi.org/10.1006/jcat.1994.1283

(16) Oger N, Lin YF, Labrugère C, Le Grognec E, Rataboul F, Felpin F-X. Practical and scalable synthesis of sulfonated graphene. Carbon N Y. 2016;96:342–50. https://doi.org/10.1016/j.carbon.2015.09.082

(17) Nongbe MC, Ekou T, Ekou L, Yao KB, Le Grognec E, Felpin F-X. Biodiesel production from palm oil using sulfonated graphene catalyst. Renew Energy. 2017;106:135–41. https://doi.org/10.1016/j.renene.2017.01.024

(18) Miranda C, Urresta J, Cruchade H, Tran A, Benghalem M, Astafan A, et al. Exploring the impact of zeolite porous voids in liquid phase reactions: The case of glycerol etherification by tert-butyl alcohol. J Catal. 2018;365:249–60. https://doi.org/10.1016/j.jcat.2018.07.009

(19) Miranda C, Ramírez A, Sachse A, Pouilloux Y, Urresta J, Pinard L. Sulfonated graphenes: Efficient solid acid catalyst for the glycerol valorization. Appl Catal A Gen. 2019;580:167–77. https://doi.org/10.1016/j.apcata.2019.04.010

(20) AENOR; Asociación Española de Normalización y Certificación, Productos derivados de aceites y grasas. Ésteres metílicos de ácidos grasos (FAME). Determinación de los contenidos de éster y de éster metílico de ácido linoleico, Designación UNE-EN ISO 14103:2020 [Internet]. Une.org. [citado el 24 de mayo de 2021]. 2020. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?Tipo=N&c=N0064990.

(21) Chen C, Cai L, Shangguan X, Li L, Hong Y, Wu G. Heterogeneous and efficient transesterification of Jatropha curcas L. seed oil to produce biodiesel catalysed by nano-sized SO4 2-/TiO2. R Soc Open Sci. 2018;5(11):181331. https://doi.org/10.1098/rsos.181331

(22) Dobarganes MC, Marmesat S, Morales A, Velasco J, Ruiz-Méndez MV. Relationship between changes in peroxide value and conjugated dienes during oxidation of sunflower oils with different degree of unsaturation. Grasas Aceites. 2009;60(2):155–60. https://doi.org/10.3989/gya.096908

(23) Mesa Espinal S, Arboleda J, Echavarría A. Synthesis and modification of beta zeolite for use in toluene disproportionation reaction. Dyna (Medellin). 2016;83(196):184–93. http://dx.doi.org/10.15446/dyna.v83n196.51933

(24) Acevedo Campos JS, Garza Méndez FJ, Sánchez Cervantes EM, Aguirre Espinosa J. Zirconia sulfatada como un catalizador para la síntesis de biodiesel. Química Hoy Chemistry Sciences. 2014;4(1):23–9.

(25) Negrón-Silva G, Hernández-Reyes C, Angeles-Beltrán D, Lomas-Romero L, González-Zamora E, Méndez-Vivar J. Comparative Study of Regioselective Synthesis of β-Aminoalcohols under Solventless Conditions Catalyzed by Sulfated Zirconia and SZ/MCM-41. Molecules. 2007;12(11):2515–32. https://doi.org/10.3390/12112515

(26) Shi G, Yu F, Wang Y, Pan D, Wang H, Li R. A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil. Renew Energy. 2016;92:22–9. https://doi.org/10.1016/j.renene.2016.01.094

(27) Kunin R, Meitzner EA, Oline JA, Fisher SA, Frisch N. Characterization of Amberlyst 15. Macroreticular sulfonic acid cation exchange resin. I EC prod res dev. 1962;1(2):140–4. https://doi.org/10.1021/i360002a016

(28) Kun KA, Kunin R. The pore structure of macroreticular ion exchange resins: macroreticular ion exchange resins. J Polym Sci C Polym Symp. 1967;16(3):1457–69. https://doi.org/10.1002/polc.5070160323

(29) Martínez-Franco R, Paris C, Martínez-Armero ME, Martínez C, Moliner M, Corma A. High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chem Sci. 2016;7(1):102–8. https://doi.org/10.1039/C5SC03019F

(30) Sun Y, Wang X, Ai Y, Yu Z, Huang W, Chen C, et al. Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem Eng J. 2017;310:292–9. https://doi.org/10.1016/j.cej.2016.10.122

(31) Antunes MM, Russo PA, Wiper PV, Veiga JM, Pillinger M, Mafra L, et al. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels. ChemSusChem. 2014;7(3):804–12. https://doi.org/10.1002/cssc.201301149

(32) Miranda M. CD, Ramírez S. AE, Jurado SG, Vera CR. Superficial effects and catalytic activity of ZrO2–SO42− as a function of the crystal structure. J Mol Catal A Chem. 2015;398:325–35. https://doi.org/10.1016/j.molcata.2014.12.015

(33) Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energy. 2010;87(8):2589–96. https://doi.org/10.1016/j.apenergy.2010.03.024

(34) Kozuch S, Martin JML. “turning over” definitions in catalytic cycles. ACS Catal. 2012;2(12):2787–94. https://doi.org/10.1021/cs3005264

(35) Hagenson LC, Doraiswamy LK. Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chem Eng Sci. 1998;53(1):131–48. https://doi.org/10.1016/S0009-2509(97)00193-0

(36) Ramírez-Sanabria AE, López LL, Orozco MI. Optimización del proceso de transesterificación del aceite de palma usando la técnica basada en Ultrasonido. Cienc desarro. 2020;11(2):145–51. https://doi.org/10.19053/01217488.v11.n2.2020.11142