
291

Ingeniería y Competitividad, Volumen 16, No. 1, p. 291 - 300 (2014)

INGENIERIA MECANICA

Identificación de parámetros dinámicos de la suspensión 
de un vehículo.

MECHANICAL ENGINEERING

Identification of dynamic parameters in vehicle 
suspension systems.

Luz A. Mejía*§, Francisco Valero**, Vicente Mata**

*Facultad de Ingeniería Mecánica, Universidad Tecnológica de Pereira, Pereira, Colombia
**Centro de Investigación de Tecnología de Vehículos, Universidad Politécnica de Valencia, 

Valencia, España
§adriamec@utp.edu.co, fvalero@mcm.upv.es, vmata@mcm.upv.es

(Recibido: 24 de Julio de 2013 - Aceptado: 17 de Enero de 2014) 
Resumen
En el presente trabajo se aborda la identificación de parámetros dinámicos en vehículos automóviles. Paso previo 
al desarrollo del problema de identificación, se desarrolla un modelo dinámico para la suspensión delantera de 
un vehículo de competición. El modelo dinámico se reduce mediante dos metodologías diferentes. La primera 
se basa en la Descomposición en Valores Singulares y la segunda por dos pasos consecutivos: eliminación de 
parámetros dinámicamente poco contributivos y Descomposición en Valores Singulares. Finalmente, ambos 
modelos son analizados y validados mediante el cruce de datos para otras trayectorias diferentes a las de 
identificación. El modelo obtenido utilizando la eliminación de parámetros poco contributivos reproduce de 
muy buena manera el comportamiento dinámico del sistema ante la inclusión de errores, por lo que dicha 
metodología se presenta como la más viable para la obtención del conjunto de parámetros base.    

Palabras claves: contribución dinámica, dinámica vehicular, identificación de parámetros dinámicos, sistemas 
multicuerpo, 

Abstract 
This work presents the identification of dynamic parameters in automotive vehicles. In order to develop the 
identification problem, a dynamic model is obtained for the front suspension of a race car. Two new dynamic 
models are developed, the first of which is based on the Singular Value Decomposition (SVD), while the second 
comprises two consecutive steps: elimination of less contributive parameters and application of a SVD method. 
Finally, both models are analyzed and validated by means of data cross-referencing for new trajectories other 
than those used during the identification process. The model obtained using the elimination reproduces the 
dynamic behavior with very good approximation even with the inclusion of errors, so it is presented as the most 
viable methodology for obtaining base parameters.
 
Keywords: Dynamic contribution, dynamic parameter identification, multibody systems, vehicle dynamics 
system
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1. Introduction

In the dynamic models used for the simulation 
and control of systems, the values of certain 
parameters such as the terms of inertia, masses 
and the locations of centers of mass are 
fundamental for obtaining accurate results. The 
precise values of these dynamic parameters are 
difficult to obtain because they usually require 
experimental measurements that have a very high 
cost. Depending on the size and complexity of the 
system, it may not be a practical methodology. 

Initially, the dynamic parameter identification 
procedure was developed for serial robots 
(Khosla and Kanade 1985, Atkenson et al. 1986, 
Gautier and Khalil 1988), then for closed chain 
systems such as parallel robots (Bhattacharya et 
al. 1997, Guegan et al. 2003, Abdellatif et al. 2004 
and Grotjahn et al. 2004) and later for vehicle 
systems (Russo et al. 2000, Chen and Beale 
2003, and Venture et al. 2006) and biomechanics 
(Kraus et al. 2005, Gordon and Hopkins 1997, 
and Silva et al. 1997). An area such as automotive 
engineering is not indifferent to the advantages 
that the identification process contributes to the 
design and completion of vehicles. Today, there 
are several commercial software programs for 
dynamic simulation of vehicles, which allow the 
real system to be replaced by a virtual one, but 

the validity of the results depends largely on the 
accuracy of the dynamic parameters used.

The main objective of this study is to extend the 
dynamic parameter identification methodology 
from robotics to vehicle systems. To this end, the 
results are validated with virtual simulation data 
collected by the MSC Adams® computational 
package program. This paper is organized 
as follows. The second section presents a 
dynamic model of push-rod front suspension. A 
dynamic model is then obtained for parameter 
identification. Comparisons between symbolic 
and numerical models appear in the fourth 
section and the most significant conclusions are 
presented in the fifth section.

2. Identification methodology

2.2 Dynamic model

In the suspension that we analyzed, the 
linkages are considered as rigid bodies, without 
friction and clearances in the kinematic pairs. 
The behavior of the damping is considered 
linear with respect to speed, and the forces 
and moments applied at the tire contact path 
are expressed as loads applied at the center of 
the wheel. The topology (figure 1) corresponds 
to a double wishbone-type front suspension 

Figure 1. Topology of the front suspension analyzed
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with push-rods, which connects the lower 
rocker arms to the bell crank and is attached 
to the chassis with torsion bars instead of coil 
springs. The antiroll bar allows loads to be 
transferred from the right to the left side of 
the suspension. The system has 4 degrees of 
freedom, vertical movement and the spin of the 
wheel (Table 1). The generalized coordinates  
q  = [x1, yl, zl, β01, ..., β122, β222, β322]

T
 correspond 

to the translation and orientation of each local 
reference frame and Euler parameters are used. 
These local reference frames are not centroidal. 
The equation of motion is derived from the 
Lagrangian formulation,

     (1)

where L is the Lagrangian function, VE is the 
elastic potential energy, D is the dissipative 
energy, τ  is the vector of generalized forces,                    

is the constraint Jacobian matrix and  λ  is 
the vector of  Lagrange multipliers. For this 
particular case, the Lagrangian function is 
composed only of the kinetic energy and the 
potential energy is zero because the weight 
of the components is included as an external 
gravitational force. The kinetic energy of the 
element i is given by,

Component No. DOF x 
component

∑ 
DOF

Parts 

Chassis (0), left lower control arm (1), left upper control arm(2), left upright (3), left wheel 
(4), left tie rod (5), left push rod (6), left bell crank (7), left upper strut (8), left lower strut 
(9), left coupler bar (10), antiroll coupler (11), right coupler bar (12), right bell crank (13), 
right push rod (14), right tie rod (15), right wheel (16), right upright (17), right upper 
control arm (18), right lower control arm (19), right upper strut (20), right lower strut (21), 
antiroll bar (22)

22 6 132

Kinematic joints

Revolutes 
0-1, 0-2, 3-4, 7-0, 11-22, 22-0, 13-0,
0-18, 0-19, 16-17  

10 -5 -50

Sphericals
1-3, 2-3, 3-5, 2-6, 7-8, 10-11, 11-12, 21-13, 14-19, 15-17, 17-18, 17-19 12 -3 -36

 Universals
6-7, 9-0, 5-0, 7-10, 12-13, 15-0, 20-0, 13-14 8 -4 -32

Translationals
8-9, 20-21 2 -5 -10

∑ DOF        4

Table 1. Component, joints and degree of freedom
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where mi is the mass of body i. 0Ri is the 
transformation matrix from the body coordinate 
system i to the global coordinate system. ui is 
the screw symmetric matrix of the  position 
vector of the center mass with respect to the 
origin of the body coordinate system ui, 

iIθθ is 
the inertia tensor of the rigid body defined in the 
body coordinate system,  Gi is defined by:

          
 (3)

The total Lagrangian function is,
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Derivates of the potential and dissipative 
energies.

The spring elements of the suspension are 
formed by a pair of torsion bars connecting 
the suspension to the chassis. This system is 
simplified by replacing the fixed joint for a 
revolute joint between the bell crank and the 
chassis and a torque in opposition to its motion 
as a function of the torsion stiffness of the bar 
and the turn of the bell crank. Thus, the elastic 
potential energy is determined as a generalized 
force. The term corresponding to the derivative 
of dissipative energy is determined by obtaining 
the non-conservative forces that depend linearly 
on the velocity. It is the Raleigh dissipation 
function of the damper,

dq
dD s

dq
ds s

dq
ds

1
1

2
2$ $ $n= +

ov
o

ov
o

o
ov
od n

          
(6)

where μ is the damping coefficient and si
2o  is the 

relative velocity between the upper and lower 
strut. Although it is known that the damping 
coefficient is nonlinear, a first approximation is 
performed, which is considered linear. 

Generalized forces

The vector of generalized forces associated with 
the coordinates of the reference point groups the 
external and gravitational forces,

Q Q QA ext grav= +y y y                     (7)

The external forces Fo and Mo applied to 
the element and 4 and 16 (wheel axles) are 
equivalent to the forces and moments generated 
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by the ground to the tire at the contact path, 
which are transferred to the center of mass 
of the wheel. These actions generate the first 
generalized force, which is determined by the 
principle of virtual work as,

W Mo G Mo G
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Other generalized forces are those obtained by 
replacing the action of the torsion bars for a 
revolution-torque applied to the bell cranks of 
the suspension system. In this case, the torque 
generated will be,

M ki r 0i i= -^ h                 (10)

where kr is the torsion stiffness of the bar, θ is 
the relative angular displacement between bell 
crank and chassis and θ0 is the angle before 
displacement. For the bell cranks (elements 7 
and 13), the definition of these generalized forces 
is obtained using the virtual work formulation

W M G M GT T
2 7 7 7 13 13 13$ $ $ $d db db= +v r v v r v (11)

The generalized forces associated with the 
gravity forces are constituted by the weight 
of each component of the system. These have 
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not been included in the determination of the 
potential energy on obtaining the Lagrangian 
function. The gravitational forces of the element 
i are obtained as,

Q m
q
r

g m I R u G ggrav i
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i i i i

T0
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$ $
d
d

=- = -v
v
v

v ru r vd n 6 @

                                                                      (12)

Comparing the equation obtained by adding (8), 
(11) and (12) with (13),

   
(13)

The vector of generalized forces are obtained as,
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2.3 Model of identification process

Thanks to the convenient location of the local 
reference systems of the elements (not centroidal), 
the dynamic model given by equation (1) is linear 
with respect to the dynamic parameters; however, 
it is necessary to regroup as

K C 0q
Tx mU - + =v v v

              (15)

where K and τ are the coefficient matrix that 
relates the inertial parameters and the vector 
of generalized forces which include externally 
applied forces and those due to springs and 
dampers. The vector of dynamic parameters is 
made up of inertia terms, the product between the 
mass and the center of mass and the mass of each 
element of the mechanical system thus,

[

... ]

Ixx Ixy Ixz Iyy Iyz Izz

mx my mz m mz m T

1 1 1 1 1 1

1 1 1 1 1 22 22

U =v

 
 (16)

Identifying the dynamic parameters usually also 
includes the torsion stiffness of the torsion bars 
and the damping coefficients. However, in this 

...
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work these parameters are not included because 
these elements are often modified by engineers to 
improve the set-up of the vehicle. 

K for each element i of the system can also 
be obtained from the equation of motion 
determined by Chen and Beale (1999) through 
of the equation (17),
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The angular velocities are expressed in terms of 
the Euler parameters,

, ,G G G Gi i i i i i
T

i i i~ b ~ ~ b= = =r o u r ro o r p
  (19)

Regrouping the terms related to the dependent 
and independent coordinates of equation (15), it 
can be written as,

K C
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 (20)

By solving equation (20) for the vector of 
Lagrange multipliers λ, a linear dynamic 
model is obtained with respect to the dynamic 
parameters,

K X K Xi
T

d i
T

dx xU- = -y^ h        (21)

where  X C Cqd qi
1 $= - . It is necessary to consider 

the inverse of the dependent Jacobian matrix; 
consequently, the selection of coordinates must 
guarantee a matrix  Cq

dT  of full column rank.

The resulting model equation (21) includes a 
number of equations equal to the degrees of 
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freedom of the system (4 DOF). Since each 
element includes 10 inertial parameters (220 
parameters), this is a system that cannot be 
solved by the Least Square Method. The way 
to solve this problem is to include equations 
corresponding to different positions of the 
mechanical system to obtain an overdetermined 
linear system. The matrix obtained is called 
Observation Matrix of the suspension and a 
linear dynamic model is obtained with respect 
to the dynamic parameters,

,Wn m m n1 1$ xU =# # #
y y                  (22)

where m is the number of dynamic parameters.

Some of the parameters do not contribute to the 
dynamics of the system. Additionally, due to the 
physical nature of the kinematic restrictions, 
they can only contribute as linear combinations. 
Therefore, the matrix W is usually rank 
deficient. However, the solution of the system 
expressed in equation (22) requires full rank 
in the observation matrix, which involves 
reducing the system and obtaining a new set of 
parameters called base parameters.

2.4 Base parameters

The methodologies used to simplify the 
system, and consequently to obtain the base 
parameters in serial and parallel robots (Diaz 
et al. and Farhat et al.), include the use of 
methods such as symbolic reduction based on 
a visualization of possible linear combinations 
or a numerical procedure such as Singular 
Value Decomposition or QR Decomposition. 
However, for moderately large dynamic models, 
as is the case of the vehicle suspension analyzed 
here, these methods are not enough. This article 
presents a reduction procedure involving 
characterization of the dynamic contribution, 
since many of the parameters included in the 
model have a very low influence on dynamic 
performance but result in an observation matrix 
with an extremely high condition number. 
Therefore, before using linear algebra, it is 
proposed that the model should be simplified 
according to the contribution of each parameter 
to the dynamics of the system.

2.4.1 Reduction by characterization of the 
dynamic contribution

In the field of race car suspension, the location 
of the elements, packaging issues and the 
use of lightweight materials causes many of 
these parameters to have little influence on the 
dynamics of the system. A consequence of these 
great differences of contribution is the generation 
of an ill-conditioned observation matrix, which 
involves a greater influence of errors from the 
experimental data and certain inaccuracies 
of correspondence between the underlying 
analytical model and the actual system.

To identify these parameters which allow 
dynamic contribution it is necessary to have 
an initial estimation of the parameters that can 
be obtained from the geometry of the elements 
and the properties of their materials. CAD 
programs allow us to obtain an initial estimation 
with a certain degree of approximation. The 
contribution of the i-th dynamic parameter will 
be defined as follows,

                                                                     
 (23)

It is worth noting that the contribution defined 
in equation (9) can be obtained as an average 
value over a set of different trajectories.

Parameters that contribute little can be 
eliminated from the vector of parameters Φ and 
the corresponding columns of the observation 
matrix W, thus resulting in a new reduced 
linear system,

Wred red$ xU =v v                   (24)

It should be clarified that the dynamic behavior 
of the system addressed in (24) will not be equal 
to the original one; therefore, the elimination 
criterion has to be based on the improvement 
of the condition number of matrix W, keeping 
the permissible error between the system (24) 
and the original one as small as possible. This 
error can be quantified by means of the absolute 
relative error defined by the equation,
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Besides postulating the parameters that 
contribute most as identifiable parameters, 
the characterization methodology also makes 
it possible, when considered for different 
trajectories, to make an initial estimation of 
the type of movements that act on a greater 
number of parameters or movements that excite 
certain parameters of interest. The trajectories 
obtained that improve on the identification 
process will not be evaluated in this study and 
will form part of future studies.

2.4.2 Reduction by SVD

The purpose of this methodology is to obtain 
a full rank observation that makes it possible 
to solve the system using the least squares 
solution (LSM). Simplifying the system 
by means of the dynamic characterization 
of parameters makes it possible to obtain a 
reduced system using only the parameters that 
contribute to the dynamics of the suspension; 
nevertheless, these can have an influence 
in combination with other parameters, not 
separately but rather linearly. Subsequently, 
a full rank observation matrix is achieved by 
Singular Values Decomposition, obtaining a 
basic set of parameters Wred • Φred = Wred • Φred. 
The matrix Wred is decomposed into singular 
values as,

,W U S Vred n n n m m m
T

n m # #= # # ##      (26)

where U and V are orthogonal matrices and S 
is a diagonal matrix with singular values s1, s2, 
..., sr  of  Wred and r is its rank. The matrix V is 
divided as

V V V1 2 ( )m r m m r= # # -6 @             (27)

If the system is rank deficient,
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For

W V2 0red $ =                      (29)

As the previous equation shows, the V2 matrix 
defines the dependence relationships between 
the columns of the observation matrix. An 
independent column in Wred corresponds to a null 
column in V2. By regrouping V2 and obtaining 
a submatrix with full rank, it determines the 
permutation matrix P so that,

P V
V

V
2

21
22

( )

( ) ( )

T r m b

m r m r

1
$ =

#

#

-

- -

= G
             

(30)

The determination of V22 is not unique and 
therefore it is also not unique for the permutation 
matrix. Although for serial and parallel robots 
they are usually obtained from the first or last 
row of V2, adding rows whenever these increase 
the rank of the matrix, for suspensions this type 
of grouping does not represent an evident natural 
regrouping of the parameters. By simplification, 
Wred will be denoted below as W, and Φred as Φ. 
The first r columns of the permutation matrix 
are independent,

W P W W1 2 ( )n r n m r$ = # # -6 @         (31)

By replacing (30) and (31) in equation (29), the 
following is obtained,

 W1 • V21 + W2 • V22 = 0            (32)

therefore,

W2 = W1 • β                       (33)

where β = -V21 • V22-1 .

If X is a solution vector of the system expressed 
by (24),

W W P P W P P XT T$ $ $ $ $ $ $U U= =v v v (34)

Using the equation (20),

W I W I
X
X

1 1r r r r
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v

v

v6 = 6 =@ G @ G (35)
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where Irxr is the identity matrix. The solution for 
vector X1 is obtained as follows,

X X1 1 2 2bU U= + -v v v v^ h             (36)

An infinite number of solutions exist according 
to the values assigned by X2 , but if  X2 = 0, we 
obtain the solution for the base parameters,

I P( )base r r r m r
TbU U= # # -

v v6 @            (37)

Finally, the dynamic model can be written as 
follows,

W1 base$ xU =v v                  (38)

For the system mentioned here, it is necessary 
to emphasize that its solution represents 
the combination of several parameters, the 
determination of each individual parameter being 
impossible. Besides, the values of the vector τ 
differ to some degree of error from the values of 
the simulated system due to the elimination of 
non-contributing parameters and to the numerical 
errors caused by matrix XT from equation (38).

The quality of the parameters is obtained with 
relative standard deviation for each parameter,

% 100
j

j $v
v
U=U

U

                 
(39)

where C ( , )j j jv =U U   and CΦ  is the covariance 
matrix of the estimated error and is obtained as,

C W W1 1T2 1v= tU
-^ h             (40)

n m
iden2

2< <
v

x x
=

-
-

t ^ h                
(41)

where  τ   and  τiden  are the forces of the actual 
system and those obtained from the model using 
the parameters identified, respectively; and n, m 
are the dimensions of W1.

3. Discussions and results

The data used in the validation of the dynamic 
model and subsequent identification of 

parameters are obtained using MSC Adams in a 
simulated system, considering the geometry and 
topology of the real physical system.

3.1 Dynamic characterization

In order to determine the dynamic contribution 
of each parameter in the suspension dynamics, 
two excitation trajectories were used for the 
vertical motion of the wheels at different 
amplitudes and frequencies. Both trajectories 
are vertical translations applied to the wheels as 
variable-frequency harmonic functions, taking 
into account the limits allowed by the damper 
displacement and excitation frequencies in a 
wide range (0-50 Hz) to ensure all the system’s 
operating conditions. The percentage of 
contribution is obtained by means of equation 
(23). Only 26 dynamic parameters are more 
significant than 1% of the total dynamics of the 
system. However, it is necessary to determine 
which parameters can be eliminated by virtue of 
the error obtained between the original system 
and the reduced one. It has been established that 
for a reduction of 0.3% - 0.5%, the dynamic 
error increases from 0.93% to 1.98%.

3.2 Obtaining the base parameters

If SVD is applied, where the rank of the 
matrix obtained is not given by the number of 
significant singular values but by the user; that 
is to say, the rank of the matrix is introduced 
in decreasing form, analyzing how it influences 
the condition number of the matrix W1. It is 
noted that if the rank of the observation matrix 
is reduced, its condition number improves. 
Nevertheless, this simplification can eliminate 
influential parameters from the model, which 
must be analyzed at the time of deciding how 
much to decrease the rank by. The absolute 
relative error εR between the original and the 
reduced model is recorded as unsatisfactory if 
the rank is smaller than 18.

If we make a preliminary reduction before the 
application of SVD based on the results of the 
dynamic contribution, we see that the condition 
number of the matrix decreases by the extent 
to which we eliminated the less contributing 
parameters. As is known from the preceding 
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analysis, contributions of less than 0.3% do not 
modify the original dynamic model significantly, 
so the criterion for eliminating less contributing 
parameters is established on the basis of this 
value. In this case, the removal of a 0.3% 
contribution has a better condition number. 
Solving both systems by least squares for the 
parameter vector base, tables 2 and 3 present the 
values obtained for the first and second model, 
respectively, and their values derived from the 
linear combination with data from MSC Adams. 
In the first case, the combination of parameters 
is not presented because of the large size of 
each term in the vector. As shown in the tables, 
the two models show good relative standard 
deviation for each parameter.

Table 2. Base parameters of model 1 obtained by SVD 
Rank 18 + σΦ

Number 
of original 
parameters

Identified 
values *

Adams 
values *

σΦ , %

45 -0.3619 -0.3689 0.91
54 -1.6509 -1.6581 0.50
33 0.1337 0.1381 0.13
31 0.1490 0.1489 0.07
49 1.6427 1.6373 0.51
37 -0.2222 -0.2279 1.01
5 -0.0003 -0.0003 0.71
63 1.2801 1.0395 0.59

   *S.I. units

Table 3. Base parameters of model 2 obtained by means 
of elimination of parameters with less than 0.3% of 

dynamic contribution + SVD

Symbolic 
base 

parameters

Adams base 
parameters*

Identified 
base 

parameters*

σΦ , %

ixx10 0.00002 0.00002 5.78
ixz10 0.00016 0.00009 8.63
ixx12 0.00002 0.00002 5.78
ixz12 0.00016 0.00009 8.63

m3 + m4 13.8928 16.3811 0.075
m6 1.37246 4.2562 0.79
m14 1.37246 4.2607 0.79

m16 + m17 13.8928 16.379 0.075
mi is the mass of element i, ixxi and ixzi are inertial 

moments and inertial product for element i, ycgi is the 
mass time moment y of i.

*S.I. units.

3.3 Cross validation

The sets of base parameters obtained must be 
validated by verifying these models on different 
trajectories from the one considered in the 
identification process for models with and 
without errors in the 5% of standard deviation in 
the model included. Even with the inclusion of 
errors, the models generated by the parameters 
identified represent a very good approximation 
to the original model (figure 2), except Model 1 
(Singular Values Decomposition and elimination 
by means of relative standard deviation), 
which does not present a good approach at low 
frequencies. This occurs even though it was 
expected it would not be satisfactory due to the 
high condition number of matrix W1. 

Figure 2. Cross validation. a) Trajectory T1 (1 –2 Hz). 
Force τ in left wheel, b) Trajectory T3 (30 – 50 Hz) Force 
in right wheel, c) Trajectory T1 with 5% of errors in right 

wheel.
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4. Conclusions

Although the first methodology of reduction of 
the system obtains a better conditioned model, 
the error it generates in the crossing of data is 
greater. In addition, this methodology produces 
highly combined base parameters. On the 
other hand, the second methodology allows the 
inclusion of errors in the identification forces 
and presents a satisfactory behavior for other 
trajectories.

In the same way, this methodology allows us to 
develop dynamic models of complex suspension 
systems based on a reduced number of identified 
dynamic parameters without significant loss of 
precision.

For another type of analysis, with lateral and 
longitudinal forces, where the behavior of the 
suspension is evaluated as part of the whole 
vehicle, it is possible to find other dynamic 
parameters that contribute to the dynamics 
under new operating conditions.

The proposed methodology for the 
identification of dynamic parameters has been 
verified successfully in a simulated system; 
however, its implementation in a real system 
requires special attention in reducing the 
condition number of the observation matrix, 
which allows for the inclusion of greater 
system error, as with a real system.
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