
§
Javier I. Carrero-Mantilla *

*Universidad Nacional de Colombia, Sede Manizales, Manizales-Colombia.

jicarrerom@unal.edu.co

(Recibido: Marzo 1 de 2011-Aceptado: Noviembre 21 de 2011-Version Final: Mayo 18 de 2012)

Abstract

Keywords: 

It is possible to solve analytically cubic equations of state when they are reduced to a polynomial form, but it is known 
that at certain conditions application of the Cardano-Vieta formulas can produce wrong liquid density results due to 
numerical errors. In this work the same behavior was found in the hybrid analytical-iterative Deiters solution method, 
the causes of the errors were revisited, and for each method a new criterion was proposed to stop the calculation when 
wrong results can be produced. But it was also found that the wrong results can be avoided either using the reduced 
density as variable in the polynomial associated to the equation of state; or calculating the complete set of polynomial 
roots with the Jenkins-Traub algorithm, which can be even more advisable than any of the two aforementioned 
methods.

Cubic equations of state, Cardano-Vieta method, Polynomial roots.

INGENIERÍA  QUÍMICA

Los problemas numéricos dentro de los métodos 

analíticos de solución para ecuaciones de estado cúbicas

The numerical problems within analytical methods 

of solution for cubic equations of state 

CHEMICAL ENGINEERING

Resumen

Es posible resolver analíticamente ecuaciones cúbicas de estado cuando se reducen a una forma polinomial, pero se 
sabe que a ciertas condiciones la aplicación de las fórmulas de Cardano-Vieta puede producir resultados erróneos de 
densidad de líquido a ciertas condiciones debido a errores numéricos. En este trabajo se encontró el mismo 
comportamiento en el método de solución híbrido analítico-iterativo de Deiters a dichas condiciones. Las causas de 
los errores fueron reexaminadas, y para cada método se propuso un nuevo criterio para detener el cálculo cuando se 
pueden producir resultados erróneos. Pero también se encontró que los resultados erróneos se pueden evitar usando la 
densidad reducida como variable en el polinomio asociado a la ecuación de estado; o calculando el conjunto completo 
de raíces del polinomio con el algoritmo Jenkins-Traub, lo que puede ser incluso más recomendable que cualquiera de 
los dos métodos mencionados previamente.

Ecuaciones cúbicas de estado, Método Cardano-Vieta, Raíces de polinomiosPalabras Claves: 
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1. Introduction

Cubic equations of state (cubic EOS) come from 
the addition of a covolume parameter ( ) and an 
attractive pressure term inversely proportional to 

2
to the ideal gas equation. However, most 

modern cubic EOS use a polynomial of degree 2 
2

instead of    in the form

where , , and  represent pressure, molar 
volume, and temperature;  is the gas constant; 
and the terms , , , and  can be constant or 
functions of temperature and fluid properties 
including critical temperature and pressure, and 
acentric factor, Valderrama (2003). Any cubic 
EOS in the form of Eq. 1 can be rewritten as a 
cubic polynomial of the compressibility factor, 

defined as . For example the original 
van der Waals EOS (  and  in Eq. 1, van der 
Waals (1873)) becomes 

2
with the dimensionless parameters , 

. Moreover, it results possible to write 
cubic EOS as polynomials in terms other than , 
such as the density reduced by the covolume, 

, Deiters (2005), or a reduced molar volume 
defined as . With these arrangements the 
van der Waals equation becomes

or

The key to use a cubic EOS is the calculation of the 
density of the phases, necessary to obtain 
thermophysical properties, for example, residual 
enthalpy or fugacity coefficient. In cubic EOS 
pressure is written as the dependent variable (Eq. 
1), therefore the calculation of pressure from 

temperature and volume, , is 

b
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straightforward. However obtaining the molar 
volume from temperature and pressure, the 

 calculation, becomes a non-linear 
problem that requires a numerical solution and an 
initial estimate of the value of the root, or roots. 
Transforming the cubic EOS into a cubic 
polynomial of the form

with , , or  simplifies the non-linear 
problem because the fundamental theorem of 
algebra states that it has three roots, which can be 
found from three kinds of methods:

Analytic: the three roots are computed using the 
Cardano-Vieta (CV) formulas,Weisstein (2009, 
2009b).

Iterative: an initial estimate of the value of the root 
is improved in successive steps using a numerical 
method. For real roots the Newton-Raphson, or 
Muller method can be applied. In the Deiters 
method the first root is found iteratively and used 
to deflate the polynomial to a quadratic form, 
Deiters (2002).

Multiple root finder (MRF): the complete set of 
roots is computed using the fact that they are 
eigenvalues of the companion matrix associated to 
the polynomial. Within the available techniques 
the Jenkins-Traub algorithm (also known as 
RPOLY) has become a de facto standard for 
numerical software, Jenkins (1975), Jenkins & 
Traub (1970, 1975), Press et al. (1992).

Cubic EOS have become a common model choice 
for process simulation and optimization due to 
their capability to predict properties of gas and 
liquid phases, therefore selection of the solution 
method for the polynomial roots in Eq. 5 is 
extremely important because being at the lowest 
levels in the execution hierarchy of the required 
iterative procedures (for example flash 
calculations) the functions related to the 
implementation of cubic EOS are frequently 
called. This implies that the overall computation 
time depends on their speed, and the reliability of 
the global result depends on their precision.

V=V T,P

x= x=r x=V

( )

Z

Solution of Eq. 5 with analytic or multiple root 
finder methods has two advantages over the use of 
iterative methods, initial estimates of the answer 
are not required, and the result is the complete set 
of three roots making possible to know directly if 
the EOS predicts densities for one or two phases 
from the number of real roots in the results. But it 
is necessary to consider also the speed and 
precision of the methods.

The relative speed of the different methods of 
solution depends strongly on the way that the 
algorithms and functions are programmed and has 
been discussed in previous works, Deiters (2002, 
2005), Mathias & Benson (1986), Salim (2005). 
An informal test done for this work showed that 
using an optimized implementation the MRF 
method can be faster than the other ones; however 
the execution times for individual calculations 
were of milliseconds in all cases, even using 
interpreted languages. This suggests that speed is 
not a practical criterion to differentiate the 
methods of solution, as using modern processors 
the time required for complex simulations would 
increase or decrease in a few seconds due to the 
choice of a particular method. Hence in this work 
execution time was not considered to compare the 
different solution methods.

On the contrary, due to the disastrous effects that 
accumula ted  e r rors  in  the  va lues  of  
thermophysical properties could cause in a 
simulation, precision cannot be compromised for 
the calculation of the roots of a cubic EOS, and it is 
also necessary to check if the roots are physically 
feasible, Deiters (2002), Mathias et al. (1984). The 
analytic nature of the CV method suggests a 
guaranteed result, but its dependence on the 
functions square root, , and  can lead to a 
loss of numerical precision. In fact the CV 
formulas can fail in a catastrophic way producing 
physically unfeasible compressibility factors for 
the liquid phase due to an error magnification, as it 
was found by Zhi & Lee (2002) for some cubic 
EOS at a specific set of low temperature 
conditions. To avoid a possible failure of CV it has 
been proposed to simply avoid the analytical 
method at cryogenic conditions, Zare Nezhad & 
Eggeman (2006); however this strategy ignores 
that the values fed to the CV formulas, not the 
temperature, are the cause of the problem and thus 

cos arccos

similar failures could appear for other conditions 
of temperature and pressure with different cubic 
EOS. Hence a reliable solution procedure for Eq. 5 
should have a safeguard against the use of the CV 
formulas based on numerical grounds, not on 
physical information.

In this work, the causes of the CV method failure 
and the criteria previously proposed to quit the CV 
calculation are revisited, and alternate methods of 
solution are analyzed in order to propose new 
numerical criteria to avoid that kind of failure. It 
was found that the error magnification proposed 
by Zhi & Lee (2002) can be discarded as the cause; 
that the combination of CV with an iterative 
procedure proposed by Deiters (2002) tends to fail 
at the same conditions reported for CV; and that 
the use of the  as variable in Eq. 5 or the Jenkins-
Traub algorithm prevents the numerical failure. 

The remaining of this paper is organized as 
follows, in Methodology section the CV and 
Deiters solution methods are reviewed, it is 
explained how their results are tested, and the 
previous explanation about the failure of the CV 
method is discussed. In Results and discussion 
section, the numerical causes for the failure of the 
CV and Deiters methods are explained first, and 
finally, the criteria to avoid such failure are 
developed. Complete tables of results are 
available from the author as supplementary 
material.

2. Methodology

2.1 The Cardano-Vieta and Deiters methods

The analytical method of solution for cubic 
polynomials is based on the Vieta substitution 
within the formulas of Cardano, Weisstein (2009, 
2009b), as described in Fig. 1. This algorithm 
starts with the calculation of the polynomial 
discriminant, , defined as 

with
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and

The number of real roots of Eq. 5 depends on , if 
  there is only one real root (calculated as

                    

and the other two are complex conjugate, 
otherwise there are three real roots that come from 
the expression 

with . The angle  (in radians) is calculated 
as 

where

In the Deiters method (see Deiters (2002), Fig. 2) 

the cubic polynomial is defined as the  
function 

whose real roots are within the interval  
where 

The first root is found iteratively and the initial 
estimate is one of the two extremes of the interval, 
assigned according to 

where                is an inflection point of  .Then 
the first and second derivatives of  are used with 
the Halley's method, also named “Kepler's 
method” by Deiters,
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converges to a value , Koçak (2008, 2008a), 
Weisstein (2009a).The two remaining values of  
are the roots of the quadratic polynomial

with coefficients                    and                      , 

obtained applying polynomial deflation to . In 
this way the Deiters method does not require an 
initial estimate of the roots and combines the 
advantages of the numerical iterative and CV 
methods.
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agreement with experimental values while CV 
results were wrong, being in some cases 
physically infeasible. Considering that the use of 
equations of state to predict liquid densities has 
been deemed not advisable due to deviations of 
the results respect to the experimental values, 
Valderrama & Alfaro (2000), the production of 
unreliable  predictions only in a very specific 

region could be attributed to limitations in the 
range of application of the cubic EOS but it is not 
the case: if the failures were attributable to the 
cubic  EOS both CV and NR results should 
coincide to the same wrong values, i.e. results 
from both methods of solution should diverge 
from experiment in the same way. Moreover, with 
the three cubic EOS used by Zhi and Lee reported 
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T,P 

saturated liquid density results tend to remain 
within the same order of magnitude of the 
experimental values and are positive: reported 
discrepancies for various substances and 
conditions are <30% for the cubic EOS Peng-
Robinson (PR, Peng & Robinson (1976)), <5% 
for the cubic EOS  Chain of Rotators (CCOR, 
Kim et. al. (1986), Lin (1983)), and <7% for 
Patel-Teja (PT, Teja & Patel (1982)). Instead, in 
the worst results reported by Zhi and Lee there 
are differences of several orders of magnitude 
respect to the experimental values, or even 
negative values that cannot be attributed to 
errors in the implementation of the CV method, 
as it produces results coincident with NR in 
other regions.
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Figure 1: Flowchart describing the solution algorithm for 
the Cardano-Vieta method.

)

2.2 The tests for the solution methods 

In a previous work it was found that for extremely 
low pressures and temperatures liquid volume ( ) 
results from cubic EOS calculations depend on the 
method of solution, Zhi & Lee (2002). Results 
from the application of the Newton-Raphson (NR) 
method with in Eq. 5 had a very acceptable 
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calculate: r, q, d
(Eqs. 6-8)

 d>0? calculate one real root

no

calculate three real roots
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Figure 2: Flowchart describing the algorithm for the Deiters method.
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set search interval for real roots
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set initial for the first roots
(Eq. 14)
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<
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(Eq. 15)

|x(k+1)-x(k)|<tol?

no
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2.3. Analysis of the behavior of the Cardano-
Vieta formulas 

Zhi and Lee (2002) defined

as an “error magnification” in the CV formulas, 

where  indicates the absolute error. For the liquid 

root,  in Eq. 11, and approximating  to the 
differential  becomes 

Given that

tends to infinity when  and induces a huge  

error in , hence the failure of CV was attributed 
to the condition .

In this work the magnification error was 
constrained to finite values replacing the function 
arccos with arctan to calculate the roots from 

with . This form correspond to the same 
angle  in Eq. 9 with 

Using Eq. 23 the error magnification for the liquid 
root becomes 

D
j 1

M

Mc s 1
ZL

s ®1

j
θ

= D
c

®

=0,1,2

The failure of the CV formulas has been attributed 
to numerical inconsistencies which are revisited in 
this work not only for CV but also for the Deiters 
method using the same benchmark of 48 
conditions and three cubic EOS proposed by Zhi 
& Lee (2002), including temperatures and 
pressures in the ranges  and 

  for propylene, 1-
butene, and 1-pentene. For each  condition 
results were obtained with the PR, CCOR, and PT 
cubic EOS using , , and as variables in 
Eq. 5. The CV, and Deiters methods were written 
for the FORTRAN compiler Absoft (2008); and 
the Jenkins-Traub algorithm, as implemented 
within the function roots included in the software 
Scilab (2009), was used as MRF. Critical 
properties and acentric factors were taken from 
Perry's handbook, Liley et al. (1999). As happened 
with the NR method in the original Zhi and Lee 
study it was found that  values from the MRF 
used agree with the experimental ones in the 
whole range of conditions (see Table 1). This 
indicates that MRF does not fail at the ,  
conditions of the benchmark, hence , , and 
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results from CV and Deiters methods were 
compared against the values from MRF.

The liquid phase specific volume, , was 
obtained from the corresponding root of Eq. 5 
(with ) as

but the comparison with experimental  values 
was avoided because in this case the agreement 
depends not only on the solution method but also 
on the accuracy of the EOS, which is not the object 
of study of this work. For and the differences 
between CV and Deiters, and MRF results were 
measured in a base-10 logarithmic scale defining 
the parameters  

and

where the superscript  identifies the values from 
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where the subscript  indicates the use of arctan 
instead of arccos. The value of  must remain 
finite and close to zero when  for two reasons; 
first given that  

and second,                           , therefore  will 
tend to zero when  as long as  remains 
finite. The proximity of s to 1 was measured using 
the parameter 

for example                            ,
and so on. Results in Fig. 3 show, as expected, that 

 falls below  for all conditions, even when 
. But despite the reduction of M value by 

several orders of magnitude the differences 
between  from CV and MRF when  remain 
in the results (Fig. 4). This shows that the 
“magnification error” is not the origin of the 
apparent failure of CV method, and it makes 
necessary a different analysis of the CV formulas.

3. Results and discussion

3.1 Error propagation in the Cardano-Vieta 
method

Complete agreement with the experimental 
values was found for all conditions and EOS if the 
polynomial in Eq. 5 is used with , or if the MRF 
method is used with any of the three options, 

, or . On the other hand, for the lowest  
values in the benchmark application of CV or 
Deiters methods produced completely wrong  
values. Certainly these results are induced by the 
values of  and  used as arguments for the EOS, 
but their direct cause is the application of the CV 
and Deiters formulas to polynomials with 
coefficients that differ by several orders of 
magnitude, which induce numerical truncation 
errors that propagate to the final results. In order to 
show how the propagation takes place the 
calculation of the three real roots for propylene at 

  and  with the Patel-Teja EOS, 
Teja& Patel (1982), is used as an illustrative 

t
M

1®s

Mt

s®1 c

Mt Mc

s®1

ZL s®1

V

x=
x=

x r x V

VL

P

95.4 1.22´

t

M

L 

r
Z, 

= = T

K 10   Pa

Table 1: Molar volumes of liquid propylene, in 
values, PT results from the Patel-Teja EOS, PR results from the Peng-Robinson EOS, and CC results from the Cubic Chain of 
Rotators EOS. Results for 1-butene and 1-pentene are available as suplementary material from the author.
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2.3. Analysis of the behavior of the Cardano-
Vieta formulas 

Zhi and Lee (2002) defined

as an “error magnification” in the CV formulas, 

where  indicates the absolute error. For the liquid 

root,  in Eq. 11, and approximating  to the 
differential  becomes 

Given that

tends to infinity when  and induces a huge  

error in , hence the failure of CV was attributed 
to the condition .

In this work the magnification error was 
constrained to finite values replacing the function 
arccos with arctan to calculate the roots from 

with . This form correspond to the same 
angle  in Eq. 9 with 

Using Eq. 23 the error magnification for the liquid 
root becomes 
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The failure of the CV formulas has been attributed 
to numerical inconsistencies which are revisited in 
this work not only for CV but also for the Deiters 
method using the same benchmark of 48 
conditions and three cubic EOS proposed by Zhi 
& Lee (2002), including temperatures and 
pressures in the ranges  and 

  for propylene, 1-
butene, and 1-pentene. For each  condition 
results were obtained with the PR, CCOR, and PT 
cubic EOS using , , and as variables in 
Eq. 5. The CV, and Deiters methods were written 
for the FORTRAN compiler Absoft (2008); and 
the Jenkins-Traub algorithm, as implemented 
within the function roots included in the software 
Scilab (2009), was used as MRF. Critical 
properties and acentric factors were taken from 
Perry's handbook, Liley et al. (1999). As happened 
with the NR method in the original Zhi and Lee 
study it was found that  values from the MRF 
used agree with the experimental ones in the 
whole range of conditions (see Table 1). This 
indicates that MRF does not fail at the ,  
conditions of the benchmark, hence , , and 
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results from CV and Deiters methods were 
compared against the values from MRF.

The liquid phase specific volume, , was 
obtained from the corresponding root of Eq. 5 
(with ) as

but the comparison with experimental  values 
was avoided because in this case the agreement 
depends not only on the solution method but also 
on the accuracy of the EOS, which is not the object 
of study of this work. For and the differences 
between CV and Deiters, and MRF results were 
measured in a base-10 logarithmic scale defining 
the parameters  

and
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where the subscript  indicates the use of arctan 
instead of arccos. The value of  must remain 
finite and close to zero when  for two reasons; 
first given that  

and second,                           , therefore  will 
tend to zero when  as long as  remains 
finite. The proximity of s to 1 was measured using 
the parameter 

for example                            ,
and so on. Results in Fig. 3 show, as expected, that 

 falls below  for all conditions, even when 
. But despite the reduction of M value by 

several orders of magnitude the differences 
between  from CV and MRF when  remain 
in the results (Fig. 4). This shows that the 
“magnification error” is not the origin of the 
apparent failure of CV method, and it makes 
necessary a different analysis of the CV formulas.

3. Results and discussion

3.1 Error propagation in the Cardano-Vieta 
method

Complete agreement with the experimental 
values was found for all conditions and EOS if the 
polynomial in Eq. 5 is used with , or if the MRF 
method is used with any of the three options, 

, or . On the other hand, for the lowest  
values in the benchmark application of CV or 
Deiters methods produced completely wrong  
values. Certainly these results are induced by the 
values of  and  used as arguments for the EOS, 
but their direct cause is the application of the CV 
and Deiters formulas to polynomials with 
coefficients that differ by several orders of 
magnitude, which induce numerical truncation 
errors that propagate to the final results. In order to 
show how the propagation takes place the 
calculation of the three real roots for propylene at 

  and  with the Patel-Teja EOS, 
Teja& Patel (1982), is used as an illustrative 
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Table 1: Molar volumes of liquid propylene, in 
values, PT results from the Patel-Teja EOS, PR results from the Peng-Robinson EOS, and CC results from the Cubic Chain of 
Rotators EOS. Results for 1-butene and 1-pentene are available as suplementary material from the author.
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example (see Table 2). For in Eq. 5 there are  

differences of eight and nine orders of magnitude 
between  and and between  and  
respectively, in the calculation of , , and  these 
differences propagate through the operations. In 
E q .  7 ,   t h e  t e r m s ,
0.999999999126088 and

-8 
 8.41327018500574×10 have a difference of 
eight orders of magnitude implying that most of 
the digits in the  term do not count for the 
subtraction, as typically the 15 leftmost digits are 
significant with the DOUBLE PRECISION 
variables, Compaq (2000). Next, in Eq. 8 again 
numbers of very different orders of magnitude are 
being subtracted in the calculation of the term  
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liquid result is wrong (see Table 2). The huge 
difference between the terms used to calculate  
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the CV procedure. This behavior appears again for 
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The apparent immunity to the failure of the 
calculation with in Eq. 5 is explained in a 
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several orders of magnitude lower than  and . 
This difference produces but it is not 
close enough to 1 as to trigger the amplification of 
the round-off errors found for  and . In the 
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digits, and the same stands to a lesser degree for 
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appears in the rest of the benchmark, supporting 
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example (see Table 2). For in Eq. 5 there are  
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work of Zhi and Lee, at least for the calculation of  
using the  form, but its effect when  was 
explained with the “magnification error”. Also, 
given that the failure comes from numerical 
effects and therefore is not directly caused by the 
kind of cubic EOS or substance the use of results 
from three EOS and three substances is reiterative: 
results from a single EOS and one substance 
would have been enough, but anyway the original 
set was maintained here for the sake of the 
continuity.

3.2  Error propagation in the Deiters method

Results from the application of the Deiters method 
were also wrong at the same conditions reported 
for the CV formulas. For the same illustrative 
example (Patel-Teja EOS applied to propylene at 

and ) the Deiters method 
produces                                         while the 
MRF result is                                               . This 
implies that the sets of polynomial coefficients 
inducing the failure of CV formulas have the same 
effect on the Deiters method, although different 
numerical anomalies account for such effect.

The causes of the errors were traced back to the 
application of Eqs. (12)-(16), using the 
polynomial form it was observed for the failure 
conditions tested that  and the first root, 
obtained iteratively, is . In the deflation of the 
cubic polynomial both  and  parameters tend to 
zero because , | | | | , 
therefore . When  and  are replaced 
in the solution of the quadratic polynomial in Eq. 
16,                            ,   the argument of the square 
root becomes very close to , the 
smallest possible value in double precision 

variables. For the example 
(Table 2), hence the round-off errors become 
comparable with the results and propagate 
through the final result. By contrast, when the 
method is applied to the polynomial  form the  
term comes close to zero but  does not, and the 

condition | |  is not reached, in the 

example .
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The reasons for the failure when the  form is used 
are similar, since the variable has changed from  
to  the first root and  are no longer close to 1 but 
anyway they are almost equal and in their 
subtraction many of the significant digits are not 

9 
used, for the example 1.21228488927145×10

9
and -1.212284923269059×10  produces 
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-0.000000033997609×10  =-33.997609. 

The  parameter comes from  and again it 
implies the subtraction of almost equal quantities, 
given that   and  
Propagation of the round-off errors through these 
two operations cause the method to fail, even 

though the absolute value of  is far from 
zero (233.46 in the example).

3.3 Strategies to avoid the error propagation

The errors induced by the representation of the 
numbers with a limited number of digits would be 
avoided using arbitrary-precision arithmetic, but 
this approach requires rewriting the code using 
specialized libraries. Instead the orders of 
magnitude of the three coefficients could be 
normalized using a scaling factor  selected from 

to rewrite the polynomial in Eq. 5 as 

where , Deiters (2005). But for most of the 
conditions that induce the failure of the CV 
method with the  form the scaling is negligible 
because Therefore, the definition of  
was changed to scale the polynomial according to 
the orders of magnitude of the coefficients. With 
the new definition λ is generated from the term 
with the highest or the lowest order of magnitude 
choosing the  whose corresponding | | || is the 
largest, if the chosen coefficient is  then , 
if   then           and if  then . However, it 
was found that this scaling does not solve the 
numerical issues neither for the  nor the form, it 
may only reverse the order of magnitude 
differences. For the example cited in Table 2 the 
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coefficients (with the  form) were changed from              
                                        
but anyway  and the polynomial roots were 
the same                                and a similar 
behavior was observed in all related cases.

Rather than trying to change the polynomial 
coefficients it is preferable to define a criterion to 
turn off the CV procedure and switch to a 
numerical method before wrong or  values are 
produced, for example when  is below 0.3, Zhi & 
Lee (2002). The simplicity of this criterion makes 
it attractive, and it was found in this work that it 
also stands for the Deiters method applied to 
and , see Fig. 6. However it only results practical 
to obtain a mixture's density as a whole if 
pseudocritical properties are being used; 
otherwise, each component has its own critical 
temperature and the concept of  does not apply 
for the mixture, for example, when a mixing rule 
based on an activity coefficient model is being 
used, Orbey & Sandler (1998), Wong et al. (1992). 
A second objection comes from the fact that the 

 criterion depends on the critical 
temperature, while the failure of the CV formulas 
has numerical causes, not related with any 
physical property. This means that it cannot be 
guaranteed that only conditions with  will 
induce the failure, as other sets of substances, 
temperatures, and cubic EOS could produce 
polynomial coefficients of very different orders of 
magnitude in Eq. 5. A truly general criterion has to 
be based only on the parameters involved in the 
solution of the polynomial; neither the cubic EOS 
nor the physical properties should be involved.

It has been proposed another criterion, exclusively 
numerical and based on the behavior of the results 
for the Zhi and Lee's benchmark, to avoid the CV 
method if the  value is below a “transition point” 
of , Salim (2006). This condition indeed 
coincides with the e  criterion, as can be 
observed in the tables of results, and is reassured 
by the observation in Sec. 3.1 that  roots close to 
zero are dubious. In such case, given that  the 
first term of Eq. 5 (with ) vanishes and this 
equation gets reduced to a quadratic polynomial. 
But applying this criterion requires obtaining first 

 from Eq. 5, either with the CV method, or with a 
numerical method.
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work of Zhi and Lee, at least for the calculation of  
using the  form, but its effect when  was 
explained with the “magnification error”. Also, 
given that the failure comes from numerical 
effects and therefore is not directly caused by the 
kind of cubic EOS or substance the use of results 
from three EOS and three substances is reiterative: 
results from a single EOS and one substance 
would have been enough, but anyway the original 
set was maintained here for the sake of the 
continuity.
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4. Conclusions

The failure of analytic or semi-analytic methods 
of solution (Cardano-Vieta, Deiters) can be 
avoided in two different ways, casting the  cubic 
EOS as a polynomial in terms of the reduced 
density, , or using a numerical method of 
solution. In particular the Jenkins-Traub 
algorithm can be considered the numerical 
method of choice, since it has the advantage of 
providing all the roots of the polynomial in a 
single calculation, while purely iterative methods 
may require a different search for each root. 

If the much more common , or even the , 
polynomial form is to be solved with the CV 
formulas or the Deiters method it is possible to 
predict the failure before computing the roots. It 
was found that the CV procedure should be 
stopped if the parameter  is greater than a 
limiting value, namely if  with the polynomial 
in terms of  or . In the same way the Deiters 
method should be stopped if  with the 
polynomial in terms of , or  with the 
polynomial in terms of . Nevertheless these 
criteria must not be interpreted as strict 
constraints, other values may be chosen, for 
example a more conservative condition of . A 
previously proposed criterion based on the 
reduced temperature was found impractical, as in 
most of the cases it is not suitable for mixtures. In 
contrast, being at the core of the calculations, the 
proposed criteria are strictly numerical and 
general. They do not depend on the properties of 
the substance or mixture and can be applied to any 
cubic EOS model requiring only the additional 
calculation of a logarithm, saving computation 
time. But it is also necessary to consider that the 
Jenkins-Traub MRF is apparently immune to the 
failures induced by the polynomial coefficients, 
and with an optimized implementation it can be as 
fast as the analytical method. If it is possible to 
incorporate it to the rest of the simulation code, it 
would a better choice than CV, Deiters, or any 
iterative method of solution for the cubic 
polynomial.

As a final comment, the apparent failure of 
analytical formulas shows the perils of conceiving 
computational tools as black boxes that produce 
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