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Resumen
Este trabajo trata la dinámica directa de mecanismos de un Grado de Libertad (GDL). Se presenta un método de 
Propósito General (PG) basado en cadenas en el que un mecanismo es desagregado en grupos estructurales de 
Assur. Los análisis cinemático y de fuerzas de los grupos de Assur se resuelven individualmente para formar una 
librería de módulos independientes.  Esta propiedad es usada para reducir los parámetros inerciales y las fuerzas 
exteriores en cada grupo (módulo) que forma el mecanismo. La reducción se propaga de módulo a módulo hasta 
que se alcanza el eslabón conductor, entonces la dinámica directa se resuelve analizando exclusivamente ese 
eslabón. El método PG presentado tiene una flexibilidad comparable con los métodos PG basados en juntas. 
El método es usado en la dinámica directa de un mecanismo de seis barras (Watt) con resultados que son 
comparables con software comercial para dinámica de Sistemas  Multicuerpo (MBS).

Palabras clave: Análisis modular, dinámica directa, mecanismos.

Abstract
This work deals with the forward dynamics of mechanisms with one Degree of Freedom (DOF). There is 
presented a chain-based General Purpose (GP) method in which a mechanism is disaggregated into structural 
Assur groups. Kinematic and force analyses of Assur groups are individually solved to form a library of 
independent modules. This property is used to reduce inertial parameters and external forces in each structural 
group (module) that forms the mechanism. The reduction is propagated from module to module until the driving 
link is reached, and then the forward dynamics is solved analyzing exclusively that link. The presented GP 
method has a flexibility which is comparable with respect to the GP joint-based methods. The method is applied 
to the forward dynamics of a six-bar (Watt) mechanism with results that are comparable to the commercial 
software for Multibody Systems (MBS) dynamics.

Keywords: Forward dynamics, mechanism, modular analysis.
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1. Introduction

Nikravesh (1988) and Hansen (1996) classify 
the methods for computer aided analysis of 
mechanical systems into two categories: i) Special 
Purpose (SP), and ii) General Purpose (GP). 

The GP methods are codified as libraries without 
specific mechanisms, though they include the 
elements necessary to assemble these mechanisms 
virtually. The modules that constitute a GP library 
may be developed on the concept of kinematic 
joint, as in the majority of commercial software 
for Multibody System (MBS) dynamics, or on 
the concept of kinematic unit. In case of planar 
mechanisms, the kinematic unit corresponds 
with a structural kinematic chain which is 
conventionally called Assur group. A mechanism 
may be designed as a sequential union of one or 
more driving links and one or more Assur groups.

This study presents a contribution to the dynamics 
of planar mechanisms. The developed method is 
a GP method based on kinematic units. Given 
that each kinematic unit is statically determinate, 
then it is possible to find an independent solution 
for its kinematics as well as for its kinetostatic 
analysis (inverse dynamics). Kinematical and 
kinetostatical independence are a basis for the 
modular method, which is extended in this 
study to the simulation (forward dynamics). The 
proposed method consists in a modular reduction 
of inertial parameters and forces, beginning with 
the last kinematic unit in the formation sequence 
of the mechanism, and propagating the reduction 
until the driving link (reduced link) is reached. 
The reduction is carried out as a function of the 
generalized coordinate and it is independent 
of time and velocity of the system. Finally, the 
forward dynamics is solved exclusively for the 
reduced link as a function of the generalized 
coordinate and the initial conditions.

The following references discuss GP methods 
for kinematics, which are based on kinematic 
units: Cavic et al. (2007) show an iterative 
method for the kinematics of high-class Assur 
groups (higher than a dyad), in which high-class 
groups are approximated by a set of dyads that 
should be geometrically adjusted to describe the 
displacement of the original group. Zhang et al. 

(2006) present an alternative to the study of Cavic 
et al. (2007), in which the solution of the position 
is solved by means of an iterative algorithm by 
virtual search. Buśkiewicz (2006) and Calle et al. 
(2001) show general and optimized methods for 
calculating the kinematics of a mechanism, given 
its rule for the Assur group formation. Modular 
reductions of mass and force analyzed in this 
paper require a kinematics library; this library 
was adopted from the study of Calle et al. (2001). 
The library is a unit based GP and it is also used 
for the post-processing in dynamics since the 
calculated movement of the reduced link should 
be extended towards the other Assur groups. 
Durango (2007), Marghitu & Crocker (2001) and 
Bràt & Lederer (1973) present GP methods for 
inverse dynamics based on kinematic units where 
the friction in joints is assumed to be negligible. 
In general, these methods are reduced to the 
solution of a linear set of equations that represent 
dynamic equilibrium in the system. In contrast 
to the studies of Durango (2007), Marghitu & 
Crocker (2001) and Bràt & Lederer (1973); in the 
analysis made by Ruiz et al. (2010), a GP method 
is extended to include the effects of friction in the 
joints using a successive approximation method 
for the force analysis. None of these studies 
discusses the problem related to the solution of 
differential equations of the system’s motion, i.e. 
a forward dynamics problem.

Wang et al. (2008) describe a modular dynamics 
of mechanisms using Assur groups and a 
state space representation which  increases 
the computational expenses since it requires a 
simultaneous solution of differential equations of 
the motion for all the kinematic units that form 
the mechanism. Hansen (1996) also develops a 
GP method based on kinematic units in which the 
dynamic calculations are built on a correction of 
driving links’ accelerations under a given state of 
load. Once the accelerations are calculated,  then 
numerical integration is done in order to solve 
position and acceleration and to advance to the 
following time step. This methodology is similar 
to the one presented in this paper. However, there is 
a difference in the calculation of the driving link’s 
acceleration: while Hansen (1996) calculates the 
accelerations by an iterative correction process, 
the method shown in this study requires to apply 
a procedure of force and inertial parameters 
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reduction whose equations are closed and explicit, 
decreasing thus the computational expenses. 
On the other hand, the method developed by 
Hansen (1996) allows to calculate the dynamics 
of mechanisms with several Degrees of Freedom 
(DOF) and with a floating drive, e.g. mechanisms 
in which the engine is situated between two 
moving links; meanwhile the current study is 
limited to mechanisms with one DOF where the 
driving link has a fixed point. This study is meant 
to be extended in the future to mechanisms with 
various DOFs including floating drive. 

The described reduction method conserves the 
advantages of GP methods based on bodies and 
joints and based on kinematic units: it is flexible 
(allows to analyze huge groups of mechanisms 
with only a few modules) and computationally 
efficient (reduced equations for each module are 
closed expressions). An additional advantage of 
this  modular approach for planar mechanisms 
dynamics is the simplification of the solution of 
differential equations of motion, i.e. the analysis 
has been reduced to a single link which may be 
modelled as a body rotating around a fixed axis 
or as a translational body, as appropriate.

2. Methodology for modular dynamics

Dynamical simulation or time response analysis 
is a problem in which a mechanism with known 

geometry and inertial properties is loaded by a 
set of external and driving forces (e.g. functions 
of generalized coordinate or couple - velocity 
functions). The result of this analysis is the 
mechanism kinematics, i.e. positions, velocities 
and accelerations of the links as functions of time. 
The simulation requires numerical integration of 
differential equations describing the motion of 
the system; and this defines its complexity level.

This article presents a GP method based on 
kinematic units for the forward dynamics of 
mechanisms with one DOF. Kinematic units 
are independent and reusable modules for 
analysis, representing a mechanism when they 
are assembled in an appropriate sequence. A 
collection of kinematic units forms a library, 
which, in this work, was implemented following 
the structural group concept developed by Assur 
(1913), i.e. kinematic units whose characteristic 
is that they do not have any effect on the DOF 
of the mechanism. The Assur groups constitute 
analysis units which are independent from the 
point of view of the kinematics as well as the 
kinetostatics. Here, this property is extended 
to the force and inertial parameters reduction: 
each group can be reduced independently, 
and the reduction may be propagated up to the 
driving link. The described reduction of forces 
is based on the power equivalence, while the 
inertial parameters reduction establishes kinetic 

Figure 1. Modular dynamics of mechanisms.
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energy equivalence between the system and its 
reduced equivalent. The method for the analysis 
is shown in Figure 1 and it is also explained in the 
following points:

i) Modular kinematics with unitary driving 
velocity. Velocities of all the links and points 
of interest (centers of mass, force application 
points) are calculated using the modular method 
described by Calle et al. (2001). The analysis 
starts with the driving link, which is assumed 
to have a unitary velocity. The solution, then 
proceeds following the sequence of mechanism 
formation towards the other modules as it is 
shown in Figure 2. Given that each module is 
kinematically determined, therefore it has one 
independent solution. 

ii) Modular reduction of forces and inertial 
parameters up to the driving link. Given the 
kinematics calculated in (i), and knowing the 
loads and inertial parameters of each group, the 
reduction of every kinematic unit is calculated 
the way towards the link which connects this 
unit with the kinematic unit directly preceding 
in the formation sequence, see Figure 2. This 
sequence is adopted to establish a convention that 
would facilitate computational implementation. 
However, this reduction order is not strict 
since the groups may be reduced without any 

particular order and directly to the reduced link. 
The process of reduction simplifies the system 
into the driving link through the power and 
kinetic energy equivalence. Thus, energy and 
power are related by means of the virtual work 
principle. Eq. (1) is obtained for a reduced link 
in rotation:
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where q is the generalized coordinate, ω is the 
angular velocity, τ is the driving torque, τred 
is the reduced couple, and Jred is the reduced 
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where ∆ is the discretization step in radians. 
Linear acceleration of a translational reduced 
link is obtained analogously.

iii) Integration of the differential equation 
of motion. Given the initial conditions of 

Figure 2. Modular propagation of the kinematic analysis and of the reduction of 
forces and inertial parameters in mechanisms. 
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motion, the differential equation obtained in 
(ii) is numerically integrated with respect to 
the generalized coordinate. The result of the 
integration will be the driving link’s velocity, 
which is then applied in the following step 
of generalized coordinate discretization. This 
point is one of the advantages of this method as 
the mechanism has been reduced to one single 
differential equation instead of a system of 
differential equations.

iv) Modular kinematics with reduced link 
velocity. The velocity calculated in (iii) is 
propagated until it reaches the last kinematic 
unit, as it is shown in Figure 2. Velocities of all 
the links are obtained.
 
v) Updating of external forces. Given the 
velocities calculated in (iv) and knowing the 
generalized coordinate, the values of external 
forces dependent on the velocity, generalized 
coordinate, or time, are updated. Now, it is 
possible to return to the step (ii) and continue 
with the next integration.

The following section develops the modular 
dynamics methodology for the case study of 
mechanisms with driving link in rotation and one 
or more Assur groups of two links with rotational 
pairs. Other results may be obtained analogously 
for mechanisms with driving link in translation 
or mechanisms formed by other Assur groups.

3. Results and discussion

3.1. Force reduction

For the force reduction, there are given external 
forces and external couples which act in 
each kinematic unit. The principle of virtual 
displacements is used in this reduction; by this 
principle, power equivalence is obtained between 
the original system and its reduced equivalent. 

Assur group with two links and rotational pairs. 
Figure 3.a presents an Assur group with two links 
and rotational pairs where link 3 is assumed to 
be the reduced link. It is also assumed that the 
driving link has a fixed pivot and therefore the 
system of forces and couples is diminished to a 
single reduced couple  , which acts instead of the 

set of external loads. Eq. (3) represents power 
equality for the calculation of the reduced couple:
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where Fj represents the magnitude of the load 
on the link j, τj is the couple on the link j, νFj is 
the velocity magnitude of the application point 
of the j-th load, αj is the angle between the force 
and the velocity of its application point, j = 3, 
4 for Figure 3.a and τ5 represents the reduced 
couple that comes from the group preceding in 
the reduction propagation. 

Driving link with fixed pivot. Figure 3.b presents 
a driving link with fixed pivot. This is the 

Figure 3. Force reduction. a) In an Assur group with two 
links and rotational pairs. b) In a driving link with fixed 

pivot A.
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reduced link of the whole mechanism. Eq. (4) 
represents the power equivalence of the system 
for calculation of the reduced couple, which acts 
on the driving link: 
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where F2 is the magnitude of external force on the 
link, τ2 represents the action of external couples 
that act on the link without including the driving 
torque, νF2 is the velocity of the application point 
of F2, α2 is the angle between external force and 
velocity of the application point, and τ3 represents 
the reduced couple that comes from the group 
preceding in the reduction.

3.2 Inertial parameters reduction

The reduction of inertial parameters is 
calculated by means of equivalence in energy 
between the original system and the reduced 
one. The reduction is a function of link velocity 
ratios; therefore it is determined from a modular 
kinematics with unitary driving velocity. Inertial 
parameters of all the links are given.

Assur group with two links and rotational pairs. 
Figure 4.a shows an Assur group with two links 
and rotational pairs where the link 3 is assumed 
to be the reduced link. It is also supposed that 
the driving link has a fixed pivot and therefore 
the set of inertial parameters is diminished to 
a single reduced moment of inertia Jred which 
represents the dyad. Eq. (5) describes the 
kinetic energy equivalence for calculation of the 
reduced moment of inertia:

2

3

5
5

2

3

4
43

2

3

4
4

2

3

3
3 








+








++








+








=

ω
ω

ω
ω

ωω
JJJ

v
m

v
mJ GG

red

                     
2

3

5
5

2

3

4
43

2

3

4
4

2

3

3
3 








+








++








+








=

ω
ω

ω
ω

ωω
JJJ

v
m

v
mJ GG

red
               (5)

where mj is the mass of the link j, vGj is the 
velocity of the center of mass j, j = 3, 4 for 
Figure 4.a and J5 is the reduced moment of 
inertia that comes from the group preceding in 
the reduction propagation.

Driving link with fixed pivot. Figure 4.b shows a 
driving link with fixed pivot. This link has been 
assumed to be the reduced link of the whole 
mechanism. Eq. (6) represents the equivalence 
of the system’s kinetic energy for calculation of 
the reduced moment of inertia:
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where mj and J2 stand for inertial parameters of 
the link, vG2 is the center of mass velocity and 
J3 represents the reduced moment of inertia that 
comes from the group preceding in the reduction 
propagation.

The reduction of forces and inertial parameters 
for an Assur group with two links and three 

Figure 4. Inertial parameters reduction. a) In an Assur 
group with two links and three rotational pairs. b) In a 

driving link with fixed pivot A.
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rotational pairs and for a driving link with fixed 
pivot is described in the sections 3.1 and 3.2. These 
reductions constitute two modules in the library 
of modular dynamics of planar mechanisms. The 
modules may be assembled and recycled in the 
simulation of diverse mechanisms. It is necessary 
to develop additional modules for the formation 
sequences that require other structural groups. The 
flexibility is lower than in case of GP programs 
based on joints in which the combination of a 
few modules allows simulation of wide groups 
of mechanisms. However, just a few modules 
based on kinematic units are enough to study the 
majority of mechanisms used in modern technic, 
thereby minimizing the difference with respect 
to programs based on joints, and proving the 
flexibility reported by Hansen (1996).

In terms of computational efficiency, the reduced 
equations are characterized by being algebraic 
and explicit, e.g. Eq. (3) and Eq. (5) for an Assur 
group with two links and rotational pairs.  In 
case of mechanisms with one DOF the system 
is represented, by reduction, by means of one 
single differential equation. This is an advantage 
when compared with strategies that require the 
solution of a system of differential equations, as 

in the study of Wang et al. (2008), or that require 
iterations to correct the driving acceleration in 
addition to solving the differential equation, 
as for example Hansen (1996). The following 
section presents forward dynamics of a six-bar 
mechanism using the modular approach.

3.3 Case study

Figure 5 shows a Watt’s planar six-bar mechanism 
with geometric and inertial parameters registered 
in Table 1. The mechanism starts its motion 
from rest under the action of its weight at   and 
with negligible friction. The simulation is being 
developed until the mechanism reaches the 
standstill again. 

The formation sequence of the mechanism is: An 
Assur group formed by links 3 and 4 is added to 
the driving link 2 between the points A and O4, 
and finally a second Assur group formed by links 
5 and 6 is added between the points C and D, as 
it is shown in the graph (structural diagram) (7):

(7)

where vertices represents the structural groups 
(fixed and driving link and Assur groups) and 
edges represents the group connections, e.g. 
vertex 2,0(5,6) represents a module formed by 
2 links (links 5 and 6) and which adds 0 DOF 
to the kinematical structure, this is, the module 
is an Assur group. Both Assur groups, vertices 
2,0(3,4) and 2,0(5,6), have the same topology 
and are represented by the same module. The 
dynamic simulation is carried out following 
the methodology described in section 2 and in Figure 5. Case study, Watt’s mechanism.

Parameter Value
[m]

Parameter Value
[kg]

Parameter Value
[kg m2]

lO2A 1,0 m2 1,0 J2 0,0833
lAB 1,5 m3 1,5 J3 0,2813
lBO4 1,5 m4 1,5 J4 0,2813
lCE 1,0 m5 1,0 J5 0,0833
lDE 1,0 m6 1,0 J6 0,0833

lO2O4 1,6

 Table 1. Geometrical and inertial parameters of the case study.
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Figure 1. The required modules correspond to 
the kinematics and to the reduction of forces 
and inertial parameters for a driving link with 
fixed pivot, and for an Assur group with two 
links and three rotational pairs. 

The integration of the differential equation 
of motion is calculated assuming that the 
acceleration is constant for small steps (Euler’s 
integration). The size of the adopted step was 
1x10-3 rad, which is, in fact, a small size. Since 
the focus of this study is the modular approach, 
no other numerical methods were considered. 
To diminish the discretization and improve 
the efficiency, multistep methods may be 
implemented, as for example the Runge-Kutta 
methods; this is proposed for a future study. The 
results are registered in Figure 6, describing the 
forward dynamics of the driving link in terms 

of its angular displacement (Figure 6.a) and its 
angular velocity (Figure 6.b). The results are also 
presented applying commercial MBS software 
based on joints. Additionally, Figure 6.c shows 
the magnitude of the reactions in the pairs O2, 
A, and E, which were calculated by the modular 
method. The sequence of the force calculation 
is contrary to the sequence of formation of the 
mechanism described in (7).

Figure 7 presents a validation of the simulation by 
means of energy conservation. The conservation 
is formulated in the absence of all external forces 
different from the weights, and it is registered in 
Eq. (8):

  (8)

where ΔT is the change in kinetic energy and   
is the change in potential energy of the system, 

Figure 6. Forward dynamics of the case study’s reduced link. a) Generalized coordinate (θ_2). b) Angular velocity (ω). c) 
Pair reactions (F). Convention for the figures a) and b):       modular dynamics;     commercial MBS. Convention for the 

figure c):* reaction in O2; + reaction in A; x reaction in E.

,gVT ∆−=∆
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taking as reference the Oxy system from Figure 
5. Figure 7.b presents the details on the energy 
variation which is explained partially by the 
application of Euler’s integration.

4. Conclusions

In this study, there has been presented a 
contribution to the modular dynamics of planar 
mechanisms with one DOF. The methodology, 
described in Figure 1, is based on the concept 
of kinematic unit, which allows formulation 
of independent solutions (modules) for the 
kinematics and for the reduction of forces and 
inertial parameters. A minimal expression of the 
system, in the form of an ordinary differential 
equation, is obtained systematically by means 
of modular reduction of forces and inertial 
parameters. The behavior of the mechanism is 
therefore represented by the driving link under 

Figure 7.	 Energy variation for the case study. a) Kinetic 
and potential energy. b) Total energy. Convention:        T, 

kinetic energy;         V, potential energy;       E = T+V.

the action of the driving force and a reduced force 
and a reduced inertia, which altogether directly 
describe the system’s dynamics.

This contribution keeps the flexibility of GP 
methods, since it is possible to simulate wide 
families of mechanisms by combination of 
few modules. This includes the majority of the 
mechanisms used in modern technic. It is also 
emphasized that the kinematic solution for each 
unit is tailored, which corresponds with the 
advantage of SP methods. 

The methodology was implemented into the 
analysis of Watt’s six-bar mechanism (section 
3.3), and the results were compared with a 
commercial MBS software.
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