Contenido principal del artículo

El tipo de peligros y eventos peligrosos en las cuencas de abastecimiento, dependen de los usos del suelo a su alrededor. La atrazina es un contaminante orgánico aplicado ampliamente como plaguicida y es un peligro químico potencial presente en las fuentes de agua, que causa contaminación del agua y efectos negativos en la vida acuática y la salud humana, debido a su alta solubilidad y persistencia en el suelo. Sin embargo, para los países en desarrollo, el seguimiento y la cuantificación de la atrazina pueden resultar complejos y costosos; por tanto, para contribuir a establecer estrategias de evaluación de riesgos en las cuencas de abastecimiento de agua, se evaluó el uso potencial de una técnica fácil, rápida y de bajo costo como la absorbancia ultravioleta (UV) para identificar la presencia de atrazina. Se conformaron muestras de agua destilada y superficial dopadas con atrazina, y se correlacionaron con el indicador de espectro típico UV para materia orgánica (longitud de onda - λ: 200 - 300 nm), siendo el rango óptimo 203 - 223 nm; UV223 fue más adecuado que UV254, el cual se utiliza más para identificar la presencia de materia orgánica natural, lo que demuestra que UV223 es una herramienta complementaria, útil para la evaluación del riesgo químico por la presencia de atrazina en los sistemas de suministro de agua potable.

1.
Torres Lozada P, Barba-Ho LE, Fuentes-López L, Cruz-Velez CH, Perez-Vidal A, Torres-Lopez WA. Aplicabilidad de la absorbancia UV como indicador de la presencia de Atrazina en la gestión de riesgos en cuencas de abastecimiento de agua: No applied. inycomp [Internet]. 18 de mayo de 2021 [citado 3 de octubre de 2022];23(2):e21410968. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10968

(1) Pérez-Vidal A, Torres-Lozada P, Escobar-Rivera J. Hazard identification in watersheds based on water safety plan approach: case study of Cali-Colombia. Environ. Eng. Manag. J. 2016;15(4):861–72.

(2) Hansen S, Messer L, Mittelstet A. Mitigating the risk of atrazine exposure: identifying hot spots and hot times in surface waters across Nebraska, USA. J. Environ. Manage. 2019;250:109424. https://doi.org/10.1016/j.jenvman.2019.109424.

(3) World Health Organization (WHO). Guidelines for drinking-water quality, 4th edn, Geneva, Switzerland; 2018.

(4) Pérez-Vidal A, Escobar-Rivera J, Torres-Lozada P. Development and implementation of a water-safety plan for drinking-water supply system of Cali, Colombia. Int. J. Hyg. Environ. Health. 2020;224:113422. https://doi.org/10.1016/j.ijheh.2019.113422.

(5) Ojeda EO, Arias-Uribe R. Informe nacional sobre la gestión del agua en Colombia (National report on water management in Colombia). CEPAL, GWP; 2000.

(6) Badii M, Landeros J. Plaguicidas que afectan a la salud humana y la sustentabilidad (Pesticides that affect human health and sustainability). CULCyT. 2007;19(4):21-34.

(7) Zhou R, Zhu L, Yang K, Chen Y. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. J. Hazard Mat. 2006;137(1):68–75. https://doi.org/10.1016/j.jhazmat.2006.02.005.

(8) Zhao Z, Jiang Y, Li Q, Cai Y, Yin H, Zhang L, Zhang J. Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers. Ecotox. Environ. Safe. 2017;142:117–28. https://doi.org/10.1016/j.ecoenv.2017.03.039.

(9) Graymore M, Stagnitti F, Allinson G. Impacts of Atrazine in aquatic ecosystems. Environ. Int. 2001;26(7–8):483–95. https://doi.org/10.1016/S0160-4120(01)00031-9.

(10) Hou X, Huang X, Ai Z, Zhao J, Zhang L. Ascorbic acid induced Atrazine degradation. J. Hazard Mat. 2017;327:71–8. https://doi.org/10.1016/j.jhazmat.2016.12.048.

(11) Nasseri S, Baghapour M, Derakhshan Z, Faramarzian M. Degradation of Atrazine by microbial consortium in an anaerobic anaerobic submerged biological filter. J. water health. 2014;12(3):492–503. https://doi.org/10.2166/wh.2014.162.

(12) Environmental Protection Agency (EPA). 816-F-09-004, National Primary Drinking Water Regulations. United States. 2009.

(13) Shipitalo M, Owens B. Atrazine, deethylAtrazine, and deisopropylAtrazine in surface runoff from conservation tilled watersheds. Environ. Sci. Technol. 2003;37(5):944–50. https://doi.org/10.1021/es020870b.

(14) Baldwin A et al. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity. Sci. Total Environ. 2016;554–555: 42–52. https://doi.org/10.1016/j.scitotenv.2016.02.137.

(15) Al-Degs Y, Al-Ghouti M, El-Sheikh A. Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. J. Hazard Mat. 2009;169(1–3):128–35. https://doi.org/10.1016/j.jhazmat.2009.03.065.

(16) Wu C, Hill H, Gamerdinger A. Electrospray Ionization-Ion Mobility Spectrometry as a Field Monitoring Method for the Detection of Atrazine in Natural Water. Field Anal. Chem. Technol. 1998;2(3):155–61. https://doi.org/10.1002/(SICI)1520-6521(1998)2:3%3C155::AID-FACT4%3E3.0.CO;2-U.

(17) Gerrity D et al. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res. 2012;46(19):6257-72. https://doi.org/10.1016/j.watres.2012.08.037.

(18) Amaral B, De Araujo J, Peralta-Zamora P, Nagata N. Simultaneous determination of Atrazine and metabolites (DIA and DEA) in natural water by multivariate electronic spectroscopy. Microchemical J. 2014;117:262–67. https://doi.org/10.1016/j.microc.2014.07.008.

(19) Ekanayake D et al. Interrelationship among the pollutants in stormwater in an urban catchment and first flush identification using UV spectroscopy. Chemosphere. 2019;233:245-51. https://doi.org/10.1016/j.chemosphere.2019.05.285.

(20) Szerzyna S, Mołczan M, Wolska M, Adamski W, Wiśniewski J. Absorbance based water quality indicators as parameters for treatment process control with respect to organic substance removal. E3S Web of Conferences. 2017;17:00091. https://doi.org/10.1051/e3sconf/20171700091.

(21) Beauchamp N et al. Relationships between DBP concentrations and differential UV absorbance in full-scale conditions. Water Res. 2018;131:110-121. https://doi.org/10.1016/j.watres.2017.12.031.

(22) American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF). Standard Methods for Water and WastewaterExamination, Washington D.C., United States. 2012.

(23) Lobanga K, Haarhoff J, Van Staden S. Treatability of South African surface waters by enhanced coagulation. Water SA. 2014;40(3):529-34. https://doi.org/10.4314/wsa.v40i3.17.

(24) Altmann J, Massa L, Sperlich A, Gnirss R, Jekel M. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon. Water Res. 2016;94:240-5. https://doi.org/10.1016/j.watres.2016.03.001.

Thomas O, Burgess C. UV-visible Spectrophotometry of Water and Wastewater. 1st ed. Amsterdam, Netherlands. 2007.

(26) Mehaffey M, Nash S, Wade T, Ebert D, Jones K, Rager A. Linking land cover and water quality in New York city’s water supply watersheds. Environ. Monit. Assess. 2005;107(1-3):29–44. https://doi.org/10.1007/s10661-005-2018-5.

(27) De Girolamo A, Porto A. Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Pol. 2012;29(3):691– 701. https://doi.org/10.1016/j.landusepol.2011.11.005.

(28) Bueno K, Pérez A, Torres P. Identificación de peligros químicos en cuencas de abastecimiento de agua como instrumento para la evaluación del riesgo (Identification of chemical hazards in supply watersheds as an instrument for risk evaluation). Revista Ingenierías. 2014;13(24):59–75.

(29) Environmental Protection Agency (EPA). Method 523: Determination of Triazine Pesticides and their Degradates in Drinking Water by Gas Chromatography/Mass Spectrometry. 2009.

Fairbairn D, Karpuzcu M, Arnold W, Barber B, Kaufenberg E, et. al. Sediment-water distribution of contaminants of emerging concern in a mixed-use watershed. Sci. Total Environ. 2015;505:896–904. https://doi.org/10.1016/j.scitotenv.2014.10.046.

(31) Kim C, Eom J, Jung S, Ji T. Detection of organic compounds in water by an optical absorbance method. Sensors (Switzerland). 2016;16(1):61. https://dx.doi.org/10.3390%2Fs16010061.

(32) Montgomery D. Design and analysis of experiments. John Wiley & Sons, (ed.). 8th ed. Arizona, United States. 2012.

(33) Instituto Colombiano Agropecuario (ICA). Registros nacionales (National records). 2020 [cited 2019 Sep 15]. Available from: http://www.ica.gov.co/getdoc/d3612ebf-a5a6-4702-8d4b-8427c1cdaeb1/registros-nacionales-pqua-15-04-09.aspx.

(34) Dalton R, Pick F, Boutin C, Saleem A. Atrazine contamination at the watershed scale and environmental factors affecting sampling rates of the polar organic chemical integrative sampler (POCIS). Environ. Pollut. 2014;189:134-42. https://doi.org/10.1016/j.envpol.2014.02.028.

(35) Tarazona GA. Manejo fitosanitario del cultivo de la caña panelera. Instituto Colombiano Agropecuario (ICA). Bogotá; 2011 [cited 2021 mar 4]. Available from: https://www.ica.gov.co/getattachment/6a54658e-1723-488d-a7ab-2f4baad793cb/Manejo-fitosanitario-del-cultivo-de-la-cana-panele.aspx.

(36) Weishaar J, Aiken G, Bergamaschi B, Fram M, Fujii R, Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003; 37(20):4702–8. https://doi.org/10.1021/es030360x.

(37) Swietlik J, Sikorska E. Characterization of Natural Organic Matter Fractions by High Pressure Size-Exclusion Chromatography, Specific UV Absorbance and Total Luminescence Spectroscopy. Pol. J. Environ Stud. 2006;15(1):145–53.

(38) Ghernaout D, Ghernaout B, Kellil A. Natural organic matter removal and enhanced coagulation as a link between coagulation and electrocoagulation. Desalination Water Treat. 2009; 2(1–3):203–22. https://doi.org/10.5004/dwt.2009.116.

(39) Heathwaite A, Quinn P, Hewett C. Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. J. Hydrology. 2005;304(1–4):446–61. https://doi.org/10.1016/j.jhydrol.2004.07.043.

(40) Subantu P. Development of methods for the separation and characterization of natural organic matter in dam water [Master thesis]. Sudáfrica: Durban University of Technology. 2014. Available at: http://openscholar.dut.ac.za/handle/10321/1182.