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Resumen 
En este artículo se propone un Control Predictivo Basado en un Modelo no Lineal (NMPC) pero que opera por modo 
dual y con estabilidad garantizada. El modo dual se logra usando un controlador PI dentro de la región terminal 
del NMPC. Para el cálculo de la región terminal (Ω) y del dominio de atracción se usa la teoría de conjuntos y un 
algoritmo aleatorizado tipo Montecarlo. En la estrategia de conmutación NMPC al PI se restringen los elementos 
finales de control suavizando la conmutación. El NMPC por Modo Dual propuesto se implementa en simulación en 
un Reactor Continuamente Agitado, comparando su desempeño con el de un NMPC multivariable convencional y 
dos controladores PI. Se concluye que el  NMPC por modo dual propuesto es la estrategia de control que además de 
tener estabilidad garantizada, presenta mejor desempeño. 

Palabras Claves: NMPC por modo dual, región terminal, CSTR, controlador PI.

Abstract: 
This paper proposes a Nonlinear Model based Predictive Control (NMPC), with guaranteed stability using a dual 
mode Model based Predictive Control approach with a PI controller inside a terminal region. Within the formulation 
of this control strategy, a terminal region (Ω) and an attraction domain are calculated using invariant sets theory and 
a randomized Montecarlo type algorithm. In addition, this proposal is complemented with a commutation strategy 
to constrain final control elements smoothing controllers commutation.  This Dual Mode NMPC multivariable 
control is implemented by simulation over a Continuous Stirred Reactor Tank and comparing Dual Mode NMPC 
with a conventional NMPC multivariable and with two PI controllers. Finally, this article concludes that the NMPC 
for dual mode is the control strategy that in addition to having stability guaranteed, presents a better performance.

.
Keys Words: CSTR, Dual mode NMPC, PI controller, terminal region.
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1. Introduction 

Model based Predictive Control was worked for 
first time in the industry at the end of the XX 
century with IDCOM (Identification-Command) 
or MPHC (Model Predictive Heuristic Control), 
which was proposed in (Richalet, et al., 1978) and 
(Cutler & Ramaker, 1980). Those strategies needed 
a dynamic model of the process to predict the 
effect of the future control action over the output 
variable. The control actions were determined 
to minimize the predicted error, restricted to the 
operational constraints. Those strategies used a 
dynamic process model to evaluate the response 
with impulse input signals; it allowed including the 
restrictions over the input and output variables. 

Later, MPC emerges in the academic environment, 
supported by the adaptable control ideas, which 
develops strategies to monovariables process, 
formulated with single input- single output (SISO) 
models. In those years, Generalized Predictive 
Control (GPC) is proposed in (Clarke et al., 1987). It 
use a discrete transfer function CARIMA (Controlled 
Auto-Regressive Integrated Moving Average) as a 
model. The discussion about MPC techniques can 
fill several pages. So the reader is referred to other 
authors like (Qin & Badwell, 2003).

In most of the MPC reported techniques, the 
stability is not guaranteed. For that reason, we need 
a heuristic specific setting for each system even 
without guaranteed success (Limon, 2002). From 
the 1980 decade, several MPC formulations have 
been proposed to overcome the stability problems 
with MPC schemes that guarantee stability from 
controller design (Michalska & Mayne, 1993; 
Alamir & Bornard,1995). There are several 
academic researches that report MPC designs with 
guaranteed stability. One of them is dual mode 
MPC, which is the controller that is studied in this 
paper (Chen & Allgöwer, 1998). Generally, all the 
MPC formulations with guaranteed stability use a 
terminal region which is an invariant of the system. 
However, there is not a standard methodology to 
calculate this region. Several authors have resorted 
to invariant set theory linked to Lyapunov’s theory 

(Limon, 2002; Magni, et al., 2001; Wills, 2003), 
which formulating stability the region like an ellipse 
from a level curve of the Lyapunov function. This 
kind of terminal region is very conservative.  Other 
authors use polyhedral or polytopic representations 
to terminal region calculation. Although, those 
regions are bigger than ellipsoidal regions, its 
calculation has a high computational cost. 

Despite of all those effort, nowadays there is not 
a methodology to calculate the terminal region 
in an adequate way, with low computational 
complexity. Then, one of the aims of this work is to 
use invariant sets and Montecarlo’s techniques to 
calculate the terminal region in a simple way. Other 
motivation is to propose a nonlinear MPC with 
stability guaranteed that be simple and useful in 
industrial environment. For that reason, this work 
proposes a dual mode MPC with terminal region 
where a PI controller acts and with a commutation 
strategy with the purpose of smooth the changes 
own to dual mode. It is chosen a PI controller 
for its wide industrial use to looking to increase 
the chances of implementation of this technique, 
avoiding change each existing PID controller. 
Also, it is proposed a methodology to calculate the 
terminal region of a nonlinear continuous process, 
based in the invariant set theory and Montecarlo 
method with randomized algorithms. Finally, the 
proposed MPC is proved in the continuous stirred 
tank reactor (CSTR), Benchmark presented in en 
(Henson & Seborg, 1990).

2. Methodology proposed to design a dual 
mode MPC (DM-MPC)

The Dual Mode Model Predictive Control (DM-
MPC) is a technique that requires the definition 
of terminal region Ω around of set-point (xSP). Out 
of Ω, MPC is responsible to control and  to drive 
the state to the limits of  Ω. When the boundary is 
crossed, the local controller acts with guaranteed 
stability generated to  Ω. In Figure 1, it is showed 
this operation, where the solid line represents the 
MPC trajectory that is commutated within of Ω 
with the linear control law  h(x). This function 
takes the process to a surrounding  ϕ, which is 
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sufficiently near of the operation point (ϕSP). The 
region χ, bigger than Ω, corresponds to the domain 
of attraction of MP.

2.1 Operation of DM-MPC

As it is illustrated in Figure 1, DM-MPC operates 
with two coupled controllers
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Figure 1. DM-MPC operation

And the subscript N indicates that all states and 
control actions are normalized in the hypercube 
[0,1]. The Equations (2) and (3) are typical of a 
conventional MPC, although here they have a 
multivariable nature since they are formulated 
to control two variables. Unlike the MPC, DM-
MPC has the next restriction in the optimization 
associated with the invariant region Ω of the local 
controller.

( ) , ...,x k H k k H1 1p pd; X+ = -       (4)

The Equation (4) guarantees that at the end of the 
prediction horizon  Hp, the system is within the 
terminal region Ω, where PI controller guarantees 
stability. The terminal region Ω of DM-MPC must 
(Mayne et al., 2000): i) be included in the domain 
of attraction  χ of MPC (Ω ⊆ χ), be closed and 
with 0 ∈ Ω; ii) satisfy the control law u = KΩ (x), 
u ∈ U, ∀ x ∈ Ω for the local controller; iii) be a 
positive invariant, guaranteeing the feasibility of 
the controller in every time instant.

2.2 Methodology to nonlinear DM-MPC

Here it is presented the proposed DM-MPC 
including the calculation of the terminal region 
Ω to the PI linear controller, the computation 
of the domain of attraction χ of MPC and a 
strategy of commutation between MPC and PI 
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controllers, for a nonlinear dynamic process, 
which is modeled as

( ) ( )x u gx f xi
i

m

i
1

= +
=

/
        

(5)

Where x(t)ϵ X is the state of the system,  X is 
the open subset Rn or a differentiable variety  
M of dimension n, control actions u(t)  ϵ U 
are measurable and bounded signals in the 
subset U with dimension  Rm, and f,g are real  
analytic function.

2.1.1 Calculation of the terminal region Ω

In the terminal region Ω, the local controller (in 
this case a PI controller) asymptotically stabilizes 
the system. According with the invariant set 
theory, Ω groups all stabilized sets in X in π steps 
to the bounded surrounding ϕSP around of the set-
point Sπ (X,ϕSP). For each stabilizable set there is 
a sequence of π admissible control actions that 
are produced by the local PI controller (Limon, 
2002). To calculate  Sπ (X,ϕSP)  it is made the 
follow iterative process from π = 1, …, n

( , )S X xSP SP0 z =             (6)

( , ) ( ( , ))S Q S XX Xi SP i SP1 +z z=+    (7)

i. Determine the one-step predecessor set  
Q (ϕSP ) defined as the set of states in Rn for which 
exists an admissible input control signal that takes 
the system to ϕSP in one step

( ) ; ( , )Q x R u U such that f x uk
n

k u kd d d7Dz z" ,  (8)

ii. Calculate the interception Q (∙) ∩ X

iii. If during this process is found an i such 
that Si+1 (X,ϕsp ) = Si(X,ϕsp), then it is found the 
maximum stabilizable set, and this set is the 
terminal region or domain of attraction χ of 
MPC. If not, it must be made the process shown 
later to find the controllable region β for the PI 
controller.
In this work, to calculate Q is used a Montercarlo 

randomized algorithm with error and fail risk 
fixed a priori (Gómez, 2009), taking into account 
the property (Sontag, 1998)   R-T (x) = QT (x), 
that relates the reachable set R (forward) with the 
predecessor Q (backward). R-T (x)  denotes that 
reachable set is computed solving the system in 
inverse time, to obtain the predecessor set. Using 
equations (6) and (7), and with enough iterations, 
arrive to the stabilizable set Sπ (X,ϕSP) in π steps.

2.2.2 Calculation of the controllable region  β 
of PI controller.

The controllable region β is conformed for all points 
which PI controller visits around of the set-point ϕSP 
in a time of 3τ. It is considered the region ϕSP, and not 
the only point xSP, because the probability of x = xSP is 
zero. Also, the maximum time to the process arrives 
to the surrounding ϕSP is taken as 3τ. The reason is that 
MPC controls the process when it is out of the region  
ϕSP. Then, it is just need that PI controller drives the 
process asymptotically until ϕSP, taking only the 60% 
of the total expected time, which is equal to  5τ for 
first order systems since the controller acts when the 
disturbance appears. Generally, 3τ time is translated 
to algorithm steps, according to step size, easing the 
controller implementation. The controllable region 
β is calculated using a Montecarlo’s algorithm with 
error determinated for the Chernoff bound (Fishman, 
1996), as it is shown in (Gómez, 2009). Note that 
intersecting the controllable region β with the 
stabilizable set in π steps Sπ (X,ϕSP) it can guarantee 
that all states that pertain to terminal region reach 
the bounded surrounding of xSP (set-point) in π steps. 
Also, once the state enters in Ω, it never goes out 
if the disturbance does not change, because Ω is an 
invariant set of the internal PI controller. 

2.2.3 Calculation of domain of attraction χ a 
commutation proposal for MPC-PI 

The MPC of this proposal has a prediction horizon 
bigger than control horizon (Hp > Hc) and Ω is a 
invariant set of the system, then, the domain of 
attraction χ (feasible states set) is the stabilizable 
states set in  Hp steps to Ω, whom contains ϕSP 
(Mayne et al., 2000):
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           ( , ) ( ( , ))S X S X XHp Hp 1 +X X= -       (9)

Assuming there are not discrepancies between the 
model of prediction and the real process, the state 
reached for the system in Hp steps will be inside 
Ω. About the commutation strategy, it must avoid 
instabilities due to switching MPC to PI Therefore, 
it is proposed to restrict the portion of final element 
of control available to PI controller in an interval 
in which the difference between the linear and 
nonlinear model be settled in a bound of a priori 
determined error. That is possible because the 
tuning of the PI controller guarantees the asymptotic 
stability to the linearized process model, and linear 
approximation is adequate within Ω.

3. Results and discussion through an 
example of DM-MPC

To show the properties and advantages  of the 
proposed strategy, the DM-MPC is applied to a 
reported as nonlinear behavior process: continuous 
stirred tank reactor (CSTR) with perfect mixing, 
and taking for the simulation the parameters 
presented in (Henson & Seborg, 1990), to make 
a comparison of performance of DM-MPC with a 
conventional MPC and a PI control.

3.1 Continuous stirred tank reactor model 
(CSTR)

This CSTR process is modeled with two states 
using component mass balance and energy 
balance as they are presented below, where 
the exothermic irreversible reaction  A → B   
is ocurred:
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With the parameters: ρ = 1000 g/l, Cp = 1 cal/
g.K., ∆Hr= -2*105 cal/mol, E/R = 9.98*103 K, 

k0 = 7.2*102 min -1, UA = 7*105  min/K.

And with the nominal conditions: F0 = 100 l/min, 
CA0 = 1 mol/l, T0 = 310 K, V = 1000 l, T0j = 310 
K, ρj = 1000 g/l, Cpj = 1 cal/g.K., Fj = 100 l/min 
for the steady state point  CA = 0.0753 gmol/l,  
T = 402.51 K. 

3.2 PI Controllers formulation

Two PI control loops are used with the following 
paired variables: x1= CA with u1= F0 and x2= T 
with u2= Fj. The tuning of PI controllers was made 
with an optimization technique known as bacterial 
chemotaxis, inspired in biology and reported first 
in (Bremermann & Anderson, 1990) but used 
here with modified  proposal by (Alvarez, 2000). 
Thereby, the proportional gain and integral time 
(in seconds) for controllers were obtained: [BPCA 
tICA BPT tIT] = [0.100 30 0.5421 28.17] which is 
heuristically adjusted.

3.3 Conventional MPC controller and DM-
MPC formulation

For the conventional MPC, Equations (2) and 
(3) are used, with state normalization at interval 
[0,1] and with adjustment parameters of the cost 
function:  [α = 12, λ = 6, γ = 12, δ = 6].

For DM-MPC, Equations (1) to (4) are considered. 
Keeping the previously described procedure, 
the terminal region Ω and domain of attraction  
χ, both are calculated below and the strategy of 
commutation is presented.

3.3.1 Terminal region Ω calculation.

The following steps are made to calculate the 
terminal region Ω of local PI controller.

i. Calculate the stabilizable set in 3τ = 45 steps: 
S45 (X, ϕSP)

Carrying out the described procedure of Equations 
(6) and (7) with xSP = [CA = 0.0753  T = 402.51], 
and using for Montecarlo method with randomized 
algorithms with the next adjustments: ε = 0.01,   (1- 
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δ) = 0.99 and a sample size of 26400 (according to 
Chernoff bound), the sets are obtained and shown in  
Figure 2. It is important to remark that stabilizable 
sets at least 45 steps (3τ of CSTR stabilization 
time), are nested, hence they are the invariant sets 
of the system (Kerrigan & Maciejowski, 2000).

As there is no any i such that Si+1 (X, ϕsp) =  Si (X,  
ϕsp ), then it is needed to calculate the controllable 
set β for PI controller as is shown below.

ii. Calculation of the controllable set β of PI 

With the sample size determined (26400 in 
accordance of Chernoff bound), it is obtained the 
region shown in Figure 3, with dark grey points 
denote controllable region β, that means,  all points 
that reach the region S45 (X, ϕSP), stabilizable set in 
3τ (45 steps), while light grey points indicate the 
points that do not reach β. 

iii. Intersection of stabilizable set in 45 steps S45 
(X,ϕSP) with the β region.

When the β region is intersected with the other 
regions obtained from stabilizable set calculation 
at 45 or less steps, it can guarantee that states of 
terminal region reach the bounded contour of the 
set-point ϕSP, and once they enter to the Ω, they do 
not leave it, namely, Ω is an invariant set of control 
system. Figures 4 and 5 illustrate the PI controller 

Figure 4. Intersection of stabilizable sets at 45 or less 
steps and controllable region by PI controller

Figure 2. Stabilizable sets at 45 or less steps, with S45 
(X,ϕsp ) the outer. Figure 3. Controllable region by PI controller

behavior inside the terminal region  and the 
intersection of stabilizable sets at 45 or less steps 
and controllable region by PI controller.

3.3.2 Calculation of the domain of attraction χ of 
MPC and a commutation proposal

Taking into account that prediction horizon is 
Hp = 10 steps, an stabilizable set in 10 steps is 
calculated at Ω: S10 (X, Ω), which is presented in 



Figure 5. PI controller behavior inside the terminal  
region Ω

29

Ingeniería y Competitividad, Volumen 16, No. 1, p. 23 - 34 (2014)

are moved to Figure 2, it is possible to detect that 
with 8 steps the process can be taken to Ω, i. e., the 
stabilizable set in 8 steps, S8 (X, Ω), as it is shown 
in Figure 8.

Therefore, it is required to find the control action 
intervals that take the system to the discretized 
boundary of the stabilizable region to 8 steps, they 

Figure 6.  Later, in Figure 7, a comparison between 
linearized model behavior and nonlinear model 
behavior is presented, for the two states: reactive 
concentration and reactor temperature, showing 
that in surrounding of Ω, the linearization adjusts 
accurately with nonlinear behavior of real process. 

In Figure 7, they are shown the bounds [Camin  Camax] 
= [0.035 mol/l   0.11 mol/l  ] and [Tmin  Tmax] = [397 
K 408 K] according to 5% lineal model error, in 
contrast with nonlinear model. Then, if this bounds 

Figure 7. Comparison between nonlinear 
model response and linearized for para CA y T

Figure 6. Stabilizable set in S10 (X,Ω), or domain of 
attraction χ of DM-MPC.
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are: [F0min  F0max] = [56.66 l/min  136.40  l/min] and 
[Fjmin  Fjmax] = [57.88 l/min   132.89 l/min]. Finally, 
from those limits, it is noted that the valves must 
operate at interval 60-140 l/min for the PI controllers.

3.4 Simulation results and discussion

To evaluate the performance of formulated 
controllers in this work, the initial condition is set 

Figure 10. Magnification of system path until it reaches 
the terminal region Ω.

Figure 9. State evolution at closed loop (dual mode MPC, 
conventional and PI)

in CA= 0.0311 mol/l  and   T = 395.39 K, located 
outside of terminal region and inside attraction 
domain χ of designed DM-MPC. For this initial 
condition, the behavior and path until state reaches 
the set-point is evaluated. In Figures 9 to 12, it can 
be seen obtained results.

In Figure 10, a clear evidence of adding the 
constraint (4) to MPC is presented, while DM-

Figure 8. Stabilizable set at 19 steps:  S19 (X,Ysp ).
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Figure 11. State time evolution for different controllers

Figure 12. Control actions applied by different controllers

MPC reaches the terminal region in 10 steps or 1 
minute, conventional MPC takes 13 steps to do it. 
Regarding observed behavior in control action, it 
can be remarked that conventional MPC creates 
oscillatory control actions (Figure 12) instead 
dual mode MPC doesn’t generate them.

Generally, in all figures PI controller looks with 
the poorest performance, instead of the results 
with PI coupled in DM-MPC. From there, it 

follows that although PI controller is a linear 
controller, it only has a proper performance 
at surroundings of origin (like Ω), therefore 
it is justified the applied commutation in dual  
mode MPC. 

4. Main findings 

In this work a strategy of dual mode MPC is 
proposed, with guaranteed stability that can be 
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implemented in a local industrial level, with PI 
controller acting inside a terminal region and while 
MPC acts outside it. 

In the designed MPC strategy, it was proposed 
a methodology for terminal region calculation 
and domain of attraction calculation, which is 
valid for continuous nonlinear processes. In this 
methodology, invariant set theory and randomized 
algorithms are used, by means of polyhedral 
approximation to real set, remarking that this region 
is bigger than obtained from Lyapunov theory 
(Limon, 2002) and with a lower computational 
cost than calculated using actual polyhedral or 
polytopes procedures, mentioned in introduction.

As a complement of DM-MPC design, it was 
proposed a commutation strategy, which restricts 
the control action range, of local PI controllers. 
For specific case of CSTR, valve movement was 
restricted to 60 and 140 l/min (PI controller’s 
action), in a region which nonlinear systems 
behaves like a linear system.

When the obtained performance of DM-MPC is 
compared with the conventional MPC, it is noted 
that DM-MPC operates with smoother valve 
movements than conventional MPC, and reaches 
the bounded surrounding ϕSP of set-point in a 
faster way, leading to conclude that DM-MPC is 
a satisfactory control strategy, taking into account 
that besides that it guarantees stability, it has a better 
performance than obtained from a conventional 
MPC or PI controller.

Finally, it is remarked that DM-MPC is able to 
guarantee stability, through the use of MPC 
and PI controllers, with three novelties, a 
methodology for terminal region Ω and attraction 
domain χ calculations, using Montecarlo method 
with randomized algorithms and a strategy for 
commutation of controllers.

5. Notation

β	 Controllable region of PI

C A	 Reactive A concentration (mol/l)

CA0	 Input A concentration (mol/l)

C p	 Solution heat capacity in the reactor        
             (cal/g.K)

Cpj	 Heat capacity of cooling liquid (cal/ 
             g.K)

F0	 Input volumetric flow (l/min)

Fj   	 Volumetric flow of cooling liquid 
             (l/min)

ρ	 Solution density in the reactor (g/l)

ρj	 Cooling liquid density (g/l)

E/R	 Exponential factor of kinetic expression 
             (K)

Hp	 Prediction horizon of MPC

Hc	 Control horizon of MPC

k0	 Frequency factor of kinetic expression 
             (min-1)

KΩ (x)	 Local control law that acts inside Ω

Q(ϕ)	 One step predecessor set of invariant 
             set ϕ

∆Hr  	 Reaction heat  (cal/mol)

R	 Reachable set

Sπ (x,θ) Stabilizable set of states x in π steps of 
             a set θ

T	 Feed temperature (K)

T0	 Input temperature (K)

T0j	 Cooling liquid input temperature (K)

UA	 Global heat transfer coefficient by   
             transfer area

V	 Tank volume (l)

χ 	 Domain of attraction of the MPC



33

Ingeniería y Competitividad, Volumen 16, No. 1, p. 23 - 34 (2014)

xsp 	 Set points of states

Ω	 MPC terminal region

6. References 

Alamir, M. & Bornard, G. (1995). Stability of a 
truncated infinite constrained receding horizon 
scheme: The general discrete nonlinear case. 
Automatica 31 (9), 1353–1356.

Alvarez, H. (2000). Control predictivo basado en 
modelo borroso para el control del pH. Serie Temas 
de Automática, Vol. 10. Editorial Fundación UNSJ, 
San Juan, Argentina.

Bravo, J. M., Limon, D. Alamo,T., & Camacho, 
E.F.  (2005). On the computation of invariant sets 
for constrained nonlinear systems: An interval 
arithmetic approach. Automatica 41 (9), 1583-
1589.

Bremermann, H. & Anderson, R. (1990). An 
alternative to back-propagation: a simple rule 
of synaptic modification for neural net training 
and memory. Technical Report PAM-483. Center 
for pure and applied mathematics. University of 
California, Berkeley.

Cannon, M., Deshmukh, V., & Kouvaritakis, B. 
(2003). Nonlinear model predictive control with 
polytopic invariant sets. Automatica 39 (8), 1487 
–1494.

Chen, H. & Allgower, F. (1998 ). A quasi-infinite 
horizon nonlinear model predictive control scheme 
with guaranteed stability. Automatica 34 (10), 
1205–1218.

Clarke, D. W., Mohtadi, C. & Tuffs, P. S. (1987). 
Generalized predictive control. Part I: The basic 
algorithms, Automatica 23 (2), 137–148.

Cutler, C. R. & Ramaker, B. L. (1980). Dynamic 
matrix control- a computer control algorithm. In 
proceedings of  Automatic Control Conference, 
San Francisco,CA.

De Doná, J.A., Seron, M.M., Mayne, D. Q. & 
Goodwin, G.C. (2002). Enlarged terminal sets 
guaranteeing stability of receding horizon control. 
Systems and Control Letters 47 (1), 57-63.

Fishman G. (1996). Monte Carlo, concepts, 
algorithms and applications. Springer. New York

Gómez, L.M. (2009). Una aproximación al 
control de procesos por lotes. Tesis de Doctorado 
en ingeniería de sistemas de control, Instituto de 
Automática, INAUT, Facultad de Ingeniería, 
Universidad Nacional de San Juan, Argentina.

Henson, M.A. & Seborg, D.E.  (1990). Output 
Linearization of General Nonlinear Processes. 
AIChE 36 (11), 1753-1757.

Kerrigan, E.C. & Maciejowski, J.M.(2000).  
Invariant sets for constrained nonlinear discrete-
time systems with application to feasibility in 
Model Predictive Control. In proceedings of the 
41st IEEE Conference on Decision and Control, 
Australia, p.4951-4956.

Kouvaritakis, B., Cannon, M., Karas, A., B. Rohal-
Ilkiv,B. & C. Belavy, C. (2002). Asymmetric 
constraints with polyhedral sets in MPC with 
application to coupled tanks system. In Proceedings 
of the 41st IEEE Conference on Decision and 
Control, Las Vegas, p. 4107- 4112.

Limon, D. (2002). Control predictivo de sistemas 
no lineales con restricciones: estabilidad y robustez. 
Tesis de doctorado. Escuela Superior de Ingenieros, 
Universidad de Sevilla, Sevilla.

Limon, D., Gomes da Silva Jr, J.M., Alamo, T. 
& Camacho, E. F. (2005). Improved MPC design 
based on saturating on control laws. European 
Journal of Control 11(2), 112-122.

Limon D., Alamo, T. & Camacho, E. F. (2005). 
Enlarging the domain of attraction of MPC 
controllers. Automatica 41(4), 629-635.

Michalska, H. & Mayne, D. Q. (1993). Robust 
receding horizon control of constrained nonlinear 



34

Ingeniería y Competitividad, Volumen 16, No. 1, p. 23 - 34 (2014)

systems, IEEE Transactions on Automatic Control 
38(11), 1623–1632.

Mayne, D.Q., Rawlings, J. B., Rao,  C. V. & 
Scokaert, P. O. M. (2000). Constrained model 
predictive control: stability and optimality. 
Automatica 36(6),789-814.

Magni, L., De Niicolao, G., Magnani, L. & 
Scattolini, R. (2001). A stabilizing model based 
predictive control algorithm for nonlinear 
systems, Automatica 37, 1351– 1362.

Qin, S.J. & Badwell, Th. (2003). A survey of 
industrial model predictive control technology. 
Control Engineerign Practice. Vol. 11.

Richalet, J., Rault, A., Testud, J.L., & Papon, 
J. (1978). Model predictive heuristic control: 
Applications to industrial processes, Automatica 
14 (5), 413–428.

Rohal-Ilkiv, B. (2004). A note to calculation of 
polytopic invariant and feasible sets for linear 
continuous-time systems. Annual Reviews in 
Control 28 (1), 59–64.

Sontag, E. (1998). Mathematical Control Theory. 
Second Edition, Springer: New York.

Wills, A. G. (2003). Barrier function based model 
predictive control. Doctoral Thesis, School of 
Electrical Engineering and Computer Science, 
University of Newcastle, Australia.


