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Abstract 
In   (Cacciagrano, et al., 2008) the authors studied the expressiveness of persistence in the asynchronous π-calculus, 
henceforth Aπ. They considered Aπ and three sub-languages of it, each capturing one source of persistence: the 
persistent-input calculus (PIAπ), the persistent-output calculus  (POAπ), and the persistent calculus (PAπ). They 
prove that, under some general conditions, there cannot be an encoding from Aπ into a (semi)-persistent calculus 
preserving the must-testing semantics, a semantics sensitive to divergence.  

In this paper we support and strengthen the separation results of (Cacciagrano, et al., 2008) by showing that 
convergence and divergence are two decidable properties in a fragment of POAπ and PAπ, in contrast to what happen 
in Aπ. Thus, it is shown that there cannot be a (computable) encoding from Aπ into PAπ and in such a fragment of 
POAπ, preserving divergence or convergence.  These impossibility results don’t presuppose any condition on the 
encodings and involve directly convergence for first time in the study of the expressiveness of persistence of  . 

Keywords: Expressiveness, divergence, convergence, process calculi.

Resumen 
En (Cacciagrano, et al., 2008) se estudió la expresividad de la persistencia en el π-cálculo asincrónico, Aπ. En 
dicho artículo, los autores consideraron Aπ y tres de sus fragmentos, cada uno de ellos capturando una fuente de 
persistencia: el fragmento con entradas persistentes (PIAπ), el fragmento con salidas persistentes (POAπ), y el 
fragmento con tanto entradas como salidas persistentes (PAπ).  Ellos demostraron que, bajo   ciertas condiciones 
generales, no puede existir una codificación desde Aπ en alguno de sus fragmentos preservando la semántica must-
testing, una semántica sensible a la divergencia.  

En este artículo se ratifican y fortalecen los resultados de separación de (Cacciagrano, et al., 2008)  mostrando 
que  tanto convergencia  como divergencia son propiedades  decidibles en un fragmento significativo  de POAπ y 
en  PAπ., a diferencia de lo que sucede en Aπ. Así, se establece formalmente la no existencia de una codificación 
(decidable) de  Aπ en  PAπ  o en  el fragmento de POAπ,   preservando divergencia y convergencia. Estos resultados 
de separación no requieren de ninguna condición  específica  sobre las  codificaciones  e involucran directamente 
convergencia  por primera vez en el estudio de la persistencia de Aπ. 

Palabras clave: Expresividad, divergencia, convergencia, cálculos de procesos.
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1. Introduction
 
1.1 The π-calculus
   
The (polyadic) π-calculus  (Milner, 1999) is one of 
the most influential formalisms for modeling and 
analyzing the behavior of concurrent systems; i.e. 
systems consisting of multiple computing agents, 
called processes that interact with each other. 
Indeed, the π-calculus has attained a wide range 
of applications in different areas of computer 
science and engineering, among others: Biology 
(Eccher, & Priami, 2006) business processes 
(Puhlmann, 2007), object-oriented programming 
(Jones, 1993), security (Abadi, & Gordon 1999), 
session types (Gay & Hole, 2005), and service 
oriented computing (Lucchi & Mazzara, 2007).

The relevance of this calculus has given rise to 
several variants; these variants can focus on some 
specific features or to be tailored to a specific 
domain.  The exploration of the limitations, 
redundancies and capabilities of several variants 
is central   in the expressiveness studies on process 
calculi.  

1.2 Expressiveness

Most works on the expressiveness of the 
π-calculus consider questions such as whether 
a given variant can express certain behaviors, 
whether a given variant is as expressive as another 
one w.r.t. certain equivalence relation, or whether  
for some property, a given fragment is as hard as 
the full language.

Unfortunately, the subject of expressiveness in 
the π-calculus, and process calculi at large, is 
not a well-established discipline, or even a stable 
craft. Several guiding principles and cogent 
classification criteria have been put forth in 
several works such as (Palamidessi, 2003; Gorla, 
2006; Vigliotti, et al., 2005; Gorla, 2008; Fu,  & 
Lu, 2010). Hitherto, however, we do not have a 
general agreement as to what are the properties 
that a taxonomy of process calculi must consider 
in the way we have for the linguistic formalisms 
of computability, where the notion of language 

(generation) can be taken as the canonical measure 
for expressiveness. This is perhaps due to the great 
diversity of observations and properties often 
used to reason about concurrent behavior (e.g., 
divergence, convergence, failures, traces, barbs, 
must testing, bisimilarity, etc.). It may be the 
case that rather than being absolute, a taxonomy 
of concurrent calculi ought to be parametric on 
the observations we wish to make of processes. 
After all, concurrency is a field with a myriad of 
aspects for which we may require different terms 
of discussion and analysis.

The purpose of this paper is to show an 
expressiveness study of linearity and persistence 
features   on the main variant of the π-calculus, 
, considering divergence and convergence as the 
properties of interest. 

Below, it is introduced the topic of this paper, 
some related works and our contributions.
  
1.3 Expressiveness issue: Linearity and 
persistence in the asynchronous π-calculus

In  (Palamidessi, et al., 2006) the authors 
presented an expressiveness study of linearity 
and persistence of processes in the asynchronous 
version of the π-calculus, Aπ. Linearity (and 
persistence) is understood in a sense of that is 
similar to that used in  (Girard 1987): the ability 
(incapability) of consuming a resource. The 
replication operator is central in  (Palamidessi, et 
al., 2006) and plays a role similar to the “bang” 
operator from linear logic, also denoted as !.

The study in  (Palamidessi, et al., 2006) is 
conducted in the asynchronous π - calculus, which 
naturally captures the notion of linearity and 
persistence also present in other calculi.

Let us for example consider the π-calculus system 
x(z) | x(y).P | x(y).Q

This system represents a linear message with a 
datum z, tagged with x, that can be consumed by 
either (linear) receiver x(y).P or x(y).Q. Persistent 
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messages (and receivers) can simply be specified 
using the replication operator that, as previously 
mentioned, creates an unbounded number of 
copies of a given process. One can then consider 
the existence of encodings from Aπ into three 
sub-languages of it, each capturing one source of 
persistence: the persistent-input calculus (PIAπ), 
defined as Aπ where inputs are replicated; the 
persistent-output calculus (POAπ), defined dually, 
i.e. outputs rather than inputs are replicated; the 
persistent calculus (PAπ), defined as Aπ but with 
all inputs and outputs replicated.

The main result in (Palamidessi, et al., 2006) 
basically states that we need one source of 
linearity, i.e. either on inputs (PIAπ) or outputs 
(POAπ) to encode the behavior of arbitrary Aπ 
processes via weak barbed congruence.

The notion of linearity (persistency) is present 
is several concurrency frameworks. Persistence 
of messages is present, e.g., in Concurrent 
Constraint Programming (CCP) (Saraswat, 1993), 
SPL (Crazzolara,  & Winskel, 2001), and the Spi 
Calculus variants in (Amadio, et al., 200)). In all 
these formalisms messages cannot be consumed. 
In the π-calculus persistent receivers are used, 
for instance, to model functions, objects, higher-
order communications, or procedure definitions. 
Furthermore, persistence of both messages 
and receivers arise in the context of CCP with 
universally-quantified persistent ask operations 
(Fages, et al., 2001; Olarte, & Valencia 2008) and 
in the context of calculi for security, persistent 
receivers can be used to specify protocols where 
principals are willing to run an unbounded number 
of times (and persistent messages to model the 
fact that every message can be remembered by 
the spy).

Now, the previously mentioned positive result 
in (Palamidessi, et al., 2006) may give insights 
in the context of the expressiveness of the above 
frameworks. The main drawback of the work 
(Palamidessi, et al., 2006) is, however, that the 
notion of correctness for the encodings is based 
on weak barbed bisimulation (congruence), which 

is not sensitive to divergence. In particular, the 
encoding provided in (Palamidessi, et al., 2006) 
from Aπ into PIAπ is weak barbed congruent 
preserving but not divergence preserving. Although 
in some situations divergence may be ignored, in 
general it is an important issue to consider in the 
correctness of encodings (Gorla, 2006; Palamidessi, 
2003; Cacciagrano, et al., 2006).

In (Cacciagrano, et al., 2008), the study of 
linearity and persistence complements the 
work (Palamidessi, et al., 2006) proving that, 
under some general conditions, there cannot be 
an encoding from Aπ into a (semi-) persistent 
calculus preserving the must-testing semantics; 
this semantics is sensible to divergence. 

Unfortunately, in concurrency theory there is no 
a unified notion about what a good encoding is. 
There are several works about what properties 
should have an encoding  (Palamidessi, 2003; 
Gorla, 2006; Vigliotti, et al., 2005; Gorla, 2008; 
Fu,  & Lu, 2010; Nestmann, 2000).  Considering 
this, it would be legitimate to ask, at what 
extent, the separation results from Aπ into the 
(semi-) persistent calculi depends on the general 
conditions in (Cacciagrano, et al., 2008) or only 
concerns divergence.  

The por our main contribution is to show formally 
that two fragments of the (semi-) persistent 
subcalculi of Aπ are not as expressive as Aπ 
when divergence or convergences are considered. 
Unlike  (Cacciagrano, et al., 2008), the separation 
results showed in this paper does not rely on 
some particular properties that an encoding 
should satisfy. The results are the following:  
Convergence and divergence are decidable in 
PAπ, Convergence and divergence are decidable 
in the fragment of POAπ where the replication 
operator is restricted to input processes and output 
processes. 

As convergence and divergence are undecidable 
in Aπ, see Remark 1 in Section 3., then, there is 
no (computable) encoding from Aπ into these 
fragments. 
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2.1.1 Syntax 

Names are the most primitive entities in the 
Aπ-calculus. We presuppose a countable set N 
of (port, links or channel) names, ranged over 
by , y,... . For each name  x, we assume a co-name 
x   thought of as complementary, so we decree that 
x= x. The other entity in the π-calculus is a process. 
Processes are built from names as follows.

Definition 1 (Syntax) Processes in Aπ-calculus 
are given respectively by

P,Q,... := 0 | x(y).P | x y | v(x)P | P | Q | !Q

The process (summation) 0 does nothing. x y  
and x(y).P represent the output and input process 
respectively, x y is a process which can output a 
datum y on channel  x. x(y).P is a process which 
can perform an input action on channel x and 
then it behaves like P{z/y}, the process which 
has replaced every occurrence of the name y, by 
the datum z received.  {z/y} is a substitution of z 
by y, x(y) is called a guard or (input) prefix.  In 
P | Q, the parallel composition of P and Q, P and Q 
can proceed independently or can synchronize via 
shared names. In (ν x)P , the name x is declared 
private to P , i.e. initially, components of P can 
use x to interact with one another but not with 
other processes, the scope of x could change as 
a result of interaction between processes as will 
be seen later. Finally, the replication !P can be 
thought of as unboundedly many P’s in parallel 
P | P | P |  ..., replication is the means to express 
infinite behaviour. 

In each of x(y).P  and (v y)P, the occurrence of y 
is bound with scope P . An occurrence of a name 
in a process is bound if it is under the scope of a 
binding occurrence of the name. An occurrence of 
a name is free if it is not bound. Given Q we define 
its bound names bn(Q) as the set of names with a 
bound occurrence in Q, and its free names fn(Q)  
as the set of names with a non-bound occurrence 
in Q, hence n(Q) = fn(Q) ∪ bn(Q)  is the set of 
names of Q.

The relevance of this paper does not rely only 
on the discriminatory results between different 
fragments of   Aπ,  but identifies fragments where  
it is possible to define a range of processes where 
it would be possible to determine automatically 
properties such as convergence and divergence. 
Decidability results for process calculi as those 
presented in this paper are important steps towards 
the development of   formal verification tools for 
concurrent systems.

2. Preliminaries

This section introduces some notions, notations 
that will be used in the rest of the paper. 

2.1 The asynchronous π-calculus: Aπ

Communication in the π-calculus is considered 
synchronous. The key property relies on the fact that 
the output and the input prefix impose a precedence 
over the terms which are underneath, such that once 
a communication involving the output and the input 
prefix occurs, the terms which were underneath 
the prefixes are unguarded at the same time. This 
behavior can be seen as a kind of acknowledgement 
of the execution of the communication over the 
processes involved in it.

Asynchronous π-calculus (Aπ) is a variant of the 
π-calculus introduced in  (Boudol, 1992; Honda, & 
Tokoro, 1991). In this variant the communication 
can be seen as asynchronous, in the sense that the 
act of sending a datum and the act of receiving it can 
be seen as separate, hence not simultaneous. Aπ is 
obtained by restricting the term underneath the output 
prefix to be 0 (the null process). In this way the kind 
of acknowledgement provided by the precedence 
in the output prefix is lost. Moreover, an unguarded 
occurrence of x(y) can be thought of as a datum y in 
an implicit communication medium, tagged with x 
to indicate that it is available to any unguarded term 
of the form x(z).P. Thus, in the evolution of a term, 
the datum y can be considered to be sent when x(y) 
becomes unguarded, and to be received when  x(y)  
disappears via an internal action.
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Table 1. Operational Semantics for the Aπ-calculus

In this paper, we consider a version of Aπ without 
τ and choice as proposed in (Boudol, 1992; Honda, 
& Tokoro, 1991). 

2.1.2 Semantics

The semantics of the language described above 
is  made precise by a labeled transition system. A 
transition P    Q says that P can perform an 
action α and evolve into Q. The set of actions used 
in the transition system is composed by  x y,  x y, 
x(y), t. x y, a free output, sends the name y on the 
name x, x y , an input, receives the name y on the 
name x,  x(y), a bound output, sends a fresh name 
on x and t is an internal action .

Definition 2 (Semantics) The labeled transition 
relation a  is given by the rules in Table 1. 
Omitted from Table 1 are the symmetric forms of 
Par-L, Com- L and Close-L.
 

a

a

2.2 Divergence and convergence

Definition 3 We say that P is stable iff P cannot 
perform any action α. 

Definition 4 We say that P is convergent 
P , iff there is a stable process Q such that 
P( )   Q. We say that P is divergent, P  , iff 
P ( )   , i.e., there exists an infinite sequence 
P = P0   P1 ...

2.3 Semi-persistence in  Aπ

Here we define the syntactic restrictions of Aπ 
that are considered in this paper.

The fragment of persistent-output calculus 
POAπri, arises as from Aπ by requiring all outputs 
to be replicated where the replication operator is 
restricted to input processes and output processes. 

t
t t

t
w

*
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Processes in POAπri are generated by the following 
grammar: 

P,Q,... := 0 | x(y).P | !x (y).P | !x y | (v x)P | (P | Q )

Finally, we have the persistent calculus π, a subset 
of Aπ where output and input processes must be 
replicated. Processes in PAπ are generated by the 
following grammar:

P,Q,... := 0 | !x (y).P | !x y | (v x)P | (P | Q ) | !P

The relation  for POAπri  and PAπ can be 
equivalently defined as in Table 1, with Output 
replaced with Output(POAπri), and Input and 
Output replaced with Input(PAπ) and Output(PAπ) 
rules  showed below. The new rules reflect 
the persistent-output nature of POAπri (Rule 
Output(POAπri)), and the persistent nature of 
PAπ (Rules Input and Output(PAπ)). Notice that 
these new rules can be derived directly from the 
application of the Rules Input, Output, and Rep-
Act in Table 1.

Output (POAπri) !x y  0 | !x y 
Input(PAπ) !x (y).P  P {z/y} | x(y).P where x, y ∈ N

Output (PAπ) !x y   0 | !x y 

Remark 1 Notice that, unlike to the presentation 
of Aπ, its syntactic restrictions does not include 
terms as  !P explicitly. However, it is clear that all 
the terms from these restricted variants correspond 
to Aπ  terms.   Considering this, and for the sake 
of uniformity in the presentation of the proofs, we 
consider processes in Lemmas 1, 2, 3, and 4 as  
Aπ terms rather than restricted language terms. 
Clearly the results obtained from these lemmas 
are valid for the two syntactic variants. 

3. Decidability results for POAπri and  PAπ

We shall prove that there is no computable 
encoding preserving divergence or convergence 
from Aπ into POAπri and PAπ. We do this by 
proving that unlike for Aπ, divergence and 
convergence are decidable for these POAπri and 
PAπ processes.

x z

x y

x y

a

Below, a remark on the undecidabiliy of 
convergence and divergence in Aπ.

Remark 2 Convergence and divergence are 
undecidable in Aπ. In  (Busi, et al, 2009), it was 
proved the undecidability of convergence and 
divergence for the calculus CCS. That result is 
extended directly to Aπ by using the encoding 
from π-calculus with recursive functions into 
replication showed in (Sangiorgi, Walker, 2001). 
The encoding from guarded-choice π-calculus 
into choice-free π-calculus given in (Palamidessi, 
et al, 2006), and either Honda and Tokoro’s 
encoding or Boudol’s encoding from π-calculus 
into Aπ proposed in (Boudol, 1992) and  (Honda, 
& Tokoro, 1991). All of these encodings preserve 
and reflect divergence and convergence.

We need to prove that the set of reachable 
processes through a τ-action can be computed; 
Succ(P) = {P’  | P  , P’} is computable.

Without lose of generality, we assume that all the 
bound and free names are distinct in every process 
we consider in this section. Notice that every 
process can be transformed into an equivalent 
process with distinct names by using α-conversion  
(Sangiorgi,  & Walker, 2001).

It is well known that the relation  is image-
finite (Sangiorgi,  &  Walker,  2001). Therefore 
the set of successors of a process P, Succ(P), is 
finite. Here we describe how to build this set.

3.1 Computing successors

Now, it will be illustrated how to calculate 
derivative processes fron any Aπ process P is 
computable.   The approach is to show a function 
doing the corresponding calculations. Depending 
on the nature of the derivation, one of the following 
lemmas is the most suitable.

The computability of the derivative processes 
is extended trivially to the terms defined in its 
syntactic restrictions of Aπ, i.e POAπri and PAπ.

a

 t
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Lemma 1 For any Aπ P, Derivx z (P) = {P’ | P  , P’}is computable.

Proof.
Let us define inductively the set  as follows:

•  

• 

• 

• 

Lemma 2 For any Aπ P,   

 is computable. 

Proof. 
Let us define inductively the set  as follows: 

• 

• 

•  

•  

 It can be proved that by structural induction on . 

Lemma 3 For any Aπ ,  is computable. 

Proof.  
Let us define inductively the set  as follows: 

• 

• 

• 

•  
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It can be proved that  by structural induction on . 

Lemma 4 For any Aπ P, Succ  is computable. 

Proof.  
Let us define inductively the set  as follows: 

• 

• 

where  represents the set of the derivative processes from  through a  resulting 
from synchronization between Q and R.  is defined as follows:  

   

     

  

• P = (ν y)Q : Der(P) := {( (ν y) Q’)  | Q’ ∈ Der(Q)}

•   

  

  

 

The calculability of  when  or  relies on the calculability of  
 and which are shown in Lemmata 3, 1,  and 2 respectively.

It can be proved that Der(P ) = Succ(P ) by induction on P.    

By using the function , we can now determine whether a process is convergent (divergent) or not.

•
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3.2 Decidability of convergence and divergence

Now, we can show that convergence and 
divergence are decidable for POAπri and PAπ. The 
next theorem shows the decidability of divergence 
and convergence in PAπ.

Theorem 1 Divergence and convergence are 
decidable in PAπ.

Proof.
From the persistent nature of both input and output 
prefixes in PAπ, we know that if a synchronisation 
happens in a POAπri process then there must be an 
infinite τ-labelled computation from such a PAπ 
process. Hence a PAπ process P is divergent if 
and only if Succ(P)>0 and we can say that a PAπ 
process P is convergent if and only if Succ(P)=0. 

Now, we consider the decidability of convergence 
and divergence for POAπri. 

First we need to introduce the notion of occurrence 
of linear input prefix. A linear input prefix is the 
input prefix that is not under the scope of the 
replication operator.

Definition 6 (Occurrences of linear input prefix) Let 
P ∈ POAπri. The maximal number of occurrences of 
linear inputs in  P, LinearInp(P) is given inductively 
as follows: LinearInp(0)=0, LinearInp(!x-)=0, 
L i n e a r I n p ( a ( x ) . P ) = 1 + L i n e a r I n p ( P ) , 
LinearInp(!P)=0, LinearInp((vx)P)=LinearInp(P), 
LinearInp(P | Q)==LinearInp(P)+=LinearInp(Q).

The following proposition says that only input 
actions that come from linear input prefixes 
can participate, by synchronization, in a finite 
maximal sequence of τ-actions.

Proposition 1 Let P,  P´ ∈POAπri  such that P   
P´ and P´ is convergent. Then P is convergent 
and each τ -move from P into P´ is produced by a 
synchronization between an output and an input 
action coming from a linear input prefix.

Proof.
To prove the first part, to obtain a contradiction, 

τ

let us suppose that P is non-convergent, i.e. there 
is no maximal finite computation from P. As any 
maximal computation from P´ can be seen as 
the ending part of a maximal computation from 
P passing through. Each maximal computation 
from P´ must be infinite. Therefore. P´ is non-
convergent, a contradiction.

To prove the second part, to obtain a contradiction, 
let us suppose that there is a τ -move from  P into 
(convergent) P´ produced by a synchronisation 
between an output and an input action coming 
from an input prefix being under the scope of a 
replication operator. Since output actions are 
persistent at time in POAπri , i.e. once an output 
action can be performed, the same action can be 
executed at anytime later on, and the input actions 
coming from input prefix being under the scope of 
a replication operator are persistent as well, there 
is possible to perform a synchronization from P´ 
and any of its τ-derivative processes. Hence P´  
cannot be convergent, a contradiction. 

As a corollary from Proposition 1, we have the 
following proposition: 

Proposition 2 Let P, P´ ∈ POAπri  such that  
such that P  P´ and P´ is convergent. Then 
LinearInp(P) ≥ 1.

A crucial observation to prove the decidability 
of convergence and divergence in POAπri  is that 
the number of occurrences of linear input prefix 
decreases as long as a finite computation is 
performed.

Proposition 3 Let P, P´ ∈ POAπri such that  
such thatP  P´ and P´ is convergent. Then 
LinearInp(P) = LinearInp(P) - 1.

Proof.
From Proposition 1, we know that any τ-move 
from P into P´ corresponds to a synchronisation 
where the input action comes from a linear input 
prefix. The participation of this kind of input 
action implies that an occurrence of a linear input 
prefix is consumed from P. Notice that although 

τ

τ
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Theorem  2 Divergence is decidable in POAπri .

Proof.
From Lemma 5, a POAπri process P is divergent 
if and only if there is at least one computation 
from P whose length is greater than LinearInp(P). 
It can be checked whether such a computation 
exists by ver- ifying that | SuccSt LinearInp(P)+1 (P)| ≥ 
0. From Lemma 4 it is clear that SuccSt LinearInp(P)+1 
(P) can be straightforwardly calculated.  

Theorem 3 Convergence is decidable in POAπri .
Proof. From Lemma 5, a  POAπri process P is 
convergent if and only if there is at least one 
maximal computation from P whose length is less 
or equal to LinearInp(P), i.e. if there is at least 
one stable process derivable from P at most in 
LinearInp(P) τ-moves. It can be checked whether 
such a stable process exists by verifying that 
|SuccSt 0 (P) | + |SuccSt 1(P)| + | SuccSt 2 (P)| + . 
. . + | SuccSt LinearInp(P) (P )| ≥ 1. From Lemma 4 it 
is clear that SuccSt i (P) for any natural number i 
can be straightforwardly calculated. 

As corollary from Theorem 2 and Theorem 3 and 
considering Remark 5.1.1 we obtain the following 
separation result:

Theorem 4 There is no encoding preserving and 
reflecting divergence (convergence) from Aπ into 
POAπri.

4. Conclusions 

 In this paper we studied the decidability of 
divergence and convergence in two fragments 
of Aπ: POAπri and PAπ. As main contribution we 
showed that these two properties are decidable in 
both fragments. 

As the divergence-sensitive nature of Testing 
Semantics (Nicola, & Hennessy, 1984) and 
the failures-sensitive nature of Failures 
Semantics (Milner, 1989), these results support 
and strengthen the separation results   from 
(Cacciagrano,  et al.,  2008). This paper does not 
take into account particular properties that an 

the execution of this input action can substitute 
names in P, the linear or persistent nature of the 
rest of the process remains unchanged. As for the 
output action, the consumption of an output action 
does not alter the number of occurrences of linear 
input prefix; it is due to the asynchronous nature 
of the calculus. 

The following Lemma gives an upper bound of 
the length of the maximal finite computations that 
depends on the number of occurrences of linear 
inputs prefix. Notice that the lower bound does 
not depend on this number, e.g. a(x).0 | a(x).0 |...| 
a(x).0 is stable.

Lemma 5 Let P ∈ POAπri. For each maximal 
finite τ-labeled computation c from P, length(c)   
LinearInp(P). 

Proof.
Let us consider any maximal finite computation 
from P:

P , P1 , P2 , P3  ...  Pn 
where Pn is estable

From Proposition 3 we know that LinearInp(P1 )  
= LinearInp(P)– 1, in general LinearInp(Pi )  
= LinearInp(P) – i. Consequentenly, 
LinearInp(PLinearInp(P) )  – 0. From Proposition 
2, PLinearInp(P) is stable. Therefore, length(c)  
LinearInp(P).  

From the computable function Succ, we can 
define and calculate a function  Succi (P)={P | P’

 P’ ’  for some P ∈ Succi-1 (P)} where Succ1 (P) 
= Succ(P) and Succ0 (P) = {P}, in a similar way 
we can identify the stable processes derivable 
from P at i τ-actions by the function SuccSt i (P) 
={P’ ’   | P’ P’ ’  for some P’ ∈ Succi-1(P) and ∈ 
Succ(P’ ’  ) ={}}.

Now, it is easy to see from Lemma 5 and by 
using the functionSucci and SuccSt i , which are 
computable from Lemma 4, that divergence and 
convergence are decidable.

τ

τ

τ

τ τ τ τ
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encoding should satisfy, in addition this paper 
extends the expressiveness gap considering for 
first time convergence. 

Notice that although the results for PAπ could be 
obtained straightforwardly from the results for 
POAπri,  the nature of the separation   is different 
in both cases: the separation results for PAπ seems 
to rely on the persistence nature of the processes 
exclusively, thus, we claim that this result is valid 
for the full synchronous π-calculus, as the results 
of  (Cacciagrano, et al., 2008).  On the other hand, 
the expressiveness gap between Aπ intoPOAπri 
relies on asynchrony, and then this result seems to 
be specialized for this fragment. 

Although it seems that the results from this paper 
are not unexpected, one of the most relevant and 
important contributions of this paper relies on 
identifying precisely a range of processes where 
it would be possible to determine automatically 
properties such as convergence and divergence. A 
process calculi term can be used to model several 
concurrent real-life systems. Decidability results 
for process calculi are an important contribution 
towards the development of   formal verification 
tools for concurrent systems. 

Although this paper shows strong impossibility 
results on two fragments, it is necessary to extend 
this work and to explore these properties on full 
POAπ and PIAπ. In a near future, we expect to 
analyze how to model a Turing-equivalent model 
preserving divergence (convergence) into PIAπ, 
as some evidence (Aranda, 2009) suggests that  
PIAπ is more expressive than POAπ. 
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