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Abstract
In this paper, a result of the research project that aimed to define new algebraic operators and new SQL primitives for 
knowledge discovery in a tightly coupled architecture with a Relational Database Management System (RDBMS) 
is presented. In order to facilitate the tight coupling and to support the data mining tasks into the RDBMS engine, 
the three-step approach is proposed. In the first step, the relational algebra is extended with new algebraic operators 
to facilitate more expensive computationally processes of data mining tasks. In the next step and with the aim that 
the SQL language is relationally complete, these operators are defined as new primitives in the SELECT clause. In 
the last step, these primitives are unified into new SQL operator that runs a specific data mining task. Applying this 
method, new algebraic operators, new SQL primitives and  new SQL operators for association and classification 
tasks were defined and were implemented into the PostgreSQL DBMS engine,  giving it the capacity to discover  
association and classification rules efficiently.

Keywords: Three-Step Method, Tight Coupling, Data Mining Tasks, Relational Database Management System.

Resumen
En este artículo se presenta uno de los resultados del proyecto de investigación cuyo objetivo fue definir nuevos 
operadores algebraicos y nuevas primitivas SQL para el Descubrimiento de Conocimiento en una arquitectura 
fuertemente acoplada con un Sistema Gestor de Bases de Datos Relacional (SGBDR).  Se propone el método tres-
pasos  con el fin de facilitar el acoplamiento fuerte y soportar tareas de minería de datos al interior del motor de un 
SGBDR.   En el primer paso, se extiende el álgebra relacional con nuevos operadores algebraicos que faciliten los 
procesos computacionales más costosos de las tareas de minería de datos. En el siguiente paso y con el fin de que 
el lenguaje SQL sea  relacionalmente completo, estos operadores son definidos como nuevas primitivas SQL en la 
cláusula SELECT. En el último paso, estas primitivas son unificadas en un nuevo operador SQL que ejecuta una 
tarea específica de minería de datos. Aplicando este método, se definieron nuevos operadores algebraicos, nuevas 
primitivas  y operadores SQL  para las tareas de Asociación y Clasificación y fueron implementados al interior 
del motor del SGBD  PostgreSQL, dotándolo de la capacidad para descubrir reglas de asociación y clasificación 
eficientemente.

Keywords: Método Tres-pasos, Acoplamiento Fuerte, Tareas de Minería de Datos, Gestor de Base de Datos 
Relacional.
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1. Introduction

Researches on data mining were initially 
concentrated on defining new patterns of 
discovery operations and developing algorithms 
for them.   Subsequent researches (Agrawal  and  
Shim, 1996), (Meo et al.,1998a), (Sarawagi et 
al., 2000), (Netz et al.,2000)  have been focused 
on issues related to integrating data mining 
with  database systems, producing as a result the 
systems and tools development  of data mining 
whose architectures can be classified in one of  
three categories: loosely coupled, mildly coupled 
and tightly  coupled with a database management 
system (DBMS) (Timarán, 2001).

Most data mining systems are loosely coupled 
with a DBMS. In this architecture, data mining 
algorithms are found outside the kernel of the 
DBMS. Integration is provided through an interface 
which function, in most cases, is limited to the 
commands “read from” and “write to” (Imielinski 
and Virmani, 1999). Their main disadvantages 
are poor scalability and performance. The first 
one arises when large data sets do not fit into the 
available memory and cannot therefore be mined 
efficiently. Poor performance arises when records 
are carried from the database address space to the 
application address space (Chaudhuri, 1998). To 
solve these problems, mining algorithms should 
be integrated into the DBMS engine as a primitive 
in a tightly coupled architecture (Timarán, 2001), 
(Boulicaut &Masson, 2010).

Many approaches to implement this kind of 
systems have been proposed. Expressing certain 
data mining operations as a series of SQL queries 
(Thomas & Chakravarthy, 1999),   (Sarawagi et al., 
2000),(Yoshizawa et al., 2000), (Rantzau,2004);  
extending SQL language with unified operators  
which  support certain pattern discovery tasks: 
DMQL (Han et al., 1996) , M-SQL (Imielinski 
and Virmani, 1999), MINE RULE  (Meo et 
al.,1998b); and, defining SQL generic primitives 
which facilitate the  knowledge discovery process 
without supporting a particular task: NonStop 
SQL/MX  primitives (Clear et al., 1999), Count 

by Group primitive (Freitas and Lavington, 
1997),  FilterPartition, ComputeNodeStatistics 
and PredictionJoin primitives (Sattler and 
Dunemann,2001). 

A major drawback of the first approach of 
integration is poor performance, due mainly to 
the fact that the rather simple SQL operations like 
join, group and aggregation are not sufficient for 
efficiently executing data mining tasks (Sarawagi 
et al., 2000).  One of the most important approaches 
to efficiently support the knowledge discovery in 
databases is to extend a DBMS engine with new 
operators and primitives. Meo et al. (1998a, 1998b) 
propose a unifying model to discover association 
rules. The model is based on a new operator, 
named MINE RULE, designed as an extension 
of the SQL language with a formal semantics 
for this operator.  The semantics is described by 
means of an extended relational algebra with new 
operators: Group by, Unnest, Extend, Substitute, 
Rename, Powerset, which transform a relational 
table into an object-relational table (i.e. table 
with multivalued attributes) in order to discover 
association rules.  MINE RULE is supported by 
tightly coupled architecture, where data mining 
is integrated within a classical SQL server. 
The differences between this approach and the 
proposed approach in this paper, is that the former 
does not propose SQL primitives that could be 
used in other discovery tasks. On the other hand, 
the new proposed algebraic operators conserve 
the closure property of the relational model and 
use relations with atomic attributes. 

In (Clear et al., 1999) the implementation 
of a set of new SQL primitives: Transpose, 
Vertical Partitioning,  Round-robin, Horizontal 
Partitioning, sequence functions, sampling, 
which were added to NonStop SQL/MX, a 
parallel, object-relational DBMS from the 
Tandem Division of  Compaq; is reported. These 
primitives, along with other high-performance 
features of the SQL/MX engine enable basic 
knowledge discovery tasks to be performed in a 
scalable, efficient and parallel manner.  Therefore, 
this type of integration is a very specific solution 
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to a tightly coupled problem, since others that are 
not parallel to the DBMS could possibly not use 
these primitives. Also, these primitives do not 
have a formal definition in the relational algebra 
like the proposed primitives.

In this paper, one of the results of the research 
project that aimed to define new algebraic operators 
and new SQL primitives for knowledge discovery 
in a tightly coupled architecture with a Relational 
Database Management System (RDBMS) 
is presented. In order to facilitate the tightly 
coupled and to support the data mining tasks into 
the RDBMS engine, the three-step approach is 
proposed. In the first step, the relational algebra is 
extended with new algebraic operators to facilitate 
more expensive computationally processes of data 
mining tasks. In the next step and with the aim 
that the SQL language is relationally complete, 
these operators are defined as new primitives 
in the SELECT clause. In the last step, these 
primitives are unified into a new SQL operator 
that runs a specific data mining task. Applying 
this method, new algebraic operators, new SQL 
primitives and new SQL operators for association 
and classification tasks were defined and were 
implemented into the PostgreSQL DBMS engine, 
giving it the capacity to discover association and 
classification rules efficiently.

The rest of the paper has been organized as 
follows: In section 2, the methodology used 
to provide PostgreSQL DBMS capacities to 
knowledge discovery is presented.  In section 3, 
new relational algebraic operators and new SQL 
primitives for association and classification tasks 
are described. Finally, in section 4 the conclusions 
are presented.

2. Methodology

The current database systems are designed 
primarily to support business applications. The 
success of the SQL language is linked to the small 
number of enough primitives to support the vast 
majority of these applications. Unfortunately, 

these primitives are not sufficient to support the 
emerging family of new applications dealing with 
Knowledge Discovery in Databases (KDD).

To support the data mining tasks into the Relational 
Database Management System (RDBMS) engine, 
the tree-step approach is used.  This approach 
facilitates the tight coupling with a DBMS. In the 
first step, the relational algebra is extended with 
new operators that execute the most expensive 
processes of association and classification tasks. 
In the second step, SQL language is extended with 
new primitives in the SQL SELECT clause that 
implement the new relational algebraic operators.  
Finally, in the last step, the new SQL primitives 
are unified into new SQL operators, that allow the 
extraction of association and classification rules, 
in the new SQL clause.

3. Results and discussion

3.1 New operators of relational algebra for 
data mining tasks 

A data mining architecture tightly coupled with 
DBMS, a new algebraic operator should execute 
the most expensive processes of data mining 
tasks to guarantee efficiency in the data mining 
operations.

For an association task, the overall performance 
of mining association rules is determined by the 
discovery of large itemsets, i.e., the sets of itemsets 
that have their support above a pre-determined 
minimum support (Han and Kamber, 2001). For 
a classification task by decision tree induction, 
a decision tree classifier is built in two phases: a 
growth phase and a pruning phase.  In the growth 
phase, the tree is built by recursively partitioning 
the data until all members belong to the same 
class.  The tree growth is computationally much 
more expensive than the pruning phase. In the first 
phase, to compute the attribute selection measure 
is the most expensive part of the algorithm since 
finding the best split for a node requires evaluating 
the attribute selection measure for each attribute 
at each possible split point (Wang et al, 1998).  
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3.1.1 Algebraic operators for an association task

The process of extracting association rules is 
facilitated extending the Relational Algebra 
with the following new operators proposed in 
(Timarán, 2005):

3.1.1.1 Associator  (α)

The Associator operator (α) generates, for each 
tuple of the relation R, all their possible subsets 
(itemsets) of different size.  The Associator takes 
each tuple t of R and two numbers IS and ES as 
input, and returns, for each tuple t, the different 
combinations of attributes Xi from size IS until 
size ES, as tuples in a new relation. In each tuple 
Xi, only the attributes that are combined have 
values, the rest of attributes are null. The order 
of the attributes in the R scheme determines the 
order of the attributes in the subsets.

Formally, let A = {A1, ..., An} be the set of attributes 
of relation R;  n and  m are degree and cardinality 
of R respectively; IS y ES  are the initial and final 
size of the subsets to obtain respectively:

α(IS; ES; R)  =  { ∪all  Xi  Xi ⊆ ti, ∀i ∀k ( Xi = <vi
(A1),vi(A2),null..,vi(Ak),null>,      ( i ≤ ( 2n  -1) * m) , 
 (k = IS..ES)), and A1<A2< ...<Ak}

Example 1.  Let R (A, B, C) be the relation in 
Figure 1a. Let R1 = α(2; 3; R) be the operation.   
The output of the Associator is shown in Figure 1b.

3.1.1.2 EquiKeep  (χ) 

EquiKeep (χ) is a unary algebraic operator that 
as the Selection(σ) operator, evaluates a logical 
expression from a relation R,  but EquiKeep applies 
the logical expression to the columns (attributes) 
of R. This operator restricts the attribute values 
of each one of the tuples of a specified relation 
to only the attribute values that satisfy a specified 
condition, making the rest of attribute values 
null. EquiKeep takes each tuple t of a relation R 
and a logical expression P as input, and returns a 
new relation with the same R scheme, in which, 
each new tuple t is formed by the attribute values 

that satisfy the expression P. The rest of attribute 
values are made null.  EquiKeep eliminates the 
empty tuples, i.e. the tuples with all the attribute 
values null.

Formally, let A = {A1, ..., An} be the set of attributes 
of relation R;  n and  m,  degree and cardinality of 
R respectively. Let P be a logical expression:

χp(R)={ ti(A) | ∀i∀j (p(vi(Aj))= vi(Aj)  if  p =true 
and p(vi(Aj))= null and p =false), i=1...m’,
 j=1...n, m’ ≤ m}

Example 2.   Let R (A, B, C) be the relation in 
Figure 1a. Let A=a1 v B=b1 v C=c2, the logical 
expression to evaluate.  The result of   R1=χ A=a1 v 

B=b1 v C=c2 (R) is shown in Figure 1c.

3.1.1.3 Describe associator (βα)

A Describe Associator is a unary algebraic 
operator that takes as input the resulting 
relation of the Associator and for each tuple 
of this relation, it generates, from not null l 
attributes of the tuple, all the different subsets 
of specific size like {{a},{l-a},s}, where 
{a} is named antecedent subset and  {l-a} 
consequent subset.  Subsets {a} and {l-a} are 
subset of l attributes. The s is the size of the 
antecedent subset {a}.

Formally, let A = {A1, ..., An} be the set of 
attributes of relation  R;  n and m are degree and 
cardinality of R respectively. Let LR be the size of 
the subsets to obtain. 

βαLR(R)  =  { ∪all  Xi(Y) Y={Y1,Y2,..YLR,S}, Xi ⊆ ti, 
ti∈ R , ∀i  (Xi =<vi(A1), ..,vi(Ak), s>,   
vi(Ak)<>null), (i ≤ (2n -2) * m), LR ≤n }

The β operator applied to R produces a new 
relation with degree LR+1, cardinality i ≤ (2n 
-2) and the schema R (Y), Y= {Y1, Y2,..YLR, S}, 
where S is the length of antecedent subset. The 
Describe Associator facilitates the generation of 
one-dimensional or multidimensional association 
rules [HaKa01].

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 125 - 136 (2013)



129

Example 3.   Let R (A, B, C) be the relation in 
Figure 1a to obtain all subsets of size 3. The result 
of βα3 (R) is shown in Figure 1d.

3.1.2 Algebraic operators for classification task

The process of extracting classification rules is 
facilitated extending the Relational Algebra with 
the following new operators proposed by Timarán 
(2005):

3.1.2.1 Mate (µ)

The Mate operator  (µ) generates, for each tuple 
of relation R, all their possible combinations of 
the not null attribute values from an attributes 
list denominated Condition Attributes, with the 
not null Class Attribute value.  This process is 
executed in a single passing on the relation.

Figura 1. Algebraic operators. a) Relation R      b )Output of Associator operator c) Output of EquiKeep operator d) Output of 
Describe Associator operator e) Output of Mate operator

Formally, let   A ={A1, . . ., An} be the set of 
attributes of relation R; n and m are degree and 
cardinality of R respectively;   LC ⊂  A,    LC ≠φ  
the Condition Attributes list  and  n’  the size of  
LC,  LC=  n’, n’<n. Let   Ac ∈A ,      Ac ∩LC = 
φ  be the Class Attribute.  The Mate operator (µ) 
is defined this way:

µ LC; Ac(R) = { ti(M) M=LC ∪ Ac,  LC⊂   A, 
LC=  n’, n’<n,  Ac∈A, Ac ∩LC = φ, ti=Xi,  1≤ 
i≤m’,

m’= (2n’-1)*m, ∀i∀k( Xi=<null, ...,vi(Ak)... 
,null,...,vi(Ac)>,  vi(Ak) vi(Ac) ≠ null), 1≤ k≤ n’ }
                               
Example 4.   Let R (A, B, C) be the relation in 
figure 1a. Let R1= µA,B;C(R) be the operation. The 
output of Mate is shown in Figure 1e. 
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3.1.2.2 Aggregate operator Entro

The Entro allows to calculate the entropy measure 
of a relation R with regard to a condition attribute 
and a class attribute.

Formally, let   A ={A1, . . ., An} be the set of 
attributes of relation R; n and m are degree and 
cardinality of R respectively. Suppose the class 
attribute Ac, Ac ∈ R(A),  has  t distinct values 
defining  t distinct classes,  Ci (1≤ i≤.t).  Let ri be 
the number of tuples of R in Ci class.  Let q be the 
number of distinct values  {v1(Ak),v2(Ak),..,vq(Ak)} 
of condition attribute Ak , Ak∈ R(A), which can be 
used to partition R into  q subsets {S1,S2, …Sq}, 
where Sj contains those tuples in  R that have a 
value  vj(Ak) of attribute Ak.  Let sij be the number 
of tuples of Ci class in a subset Sj.  Entro(Ak; Ac; 
R),  return the entropy of  R regarding attribute  Ak, 
in this way:

Entro(Ak;Ac; R)={y | y = - ∑pij log2(pij),  1≤ i≤.t , 
1≤ j≤ q,   pij = sij / Sj}  

where pij= sij/ Sj  is the probability that a tuple in 
Sj  belongs to Ci class.

Entropy of R regarding attribute Ac class is:
Entro (Ac;Ac; R)={y | y = - ∑pi log2(pi),  1≤ i≤.t,  
pi =  ri / m}

3.1.2.3 Aggregate operator Gain 

Gain allows calculating the reduction in entropy 
caused by knowing the value of attribute Ak. Gain 
is defined as following:

Gain (Ak;Ac; R)={y | y = Entro(Ac;Ac; R) - 
Entro(Ak;Ac; R)} where  Entro (Ac; Ac; R) is the 
entropy of relation  R regarding class attribute Ac 
and  Entro (Ak; Ac; R) is the entropy of relation  
R  regarding the condition attribute Ak.

3.1.2.4 Describe classifier (βµ)

A Describe Classifier (βµ) is a unary operator 
that takes the resulting relation of the operators 

Mate, Entro and Gain as input, and returns a new 
relation with the attribute values that will form the 
different nodes of the decision tree.

Formally, let   A= {A1, .., An,E,G} be the set of 
attributes of relation R; n+2 and m are degree 
and cardinality of R respectively.  The Describe 
Classifier (βµ) operator is defined this way: 
β (R)  =  { ti(Y) Y={N,P,A,V,C }

where,

ti=<val(N),null,val(A),null,null>  if  ti is a root 
node, 

ti=<val(N),val(P),val(A),val(V),val(C)>  if  ti is a 
leaf node  

ti=<val(N),val(P),val(A),val(V),null>  if  ti  is 
other  node 

The Describe Classifier operator facilitates the 
construction of the decision tree and consequently 
the generation of classification rules.  

3.2 New SQL primitives for data mining 
tasks 

The previous algebraic operators extend the 
Relational Algebra for support data mining tasks. 
With the aim that SQL language is relationally 
complete and also able to support data mining 
task, it is necessary to implement these operators 
like SQL primitives.

3.2.1 SQL primitives for association task

The algebraic operators Associator, and EquiKeep 
are implemented in SQL language with the 
following new SQL primitives proposed by 
Timarán (2005):

3.2.1.2 Primitive associator range 

The primitive Associator Range in the SQL 
SELECT clause implements the Algebraic 
operator Associator. In the SELECT clause, this 
primitive has the following syntax: 
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SELECT <AttributeListDataTable> [INTO 
<AssociatorTableName>]
FROM  <DataTableName>  
WHERE <WhereClause>
ASSOCIATOR RANGE<number 1> TO 
<number 2>
GROUP BY <AttributeListAssociatorTable>

The ASSOCIATOR RANGE clause determines the 
size of different subsets that are generated by this 
primitive, starting from an initial size < number 1 
>, until <TO> a final size < number 2 >.  The other 
clauses are standard SQL clauses and therefore 
their functions are very well known for all. 

The ASSOCIATOR RANGE primitive facilitates 
the calculation of the large itemsets for discovery 
association rules in multicolumn tables (Rajamani 
et al., 1999).

Example 5. Let Students (PROGRAM, AGE, 
GENDER, STRATUM, AVERAGE) be table 
in figure 2a. Get large itemsets of size 2 and 
3, formed by the PROGRAM, GENDER and 
STRATUM attributes with minimum support 
greater than or equal to 2 and store them in the 
table AssoStudents.

The SQL query is:
SELECT program, gender, stratum, count(*)  
AS support INTO AssoStudents 
FROM Students 
ASSOCIATOR RANGE 2 UNTIL 3
GROUP BY program, gender, stratum 
HAVING count(*)>=2

The final result of this query is shown in figure 2b.

3.2.1.2 Primitive EquiKeep On 

The primitive EquiKeep On in the SQL SELECT 
clause implements the algebraic operator 
EquiKeep.   In the SELECT clause, EquiKeep On 
has the following syntax:

SELECT<AttributeListDataTable>[INTO 
<EquiKeepTableName>]
FROM  <DataTableName> WHERE 
<WhereClause>
EQUIKEEP ON < Condition >

EQUIKEEP ON < Condition > clause keeps 
the values of the attributes of the table   
<AttributeListDataTable>, maintaining in each 
record of the table <EquiKeepTableName> 
only the attribute values that satisfy a specified 
condition <condition>.  The rest of attribute values 
of the table <EquiKeepTableName> become null. 
The primitive EQUIKEEP ON facilitates the 
generation of large itemsets in the discovery of 
Association Rules, to keep in each record of the 
table only the values ​​of the frequent attributes.
Example 6.  Keep in each record of the table 
Students of figure 2a, only the values ​​of the 
attributes that satisfy the following conditions: 
PROGRAM like Systems or Languages, AGE 
like 21..25, GENDER like F,  STRATUM like 2 
or 4 and AVERAGE like regular or low.  Store the 
result in the table EquiStudents.

The SQL statement is:
SELECT *   INTO  	 EquiStudents
FROM Students 
EQUIKEEP ON program in 
(‘Systems’,’Languages), age like’21..25’, 
gender = ‘F’, stratum in (2,3), average in 
(‘Regular’,’Low’)

The result of this statement is shown in figure 2c

3.2.2 SQL Primitives for classification task

The algebraic operator Mate, together with 
the aggregate operators Entro() and Gain() are 
implemented in SQL language with the following 
new SQL primitives:

3.2.2.1 Primitive mate by with

The primitive Mate by in the SQL SELECT implements 
the algebraic operator Mate. This primitive has the 
following syntax in the SELECT clause:

SELECT <AttributeListDataTable> [INTO 
<MateTableName>]
FROM  <DataTableName> 
WHERE <WhereClause>
MATE BY<ConditionAttributesList> WITH 
<ClassAttribute>
GROUP BY < AttributeListDataTable>
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MATE BY<ConditionAttributesList> WITH 
<ClassAttribute> determines the set of attributes 
<ConditionAttributesList> with which the 
attribute class <ClassAttribute> is combined. 

The primitive MATE BY facilitates the 
classification task and the construction of 
a decision tree. This primitive calculates 
together with aggregate functions Gain () 
and Entro (), in each partition and for each 
attribute, the information gain and entropy 
respectively.

Example 7.  Let Symptoms (SID, PAIN, FEVER, 
INFLUENZA) be table in figure 3a. Perform 
different combinations between attributes PAIN 
and FEVER with attribute INFLUENZA, obtain 
their occurrences and store the result in the table 
ClasSymptoms. 

The SQL command that performs this query is:

SELECT pain, fever, influenza, count(*)  AS 
support INTO  ClasSymptoms
FROM Symptoms

Figura 2. SQL Primitives for Association Task  a) Table Student   b)Result  of Associator Range   c) Result  of   EquiKeep On       

MATE BY pain, fever WITH influenza
GROUP BY pain, fever, influenza

The result of this query is shown in figure 3b.

3.2.2.2 Aggregate function Entro()

The Algebraic aggregate operator Entro() is 
implemented by the aggregate function  Entro()  
in the SQL SELECT. This function has the same 
syntax as the primitive MATE BY WITH:

SELECT <AttributeListDataTable>, 
Count(*), Entro(*) [INTO 
<MateTableName>]
FROM  <DataTableName> 
WHERE <WhereClause>
MATE BY<ConditionAttributesList>  
WITH <ClassAttribute>
GROUP BY < AttributeListDataTable>

The aggregate function Entro () calculates, 
together with the primitive Mate By with, the 
entropy of each of the combinations of the 
condition attributes with the attribute class. SQL 
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Figura 3. SQL Primitives for Classification Task  a) Table Sympotms     b)Result  of  Mate By     

Entro()  must be run together with the aggregate 
function count ().

3.2.2.3 Aggregate function Gain ()

The Algebraic aggregate operator Gain () is 
implemented by aggregate function Gain () in the 
SQL SELECT. This function has the same syntax 
as primitive MATE BY WITH :

SELECT <AttributeListDataTable>, Count 
(*), Entro(*), Gain(*) 
[INTO <MateTableName>]
FROM  <DataTableName> 
WHERE <WhereClause>
MATE BY<ConditionAttributesList>
WITH <ClassAttribute>
GROUP BY < AttributeListDataTable>

The aggregate function Entro () calculates, 
together with the primitive Mate By with, the gain 
of information of each of the combinations of the 
condition attributes with the attribute class. SQL 
Gain () must be run together with the aggregate 
functions count () and Entro().

3.3 New SQL Operators for data mining tasks
 
The SQL language has been extended with 
primitives for Association and Classification 
tasks that are expressed in the SQL SELECT 

clause. These primitives facilitate the most 
computationally expensive processes of these 
tasks. Now, it is necessary to unify these primitives 
into SQL operators that allow extracting 
association and classification rules efficiently. 
These new operators are:

3.3.1 SQL Operator for association task

The SQL operator that unifies association 
primitives is called Describe Association Rules. 
This SQL operator implements the algebraic 
operator Describe Associator in a new SQL 
clause. The Describe Association Rules  generates 
association rules with a specific length from large 
itemsets. 

The operator Describe Association Rules has the 
following syntaxis:

DESCRIBE ASSOCIATION RULES INTO 
<AssociationRulesTable>
FROM  <LargeItemsetsTable> 
WITH CONFIDENCE <valor1>
LENGTH <valor2 >
[DO   <LargeItemsetsSubquery>]
< LargeItemsetsSubquery >::=<SFWEAG>
<SFWEAG> := <SELECT FROM WHERE 
EQUIKEEP ASSOCIATOR GROUP BY>
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The clause INTO < AssociationRulesTable > 
allows storing in a table < AssociationRulesTable 
> the association rules for future querys.

The clause FROM <LargeItemsetsTable> specifies 
the name of the data table <LargeItemsetsTable> 
where the large itemsets for the extraction rules are

The optional clause DO <LargeItemsetsSubquery> 
allows defining together with the describe clause, 
the subquery <LargeItemsetsSubquery> that 
computes the large itemsets with the association 
primitives.

Example 8.  From the table Students of figure 
2a, find the association rules of length 3 with a 
minimum support of 2 and a minimum confidence 
of 30. The generated rules are stored in the table 
AssorulesStudents.

The SQL command that performs this query is:

DESCRIBE ASSOCIATION RULES INTO 
AssorulesStudents
FROM Assostudents
WITH CONFIDENCE 30 LENGTH 3
DO   SELECT program, gender, stratum, 
count(*)  AS support INTO Assostudents 
FROM Students 
EQUIKEEP ON program in 
(‘Systems’,’Languages), age like’21..25’,
gender = ‘F’, stratum in (2,3), average in 
(‘Regular’,’Low’)
ASSOCIATOR RANGE 2 UNTIL 3
GROUP BY program, gender, stratum 
HAVING count(*)>=2

3.3.2 SQL Operator for classification task

The SQL operator that unifies classification 
primitives is called Describe Classification Rules. 
This SQL operator implements the algebraic 
operator Describe Classifier in a new SQL 
clause. The Describe Association Rules builds the 
decision tree and generates classification rules.
The operator Describe Classification Rules has a 
similar syntaxis of Describe Association Rules:

DESCRIBE CLASSIFICATION RULES 
[INTO <ClassificationRulesTable>]
FROM <TreeNameTable>
USING <MetricNameTable>  

	 [DO   <MetricCalculationSubquery>]

where

< MetricCalculationSubquery >::=<SFWMG>
<SFWMG> ::= <SELECT FROM WHERE 
MATE BY  GROUP BY>

Example 9. The table Symptoms of figure 3a, 
generate the classification rules and they are 
stored in the table ClassrulesSymptoms.

The SQL command that performs this query is:

DESCRIBE CLASSIFICATION RULES 
INTO Classrulessymptoms
FROM Treenodes
USING Gainsymptoms

DO
SELECT pain, fever, influenza, count(*), 
Entro(*), Gain(*)  INTO Gainsymptoms
FROM Symptoms
MATE BY pain, fever WITH influenza
GROUP BY pain, fever, influenza

In this example from gainsymptoms table, the 
operator Describes Classification Rules builds 
the table treenodes and with it generates the 
classification rules and stores them in the table 
classrulessymptoms.

3.4 Implementation of new SQL primitives and  
SQL Operators for data mining tasks

The new SQL primitives and new SQL operators 
for Association and Classification tasks were 
implemented into the engine of PostgreSQL 
DBMS. This process involved the modification of 
the structures, functions and the creation of new 
nodes in some components of the architecture 
of Postgres. The Parser was modified to build, 
transform and attach to the structures of the 
compiler a list with the new primitives and 
operators. The Planner / Optimizer was modified 
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to receive the parser tree and recognize the new 
primitives and operators, in which case new nodes 
were added to Query plan.  The Executor was 
modified to evaluate the new nodes and deliver a 
set of tuples, according to query. As a result of this 
process PostgresKDD, a database system with the 
capacity to support the discovery of association 
and classification rules in large data sets, was 
obtained.

4. Conclusions

The three-steps approach was applied to 
integrate in a tight coupling, the association and 
classification tasks into a relational database 
system.  The Relational Algebra was extended 
with the new operators: Associator, Equikeep, 
Describe Associator, Mate, Entro, Gain and 
Describe Classifier. The SQL  was extended 
with the primitives Associator Range, EquiKeep 
On, Mate by and the aggregate functions Gain() 
and Entro(). Also, SQL was extended with 
the operators Describe Association Rules and 
Describe Classification Rules. These primitives 
and operators for data mining tasks were 
implemented into PostgreSQL engine.

The future works in this area include following 
this method to define new algebraic operators 
and primitives for different data mining tasks and 
their implementation in PostgreSQL DBMS and 
extend the query optimizer of this DBMS, so that 
it executes a data mining query efficiently. 
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