
137

SYSTEMS ENGINEERING

On decidability properties of two fragments of the
asynchronous π-calculus

INGENIERÍA DE SISTEMAS

Sobre la decidibilidad de dos fragmentos del π-cálculo
asincrónico

§ Jesús A. Aranda B.

Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali, Colombia
§ jesus.aranda@correounivalle.edu.co

(Recibido: 27 de Abril de 2013-Aceptado: 09 de Septiembre de 2013)

Abstract
In (Cacciagrano, et al., 2008) the authors studied the expressiveness of persistence in the asynchronous π-calculus,
henceforth Aπ. They considered Aπ and three sub-languages of it, each capturing one source of persistence: the
persistent-input calculus (PIAπ), the persistent-output calculus (POAπ), and the persistent calculus (PAπ). They
prove that, under some general conditions, there cannot be an encoding from Aπ into a (semi)-persistent calculus
preserving the must-testing semantics, a semantics sensitive to divergence.

In this paper we support and strengthen the separation results of (Cacciagrano, et al., 2008) by showing that
convergence and divergence are two decidable properties in a fragment of POAπ and PAπ, in contrast to what happen
in Aπ. Thus, it is shown that there cannot be a (computable) encoding from Aπ into PAπ and in such a fragment of
POAπ, preserving divergence or convergence. These impossibility results don’t presuppose any condition on the
encodings and involve directly convergence for first time in the study of the expressiveness of persistence of .

Keywords: Expressiveness, divergence, convergence, process calculi.

Resumen
En (Cacciagrano, et al., 2008) se estudió la expresividad de la persistencia en el π-cálculo asincrónico, Aπ. En
dicho artículo, los autores consideraron Aπ y tres de sus fragmentos, cada uno de ellos capturando una fuente de
persistencia: el fragmento con entradas persistentes (PIAπ), el fragmento con salidas persistentes (POAπ), y el
fragmento con tanto entradas como salidas persistentes (PAπ). Ellos demostraron que, bajo ciertas condiciones
generales, no puede existir una codificación desde Aπ en alguno de sus fragmentos preservando la semántica must-
testing, una semántica sensible a la divergencia.

En este artículo se ratifican y fortalecen los resultados de separación de (Cacciagrano, et al., 2008) mostrando
que tanto convergencia como divergencia son propiedades decidibles en un fragmento significativo de POAπ y
en PAπ., a diferencia de lo que sucede en Aπ. Así, se establece formalmente la no existencia de una codificación
(decidable) de Aπ en PAπ o en el fragmento de POAπ, preservando divergencia y convergencia. Estos resultados
de separación no requieren de ninguna condición específica sobre las codificaciones e involucran directamente
convergencia por primera vez en el estudio de la persistencia de Aπ.

Palabras clave: Expresividad, divergencia, convergencia, cálculos de procesos.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

138

1. Introduction

1.1 The π-calculus

The (polyadic) π-calculus (Milner, 1999) is one of
the most influential formalisms for modeling and
analyzing the behavior of concurrent systems; i.e.
systems consisting of multiple computing agents,
called processes that interact with each other.
Indeed, the π-calculus has attained a wide range
of applications in different areas of computer
science and engineering, among others: Biology
(Eccher, & Priami, 2006) business processes
(Puhlmann, 2007), object-oriented programming
(Jones, 1993), security (Abadi, & Gordon 1999),
session types (Gay & Hole, 2005), and service
oriented computing (Lucchi & Mazzara, 2007).

The relevance of this calculus has given rise to
several variants; these variants can focus on some
specific features or to be tailored to a specific
domain. The exploration of the limitations,
redundancies and capabilities of several variants
is central in the expressiveness studies on process
calculi.

1.2 Expressiveness

Most works on the expressiveness of the
π-calculus consider questions such as whether
a given variant can express certain behaviors,
whether a given variant is as expressive as another
one w.r.t. certain equivalence relation, or whether
for some property, a given fragment is as hard as
the full language.

Unfortunately, the subject of expressiveness in
the π-calculus, and process calculi at large, is
not a well-established discipline, or even a stable
craft. Several guiding principles and cogent
classification criteria have been put forth in
several works such as (Palamidessi, 2003; Gorla,
2006; Vigliotti, et al., 2005; Gorla, 2008; Fu, &
Lu, 2010). Hitherto, however, we do not have a
general agreement as to what are the properties
that a taxonomy of process calculi must consider
in the way we have for the linguistic formalisms
of computability, where the notion of language

(generation) can be taken as the canonical measure
for expressiveness. This is perhaps due to the great
diversity of observations and properties often
used to reason about concurrent behavior (e.g.,
divergence, convergence, failures, traces, barbs,
must testing, bisimilarity, etc.). It may be the
case that rather than being absolute, a taxonomy
of concurrent calculi ought to be parametric on
the observations we wish to make of processes.
After all, concurrency is a field with a myriad of
aspects for which we may require different terms
of discussion and analysis.

The purpose of this paper is to show an
expressiveness study of linearity and persistence
features on the main variant of the π-calculus,
, considering divergence and convergence as the
properties of interest.

Below, it is introduced the topic of this paper,
some related works and our contributions.

1.3 Expressiveness issue: Linearity and
persistence in the asynchronous π-calculus

In (Palamidessi, et al., 2006) the authors
presented an expressiveness study of linearity
and persistence of processes in the asynchronous
version of the π-calculus, Aπ. Linearity (and
persistence) is understood in a sense of that is
similar to that used in (Girard 1987): the ability
(incapability) of consuming a resource. The
replication operator is central in (Palamidessi, et
al., 2006) and plays a role similar to the “bang”
operator from linear logic, also denoted as !.

The study in (Palamidessi, et al., 2006) is
conducted in the asynchronous π - calculus, which
naturally captures the notion of linearity and
persistence also present in other calculi.

Let us for example consider the π-calculus system
x(z) | x(y).P | x(y).Q

This system represents a linear message with a
datum z, tagged with x, that can be consumed by
either (linear) receiver x(y).P or x(y).Q. Persistent

Ingeniería y Competitividad, Volumen 15, No. 2, p. 125 - 136 (2013)

139

messages (and receivers) can simply be specified
using the replication operator that, as previously
mentioned, creates an unbounded number of
copies of a given process. One can then consider
the existence of encodings from Aπ into three
sub-languages of it, each capturing one source of
persistence: the persistent-input calculus (PIAπ),
defined as Aπ where inputs are replicated; the
persistent-output calculus (POAπ), defined dually,
i.e. outputs rather than inputs are replicated; the
persistent calculus (PAπ), defined as Aπ but with
all inputs and outputs replicated.

The main result in (Palamidessi, et al., 2006)
basically states that we need one source of
linearity, i.e. either on inputs (PIAπ) or outputs
(POAπ) to encode the behavior of arbitrary Aπ
processes via weak barbed congruence.

The notion of linearity (persistency) is present
is several concurrency frameworks. Persistence
of messages is present, e.g., in Concurrent
Constraint Programming (CCP) (Saraswat, 1993),
SPL (Crazzolara, & Winskel, 2001), and the Spi
Calculus variants in (Amadio, et al., 200)). In all
these formalisms messages cannot be consumed.
In the π-calculus persistent receivers are used,
for instance, to model functions, objects, higher-
order communications, or procedure definitions.
Furthermore, persistence of both messages
and receivers arise in the context of CCP with
universally-quantified persistent ask operations
(Fages, et al., 2001; Olarte, & Valencia 2008) and
in the context of calculi for security, persistent
receivers can be used to specify protocols where
principals are willing to run an unbounded number
of times (and persistent messages to model the
fact that every message can be remembered by
the spy).

Now, the previously mentioned positive result
in (Palamidessi, et al., 2006) may give insights
in the context of the expressiveness of the above
frameworks. The main drawback of the work
(Palamidessi, et al., 2006) is, however, that the
notion of correctness for the encodings is based
on weak barbed bisimulation (congruence), which

is not sensitive to divergence. In particular, the
encoding provided in (Palamidessi, et al., 2006)
from Aπ into PIAπ is weak barbed congruent
preserving but not divergence preserving. Although
in some situations divergence may be ignored, in
general it is an important issue to consider in the
correctness of encodings (Gorla, 2006; Palamidessi,
2003; Cacciagrano, et al., 2006).

In (Cacciagrano, et al., 2008), the study of
linearity and persistence complements the
work (Palamidessi, et al., 2006) proving that,
under some general conditions, there cannot be
an encoding from Aπ into a (semi-) persistent
calculus preserving the must-testing semantics;
this semantics is sensible to divergence.

Unfortunately, in concurrency theory there is no
a unified notion about what a good encoding is.
There are several works about what properties
should have an encoding (Palamidessi, 2003;
Gorla, 2006; Vigliotti, et al., 2005; Gorla, 2008;
Fu, & Lu, 2010; Nestmann, 2000). Considering
this, it would be legitimate to ask, at what
extent, the separation results from Aπ into the
(semi-) persistent calculi depends on the general
conditions in (Cacciagrano, et al., 2008) or only
concerns divergence.

The por our main contribution is to show formally
that two fragments of the (semi-) persistent
subcalculi of Aπ are not as expressive as Aπ
when divergence or convergences are considered.
Unlike (Cacciagrano, et al., 2008), the separation
results showed in this paper does not rely on
some particular properties that an encoding
should satisfy. The results are the following:
Convergence and divergence are decidable in
PAπ, Convergence and divergence are decidable
in the fragment of POAπ where the replication
operator is restricted to input processes and output
processes.

As convergence and divergence are undecidable
in Aπ, see Remark 1 in Section 3., then, there is
no (computable) encoding from Aπ into these
fragments.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

140

2.1.1 Syntax

Names are the most primitive entities in the
Aπ-calculus. We presuppose a countable set N
of (port, links or channel) names, ranged over
by , y,... . For each name x, we assume a co-name
x thought of as complementary, so we decree that
x= x. The other entity in the π-calculus is a process.
Processes are built from names as follows.

Definition 1 (Syntax) Processes in Aπ-calculus
are given respectively by

P,Q,... := 0 | x(y).P | x y | v(x)P | P | Q | !Q

The process (summation) 0 does nothing. x y
and x(y).P represent the output and input process
respectively, x y is a process which can output a
datum y on channel x. x(y).P is a process which
can perform an input action on channel x and
then it behaves like P{z/y}, the process which
has replaced every occurrence of the name y, by
the datum z received. {z/y} is a substitution of z
by y, x(y) is called a guard or (input) prefix. In
P | Q, the parallel composition of P and Q, P and Q
can proceed independently or can synchronize via
shared names. In (ν x)P , the name x is declared
private to P , i.e. initially, components of P can
use x to interact with one another but not with
other processes, the scope of x could change as
a result of interaction between processes as will
be seen later. Finally, the replication !P can be
thought of as unboundedly many P’s in parallel
P | P | P | ..., replication is the means to express
infinite behaviour.

In each of x(y).P and (v y)P, the occurrence of y
is bound with scope P . An occurrence of a name
in a process is bound if it is under the scope of a
binding occurrence of the name. An occurrence of
a name is free if it is not bound. Given Q we define
its bound names bn(Q) as the set of names with a
bound occurrence in Q, and its free names fn(Q)
as the set of names with a non-bound occurrence
in Q, hence n(Q) = fn(Q) ∪ bn(Q) is the set of
names of Q.

The relevance of this paper does not rely only
on the discriminatory results between different
fragments of Aπ, but identifies fragments where
it is possible to define a range of processes where
it would be possible to determine automatically
properties such as convergence and divergence.
Decidability results for process calculi as those
presented in this paper are important steps towards
the development of formal verification tools for
concurrent systems.

2. Preliminaries

This section introduces some notions, notations
that will be used in the rest of the paper.

2.1 The asynchronous π-calculus: Aπ

Communication in the π-calculus is considered
synchronous. The key property relies on the fact that
the output and the input prefix impose a precedence
over the terms which are underneath, such that once
a communication involving the output and the input
prefix occurs, the terms which were underneath
the prefixes are unguarded at the same time. This
behavior can be seen as a kind of acknowledgement
of the execution of the communication over the
processes involved in it.

Asynchronous π-calculus (Aπ) is a variant of the
π-calculus introduced in (Boudol, 1992; Honda, &
Tokoro, 1991). In this variant the communication
can be seen as asynchronous, in the sense that the
act of sending a datum and the act of receiving it can
be seen as separate, hence not simultaneous. Aπ is
obtained by restricting the term underneath the output
prefix to be 0 (the null process). In this way the kind
of acknowledgement provided by the precedence
in the output prefix is lost. Moreover, an unguarded
occurrence of x(y) can be thought of as a datum y in
an implicit communication medium, tagged with x
to indicate that it is available to any unguarded term
of the form x(z).P. Thus, in the evolution of a term,
the datum y can be considered to be sent when x(y)
becomes unguarded, and to be received when x(y)
disappears via an internal action.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

141

Table 1. Operational Semantics for the Aπ-calculus

In this paper, we consider a version of Aπ without
τ and choice as proposed in (Boudol, 1992; Honda,
& Tokoro, 1991).

2.1.2 Semantics

The semantics of the language described above
is made precise by a labeled transition system. A
transition P Q says that P can perform an
action α and evolve into Q. The set of actions used
in the transition system is composed by x y, x y,
x(y), t. x y, a free output, sends the name y on the
name x, x y , an input, receives the name y on the
name x, x(y), a bound output, sends a fresh name
on x and t is an internal action .

Definition 2 (Semantics) The labeled transition
relation a is given by the rules in Table 1.
Omitted from Table 1 are the symmetric forms of
Par-L, Com- L and Close-L.

a

a

2.2 Divergence and convergence

Definition 3 We say that P is stable iff P cannot
perform any action α.

Definition 4 We say that P is convergent
P , iff there is a stable process Q such that
P() Q. We say that P is divergent, P , iff
P () , i.e., there exists an infinite sequence
P = P0 P1 ...

2.3 Semi-persistence in Aπ

Here we define the syntactic restrictions of Aπ
that are considered in this paper.

The fragment of persistent-output calculus
POAπri, arises as from Aπ by requiring all outputs
to be replicated where the replication operator is
restricted to input processes and output processes.

t
t t

t
w

*

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

142

Processes in POAπri are generated by the following
grammar:

P,Q,... := 0 | x(y).P | !x (y).P | !x y | (v x)P | (P | Q)

Finally, we have the persistent calculus π, a subset
of Aπ where output and input processes must be
replicated. Processes in PAπ are generated by the
following grammar:

P,Q,... := 0 | !x (y).P | !x y | (v x)P | (P | Q) | !P

The relation for POAπri and PAπ can be
equivalently defined as in Table 1, with Output
replaced with Output(POAπri), and Input and
Output replaced with Input(PAπ) and Output(PAπ)
rules showed below. The new rules reflect
the persistent-output nature of POAπri (Rule
Output(POAπri)), and the persistent nature of
PAπ (Rules Input and Output(PAπ)). Notice that
these new rules can be derived directly from the
application of the Rules Input, Output, and Rep-
Act in Table 1.

Output (POAπri) !x y 0 | !x y
Input(PAπ) !x (y).P P {z/y} | x(y).P where x, y ∈ N

Output (PAπ) !x y 0 | !x y

Remark 1 Notice that, unlike to the presentation
of Aπ, its syntactic restrictions does not include
terms as !P explicitly. However, it is clear that all
the terms from these restricted variants correspond
to Aπ terms. Considering this, and for the sake
of uniformity in the presentation of the proofs, we
consider processes in Lemmas 1, 2, 3, and 4 as
Aπ terms rather than restricted language terms.
Clearly the results obtained from these lemmas
are valid for the two syntactic variants.

3. Decidability results for POAπri and PAπ

We shall prove that there is no computable
encoding preserving divergence or convergence
from Aπ into POAπri and PAπ. We do this by
proving that unlike for Aπ, divergence and
convergence are decidable for these POAπri and
PAπ processes.

x z

x y

x y

a

Below, a remark on the undecidabiliy of
convergence and divergence in Aπ.

Remark 2 Convergence and divergence are
undecidable in Aπ. In (Busi, et al, 2009), it was
proved the undecidability of convergence and
divergence for the calculus CCS. That result is
extended directly to Aπ by using the encoding
from π-calculus with recursive functions into
replication showed in (Sangiorgi, Walker, 2001).
The encoding from guarded-choice π-calculus
into choice-free π-calculus given in (Palamidessi,
et al, 2006), and either Honda and Tokoro’s
encoding or Boudol’s encoding from π-calculus
into Aπ proposed in (Boudol, 1992) and (Honda,
& Tokoro, 1991). All of these encodings preserve
and reflect divergence and convergence.

We need to prove that the set of reachable
processes through a τ-action can be computed;
Succ(P) = {P’ | P , P’} is computable.

Without lose of generality, we assume that all the
bound and free names are distinct in every process
we consider in this section. Notice that every
process can be transformed into an equivalent
process with distinct names by using α-conversion
(Sangiorgi, & Walker, 2001).

It is well known that the relation is image-
finite (Sangiorgi, & Walker, 2001). Therefore
the set of successors of a process P, Succ(P), is
finite. Here we describe how to build this set.

3.1 Computing successors

Now, it will be illustrated how to calculate
derivative processes fron any Aπ process P is
computable. The approach is to show a function
doing the corresponding calculations. Depending
on the nature of the derivation, one of the following
lemmas is the most suitable.

The computability of the derivative processes
is extended trivially to the terms defined in its
syntactic restrictions of Aπ, i.e POAπri and PAπ.

a

 t

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

143

Lemma 1 For any Aπ P, Derivx z (P) = {P’ | P , P’}is computable.

Proof.
Let us define inductively the set as follows:

•

•

•

•

Lemma 2 For any Aπ P,

 is computable.

Proof.
Let us define inductively the set as follows:

•

•

•

•

 It can be proved that by structural induction on .

Lemma 3 For any Aπ , is computable.

Proof.  
Let us define inductively the set as follows:

•

•

•

•

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

144

 It can be proved that by structural induction on .

Lemma 4 For any Aπ P, Succ is computable.

Proof.  
Let us define inductively the set as follows:

•

•

where represents the set of the derivative processes from through a resulting
from synchronization between Q and R. is defined as follows:

• P = (ν y)Q : Der(P) := {((ν y) Q’) | Q’ ∈ Der(Q)}

•

The calculability of when or relies on the calculability of
 and which are shown in Lemmata 3, 1, and 2 respectively.

It can be proved that Der(P) = Succ(P) by induction on P.

By using the function , we can now determine whether a process is convergent (divergent) or not.

•

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

145

3.2 Decidability of convergence and divergence

Now, we can show that convergence and
divergence are decidable for POAπri and PAπ. The
next theorem shows the decidability of divergence
and convergence in PAπ.

Theorem 1 Divergence and convergence are
decidable in PAπ.

Proof.
From the persistent nature of both input and output
prefixes in PAπ, we know that if a synchronisation
happens in a POAπri process then there must be an
infinite τ-labelled computation from such a PAπ
process. Hence a PAπ process P is divergent if
and only if Succ(P)>0 and we can say that a PAπ
process P is convergent if and only if Succ(P)=0.

Now, we consider the decidability of convergence
and divergence for POAπri.

First we need to introduce the notion of occurrence
of linear input prefix. A linear input prefix is the
input prefix that is not under the scope of the
replication operator.

Definition 6 (Occurrences of linear input prefix) Let
P ∈ POAπri. The maximal number of occurrences of
linear inputs in P, LinearInp(P) is given inductively
as follows: LinearInp(0)=0, LinearInp(!x-)=0,
L i n e a r I n p (a (x) . P) = 1 + L i n e a r I n p (P) ,
LinearInp(!P)=0, LinearInp((vx)P)=LinearInp(P),
LinearInp(P | Q)==LinearInp(P)+=LinearInp(Q).

The following proposition says that only input
actions that come from linear input prefixes
can participate, by synchronization, in a finite
maximal sequence of τ-actions.

Proposition 1 Let P, P´ ∈POAπri such that P
P´ and P´ is convergent. Then P is convergent
and each τ -move from P into P´ is produced by a
synchronization between an output and an input
action coming from a linear input prefix.

Proof.
To prove the first part, to obtain a contradiction,

τ

let us suppose that P is non-convergent, i.e. there
is no maximal finite computation from P. As any
maximal computation from P´ can be seen as
the ending part of a maximal computation from
P passing through. Each maximal computation
from P´ must be infinite. Therefore. P´ is non-
convergent, a contradiction.

To prove the second part, to obtain a contradiction,
let us suppose that there is a τ -move from P into
(convergent) P´ produced by a synchronisation
between an output and an input action coming
from an input prefix being under the scope of a
replication operator. Since output actions are
persistent at time in POAπri , i.e. once an output
action can be performed, the same action can be
executed at anytime later on, and the input actions
coming from input prefix being under the scope of
a replication operator are persistent as well, there
is possible to perform a synchronization from P´
and any of its τ-derivative processes. Hence P´
cannot be convergent, a contradiction.

As a corollary from Proposition 1, we have the
following proposition:

Proposition 2 Let P, P´ ∈ POAπri such that
such that P P´ and P´ is convergent. Then
LinearInp(P) ≥ 1.

A crucial observation to prove the decidability
of convergence and divergence in POAπri is that
the number of occurrences of linear input prefix
decreases as long as a finite computation is
performed.

Proposition 3 Let P, P´ ∈ POAπri such that
such thatP P´ and P´ is convergent. Then
LinearInp(P) = LinearInp(P) - 1.

Proof.
From Proposition 1, we know that any τ-move
from P into P´ corresponds to a synchronisation
where the input action comes from a linear input
prefix. The participation of this kind of input
action implies that an occurrence of a linear input
prefix is consumed from P. Notice that although

τ

τ

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

146

Theorem 2 Divergence is decidable in POAπri .

Proof.
From Lemma 5, a POAπri process P is divergent
if and only if there is at least one computation
from P whose length is greater than LinearInp(P).
It can be checked whether such a computation
exists by ver- ifying that | SuccSt LinearInp(P)+1 (P)| ≥
0. From Lemma 4 it is clear that SuccSt LinearInp(P)+1
(P) can be straightforwardly calculated.

Theorem 3 Convergence is decidable in POAπri .
Proof. From Lemma 5, a POAπri process P is
convergent if and only if there is at least one
maximal computation from P whose length is less
or equal to LinearInp(P), i.e. if there is at least
one stable process derivable from P at most in
LinearInp(P) τ-moves. It can be checked whether
such a stable process exists by verifying that
|SuccSt 0 (P) | + |SuccSt 1(P)| + | SuccSt 2 (P)| + .
. . + | SuccSt LinearInp(P) (P)| ≥ 1. From Lemma 4 it
is clear that SuccSt i (P) for any natural number i
can be straightforwardly calculated.

As corollary from Theorem 2 and Theorem 3 and
considering Remark 5.1.1 we obtain the following
separation result:

Theorem 4 There is no encoding preserving and
reflecting divergence (convergence) from Aπ into
POAπri.

4. Conclusions

 In this paper we studied the decidability of
divergence and convergence in two fragments
of Aπ: POAπri and PAπ. As main contribution we
showed that these two properties are decidable in
both fragments.

As the divergence-sensitive nature of Testing
Semantics (Nicola, & Hennessy, 1984) and
the failures-sensitive nature of Failures
Semantics (Milner, 1989), these results support
and strengthen the separation results from
(Cacciagrano, et al., 2008). This paper does not
take into account particular properties that an

the execution of this input action can substitute
names in P, the linear or persistent nature of the
rest of the process remains unchanged. As for the
output action, the consumption of an output action
does not alter the number of occurrences of linear
input prefix; it is due to the asynchronous nature
of the calculus.

The following Lemma gives an upper bound of
the length of the maximal finite computations that
depends on the number of occurrences of linear
inputs prefix. Notice that the lower bound does
not depend on this number, e.g. a(x).0 | a(x).0 |...|
a(x).0 is stable.

Lemma 5 Let P ∈ POAπri. For each maximal
finite τ-labeled computation c from P, length(c)
LinearInp(P).

Proof.
Let us consider any maximal finite computation
from P:

P , P1 , P2 , P3 ... Pn
where Pn is estable

From Proposition 3 we know that LinearInp(P1)
= LinearInp(P)– 1, in general LinearInp(Pi)
= LinearInp(P) – i. Consequentenly,
LinearInp(PLinearInp(P)) – 0. From Proposition
2, PLinearInp(P) is stable. Therefore, length(c)
LinearInp(P).

From the computable function Succ, we can
define and calculate a function Succi (P)={P | P’

 P’ ’ for some P ∈ Succi-1 (P)} where Succ1 (P)
= Succ(P) and Succ0 (P) = {P}, in a similar way
we can identify the stable processes derivable
from P at i τ-actions by the function SuccSt i (P)
={P’ ’ | P’ P’ ’ for some P’ ∈ Succi-1(P) and ∈
Succ(P’ ’) ={}}.

Now, it is easy to see from Lemma 5 and by
using the functionSucci and SuccSt i , which are
computable from Lemma 4, that divergence and
convergence are decidable.

τ

τ

τ

τ τ τ τ

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

147

encoding should satisfy, in addition this paper
extends the expressiveness gap considering for
first time convergence.

Notice that although the results for PAπ could be
obtained straightforwardly from the results for
POAπri, the nature of the separation is different
in both cases: the separation results for PAπ seems
to rely on the persistence nature of the processes
exclusively, thus, we claim that this result is valid
for the full synchronous π-calculus, as the results
of (Cacciagrano, et al., 2008). On the other hand,
the expressiveness gap between Aπ intoPOAπri
relies on asynchrony, and then this result seems to
be specialized for this fragment.

Although it seems that the results from this paper
are not unexpected, one of the most relevant and
important contributions of this paper relies on
identifying precisely a range of processes where
it would be possible to determine automatically
properties such as convergence and divergence. A
process calculi term can be used to model several
concurrent real-life systems. Decidability results
for process calculi are an important contribution
towards the development of formal verification
tools for concurrent systems.

Although this paper shows strong impossibility
results on two fragments, it is necessary to extend
this work and to explore these properties on full
POAπ and PIAπ. In a near future, we expect to
analyze how to model a Turing-equivalent model
preserving divergence (convergence) into PIAπ,
as some evidence (Aranda, 2009) suggests that
PIAπ is more expressive than POAπ.

5. References

Abadi, M., & Gordon, A. (1999). A calculus for
cryptographic protocols: The spi calculus. Inf.
Comput. 148 (1), 1–70.

Alves-Foss, J. (2000). An efficient secure
authenticated group key exchange algo- rithm
for large and dynamic groups. In Proceedings of
the 23rd National Information Systems Security
Conference.

Amadio, R., Lugiez, D., & Vanackere,. V.
(2003). On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci.
290 (1), 695– 740.

Aranda, J., Di Giusto, C., Nielsen, M., & Valencia,
F. (2007). CCS with replication in the Chomsky
hierarchy: the expressive power of divergence.
Lecture Notes in Computer Science 4807, 383–398.

Aranda, J., Valencia, F., & Versari, C. (2009). On
the expressive power of restriction and priorities
in ccs with replication. Lecture Notes in Computer
Science 5504, 242–256.

Aranda, J. (2009). On the expressivity of Infinite
and local behaviour in fragments of the Π-calculus.
Tesis de Doctorado, Escuela de Ingeniería de
Sistemas y Computación, Universidad del Valle,
Cali, Colombia.

Borger, E., Gradel, E., & Gurevich, Y. (1997). The
Classical Decision Problem. Springer Verlag, Berlin.

Boudol, G., Asynchrony and the pi-calculus.
(1992). Technical Report RR-1702, INRIA Sophia
Antipolis.

Busi, N. (2002) Analysis issues in petri nets with
inhibitor arcs. Theor. Comput. Sci 275 (1-2),
127–177.

Busi, N., Gabbrielli, M., & Zavattaro, G. (2003)
Replication vs. recursive definitions in channel
based calculi. Lecture Notes in Computer Science
2719, 133–144.

Busi, N., Gabbrielli, M., & Zavattaro, G. (2004)
Comparing recursion,replication, and iteration
in process calculi. Lecture Notes in Computer
Science 3142, 307–319.

Busi, N,. Gabbrielli, M,. & Zavattaro, G. (2009).
On the expressive power of recursion, replication
and iteration in process calculi. Mathematical
Structures in Computer Science 19 (6), 1223-
1263.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

148

Cacciagrano, D., & Corradini, F. (2001). On
synchronous and asynchronous communication
paradigms. Lecture Notes in Computer Science
2202, 256–268.

Cacciagrano, D., Corradini, F., Aranda, J., &
Valencia, F. (2008). Linearity, persistence and
testing semantics in the asynchronous pi-calculus.
Electr. Notes Theor. Comput. Sci. 194 (2), 59–84.

Cacciagrano, D., Corradini, F., & Palamidessi,
C. (2006) Separation of synchronous and
asynchronous communication via testing. Electr.
Notes Theor. Comput. Sci 154 (3), 95–108.

Crazzolara, F., & Winskel, G. (2001). Events in
security protocols. In ACM Conference on Computer
and Communications Security, p. 96–105.

Eccher, C., & Priami, C. (2006). Design and
implementation of a tool for translating sbml
into the biochemical stochastic pi-calculus.
Bioinformatics 22 (24), 3075–3081.

Fages, F., & Ruet, P., & Soliman, S. (2001). Linear
Concurrent Constraint Programming: Operational
and Phase Semantics. Inf. Comput 165(1), 14-41.

Fu, Y., & Lu, H. (2010). On the expressiveness
of interaction. Theoretical Computer Science 411
(11-13), 1387-1451.

Gay, S., & Hole, M. (2005). Subtyping for
session types in the pi calculus. Acta Inf 42 (2-3),
191–225.

Gorla, D. (2006). On the relative expressive power
of asynchronous communication primitives.
Lecture Notes in Computer Science 3921, 47–62.

Gorla, D. (2008). Towards a unified approach to
encodability and separation results for process
calculi. Lecture Notes in Computer Science 5201,
492-507.

Honda, K. & Tokoro, M. (1991). An object
calculus for asynchronous communication. Lecture
Notes in Computer Science 512 , 133–147.

Jones, C. (1993). A pi-calculus semantics for an
object-based design notation. Lecture Notes in
Computer Science 715, 158–172.

Lucchi, R., & Mazzara, M. (2007). A π-calculus
based semantics for ws-bpel. J.  Log. Algebr.
Program 70 (1), 96–118.

Milner, R., (1989). Communication and
Concurrency. Prentice Hall.

Milner, R., (1999). Communicating and Mobile
Systems: the π-calculus. Cambridge University Press.

Nicola, R., & Hennessy, M. (1984). Testing
equivalences for processes. Theor.  Comput. Sci.
34, 83–133.

Nestmann, U., (2000). What is a “Good”
Encoding of Guarded Choice? Inf, Comput 156
(1-2). 287-319.

Olarte, C., & Valencia, F. (2008). The expressivity
of universal timed CCP: undecidability of
Monadic FLTL and closure operators for security.
PPDP, p. 8-19.

Palamidessi, C. (2003). Comparing the expressive
power of the synchronous and asynchronous pi-
calculi. Mathematical Structures in Computer
Science 13 (5), 685–719.

Palamidessi, C., Saraswat, V., Valencia, F,. &
Victor, B. (2006). On the expressiveness of
linearity vs persistence in the asychronous pi-
calculus. In LICS, p. 59–68. IEEE Computer
Society.

Phillips, I. (2008). CCS with priority guards. J.
Log. Algebr. Program 75 (1), 139– 165.

Puhlmann, F. (2007). Soundness verification of
business processes specified in the pi-calculus.
Lecture Notes in Computer Science 4803, 6–23.

Sangiorgi, D. & Walker, D. (2001). The π−
calculus: A Theory of Mobile Processes.
Cambridge University Press.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

149

Saraswat. V. (1993). Concurrent Constraint
Programming. The MIT Press.

Vigliotti, M., Phillips, I. & Palamidessi, C.
(2005). Separation results via leader election
problems. Lecture Notes in Computer Science
4111, 172–194.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 137 - 149 (2013)

