
103

COMPUTING ENGINEERING

A survey of computational calculi used in musical
applications

INGENIERIA DE SISTEMAS

Un estudio de los cálculos computacionales usados en
aplicaciones musicales

§ Gerardo M. Sarria M.

Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana,
Cali-Colombia

§ gsarria@javerianacali.edu.co

(Recibido: 22 de Abril de 2013- Aceptado: 6 de Agosto de 2013)

Abstract
During the last decades, several formal models have been proposed to formalize musical applications, to solve
musical and improvisation problems, and to prove properties in music. In this paper, we briefly describe some of
those formal models (computational calculi). We provide a description of some applications of these formalisms,
and discuss some considerations about each calculus mentioned here remarking strengths and weaknesses.

Keywords: Computational calculi, formalization, musical applications.

Resumen
En las últimas décadas muchos modelos formales han sido propuestos para formalizar aplicaciones musicales,
para resolver problemas musicales y de improvisación, y para probar propiedades en la música. En este artículo
describiremos brevemente algunos de estos modelos formales (los cálculos computacionales); proveeremos una
descripción de algunas aplicaciones de dichos formalismos; finalmente discutiremos algunas consideraciones sobre
cada cálculo mencionado aquí, resaltando fortalezas y debilidades.

Palabras clave: Cálculos computacionales, Formalización, Aplicaciones Musicales

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

104

1. Introduction

During the last fifty years, the term formalization
has been increasingly used in process modeling.
Formalization is a procedure to present scientific
theories within the framework of a formal system,
and it can be considered a deductive approach
from a purely combinatorial point of view. In other
words, formalization may be seen as a deductive
step leading from a language to a theory.

Musical composition, performance and
improvisation are complex tasks. They demand to
define and control real-time concurrent activities.
Musical objects can be seen as structures with
various dimensions. In a horizontal dimension,
for example, time becomes a tight notion
where musical objects like notes or chords are
constrained. The position of each object defines
the relative order of musical events with respect
to each other, forming rhythmic patterns. In
a vertical dimension, event simultaneity and
musical objects like voices running in parallel can
be perceived, building harmony patterns.

Formalization, in musical terms, consists in
clarifying phenomena such as analysis and
composition, representing musical processes
(human thoughts) in a formal language that can be
understood by computers. That means, elaborating
models of formal representations of musical
concepts that can be transmitted to computers.
It is believed that the complexity of musical
processes is a challenge to any computational
formalism. The development of computational
models and tools to be used in musical systems
has increased during the last decades. Simple and
expressive formal models provide techniques for
reasoning musical properties; they are useful in
the construction of meaningful musical processes,
which are the basis of high-level musical
applications.

There are many programming languages for
music, musical applications and tools based
on mathematical principles, formal theories,
and studies in computer science. In this paper,

computational calculi that have been proposed
to formalize some musical applications to solve
musical and improvisation problems, and to prove
properties in music are briefly described. Various
known musical applications of those formalisms
are also described.

2. Calculi

The first time that computer theory was used
in western music was in the 13th century when
a perforated card was introduced in a musical
machine to make it play automatically (Roads,
1985). Late 19th century, as Peter Hanappe
mentioned in (Hanappe, 1999), Ada Lovelace
realized that the unachieved computing
machine designed by Charles Babbage was
able to manipulate symbols and numbers; thus,
it could become a composing machine for
several disciplines including music. Then, in the
first decades of the twentieth century, Joseph
Schillinger (Schillinger, 1948) predicted the use
of computers in musical compositions. After
that, the famous musicologists Lejaren Hiller and
Leonard Isaacson composed Illiac Suite for String
Quartet in the 1950s. This composition derived
in computational music theories, music research,
and engineering for automatic or algorithmic
compositions.

The software Musicomp (Music Simulator
Interpreter for Compositional Procedures) is
perhaps the first software designed for assisting
a composition (Assayag, 1998). Robert Baker
created it around 1963 with Hiller’s expertise
help. Later, technological advances as digital
audio, personal computers, graphical interfaces,
standards like MIDI and, above all, programming
languages, the computational music paradigm
was gradually defined.

Recently, research in computer music has focused
in providing high-level expressions for music
representation synthesis, and real-time control;
as a result, languages, tools and computational
formalisms were created. The latter provide
data abstraction, and control flow paradigms,

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

105

such as convenient methods for handling
time flow, structural organization of musical
materials, music data representation, hierarchy,
machine improvisation, and those related to style
simulation, and concurrency. The following are
representative formalisms that have been directly
or indirectly used to model musical scenarios.

2.1 λ-Calculus

A λ-calculus (Church, 1985) is a calculus for
describing functions that compute values from
arguments. It was introduced by Alonzo Church
and Stephen Cole Kleene as part of a research
on David Hilbert’s Entscheidungsproblem, who
aimed to find a general algorithm in which given a
formal language and a mathematical statement in
a language, the output would become True if the
statement was true; otherwise, it would become
False). The typed λ-calculus is a variant of the
λ-calculus that makes the intended types of all
expressions explicit. The type of an expression is
determined from the types of its sub-expressions.
The λ&-calculus (Castagna, 1998) is an extension
of the λ≤-calculus (Cardelli and Abadi, 1996),
which is the simple typed λ-calculus with a
subtyping relation. The λ&-calculus is a formal
model for the Common Lisp Object System,
CLOS, (Steele, 1990). The following are
programming languages based on or formalized
with the λ-calculus or its variants.

Yann Orlarey et al., at Grame, have studied the
λ-calculus (and functional programming) in order
to show its capability to express musical functions
and operations. In Orlarey et al. (1994), a music
calculus was proposed by introducing abstraction
and application concepts from λ-calculus to a
descriptive language. The result is an approach
to formalize composition activity, and it led to
a visual musical language made based on the
λ-calculus, called Elody (Orlarey et al., 1997).
This language is a visual environment written
in Java where musicians can construct musical
objects and assemble them with other objects to
create a composition. The main concept in Elody
is the visual constructor, which is an interface to

build new musical objects. The basic elements
are notes and silences (musical expressions are
built from them). Windows with boxes represent
the visual constructors (arguments and a result).
This application is appropriate for introducing
programming principles to musicians and non-
programmers in general. Programs can be seen as
the combination of abstractions and applications
(both λ-calculus concepts).

The λ&-calculus has been used in Agon (1998)
and Assayag et al. (1998) to formalize OpenMusic
(OM) (Assayag et al., 1999), a visual and object-
oriented programming language based on CLOS
developed by Gérard Assayag and Carlos Agon
at Ircam. OpenMusic is a general-purpose
application providing an environment to support
musical composition by implementing a set of
musical and computational objects symbolized by
icons that can be dragged and dropped all around,
and it came after PatchWork (Laurson, 1996).
Programs in OpenMusic (called patches) are
graphical algorithms constituted by boxes (icons
that represent functions, classes, instances, etc.),
and connections among them. Each patch has an
associated Lisp code; that is, there is a flowchart
within a patch, which graphically describes
Lisp code accomplishing a specific function.
Additionally, OpenMusic defines an original
notion called Maquettes. They are OpenMusic
entities for representing patches and scores in
the same object (Agon, 2004). Inside a maquette,
musical structures can be organized in a time line
together with temporal relations, constraints and
hierarchies.

Arctic (Dannenberg, 1984) is a high-level
computational language developed by Roger
Dannenberg. It synthesized ideas from functional
programming to specify real-time control systems
(real-time systems are modeled as black boxes
with inputs and outputs). A program in Arctic
is a higher-order function from a set of inputs
to a set of outputs. The formal model on which
Arctic is based lacks time, concurrency and
synchronization. This problem is solved by
borrowing details from other languages. For

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

106

example, time is represented as functions that
execute statements.

The Canon Score Language (Dannenberg, 1989)
is another language developed by the same author,
which combines Arctic and MIDI concepts. It
takes primitive operators to create scores from
them and make score transformations. Canon uses
its declarative programming style, and its ability to
define an abstract behavior to make compositions.
As in Arctic, Canon can specify and manipulate
time and synchronization.

Common Music (Taube, 1990) is an object-
oriented music composition environment.
Heinrich Taube created it for describing sound
and its higher-level structure to compose. A
composition process is divided in three different
levels: developing musical ideas, translating ideas
to real world, and understanding how to conceive
these ideas. Common music provides collections to
translate high-level information introduced by the
user into lower-level information understandable
by a synthesizer.

In Dannenberg et al. (1991), Roger Dannenberg
worked on another language to synthesize sound
and music composition called Fugue. It extends
the traditional approach to synthesize sound, using
functional programming concepts. Fugue is used
to design instruments by combining functions
(similar to orchestra languages of Music-N family
(Mathews et al., 1969)). These new instruments
are used in expressions to generated sounds, and
the expressions are combined into complex ones
to create a whole composition. Fugue extended
Canon to manipulate digital audio.

In Hudak et al. (1996), Paul Hudak proposed
Haskore, an algebraic formalism to describe
music and compositions in Haskell programming
language. It is a collection of musical modules
(data types) to express music. A score and its
components are defined separately from their
performance (which is a temporally ordered
sequence of musical events): some Music data
types (such as notes and their combination)

become the score, and various functions can be
defined to interpret it to produce a performance.
Finally, BOOMS (Balaban et al., 2002; Barzilay,
1996) is a computer-music environment developed
by Eli Barzilay. It is a general application
framework for developing editors supporting a
structural and regular editing combination, and an
end-user abstraction as a tool to define reusable
functions without programming. It is implemented
in CLOS and features a sophisticated Windows
interface. Although it is a general framework,
it was conceived to be instantiated to domains
similar to music composition.

2.2 Communicating sequential processes (CSP)

The Communicating Sequential Processes algebra
(Hoare, 1978) is a model introduced by C.A.R.
Hoare for the formalization and mathematical
treatment of concurrent systems. It is supported by
a mathematical theory, a set of proof tools, and an
extensive literature. CSP permits the description
of systems in terms of component processes that
operate independently and interact with each other
through message-passing communication. There
are two types of primitives: events and processes.
Processes are independent self-contained
entities with particular interfaces through which
they interact with environment. Events (or
actions) are central elements of interaction and
communications among processes or between a
process and an environment.

MAX is a programming language considered as a
graphical and musical environment for developing
real-time musical applications by connecting
boxes, which represent a particular treatment of
sound. It was developed by Miller Puckette, and
proposed as “the Patcher” in (Puckette, 1988).
The fundamental element in MAX is the patch,
which is a set of objects (boxes) interconnected
by lines. These objects send messages among
them and respond by taking actions. Since there
were no documents explaining the theoretical
foundations of MAX, this programming language
was formalized in (Seleborg, 2004) using CSP.
Then, a Patch is defined as a network of reactive

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

107

objects (or reactive system): A patch receives
some values from an external device (software or
hardware), treats these values, and then, returns
other data calculated from the original values to
an external device (the same or another). This
makes MAX an environment builder for musical
reactive systems.

2.3 PiCO

The AVISPA research group in Colombia was
founded to develop models for integrating
Object Oriented and Concurrent Constraint
Programming into a Visual Language to have
a programming environment sustained in rich
semantics to facilitate computer music application
development. The group defined PiCO (Alvarez et
al., 1998; Rueda et al., 2001), a calculus integrating
objects and constraints. The π+-calculus (Diaz
et al., 1999) extends π-calculus (Milner et al.,
1992) with a constraint notion. PiCO adds π+ the
notion of objects and messages synchronized by
constraints. Constraints and concurrent objects are
primitive notions at a calculus level (the objects
are located in constraints and sending messages is
defined by delegation).

This calculus is a foundation for developing
a computational model which is suitable for
constructing music composition tools. Cordial
(Quesada et al., 1998) is a high-level visual
programming language integrating object-
oriented and constraint programming intended
for musical applications. Its semantics is based on
PiCO. Cordial is an iconic language in the spirit
of OpenMusic. The basic elements of a program
are those of object-oriented programming, such
as classes, objects and methods. The solution
of a music composition problem is given by a
visual, concurrent, object-oriented and constraint
programming.

2.4 The MWSCCS calculus

The Calculus of Communicating Systems (CCS)
(Milner, 1980) is a process algebra proposed by
Robin Milner when he noticed that concurrent
processes have an algebraic structure; that is, if

there were two processes, P and Q, already built;
a new process can be built by combining them
sequentially or concurrently, and the new process
behavior depends on that of P and Q, and the
operation used to combine them. A process algebra
based on CCS, called MWSCCS, was introduced
in Ross (1995) as an extension of WSCCS (Tofts,
1990), a probabilistic version of the synchronous
CCS. In MWSCCS, the basic atomic event is
called a particle. Each particle represents either
an output communication (denoted by an over
barred letter) or an input communication (denoted
by a non-over barred letter). Particles are used to
construct actions. Actions are events occurring
at one moment in time. This calculus permits
assigning relative frequencies and priorities to
processes.

The Musical Weighted Synchronous Calculus
of Communicating Systems (MWSCCS) was
developed to design stochastic automata to model
complex stochastic musical systems. Particles are
notes in a chord, inputs are “hearing” actions and
outputs are “playing” actions.

2.5 Block-Diagram algebra

Yann Orlarey proposed the Block-Diagram
Algebra in (Orlarey et al., 2002) as an algebraic
approach to construct block diagram. It was
design as an alternative to classical graph
approach inspired by dataflow models. This
algebra gives an explicit formal semantics to
dataflow inspired music languages by means of
high-level construction operations combining and
connecting block diagrams and rules associated to
each construction operation.

Faust (Gaudrain and Orlarey, 2003) is a
programming language designed for real-
time sound processing and synthesizing. It
combines two programming models: functional
programming (the name Faust, Functional
AUdio Stream, comes from this approach) and
block-diagram composition. This language was
developed by Grame helping programmers and
musicians build audio stream processors. In fact,

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

108

Faust is an implementation of the block-diagram
algebra; that is, it can be thought as a structured
block diagram language with a textual syntax. A
Faust block-diagram denotes a signal processor
transforming signals. This language provides
primitives similar to C/C++ operators such
as arithmetic, comparison, bitwise, constants,
casting, tables, and interface elements.

2.6 The *tcc calculi

Vijay A. Saraswat, in Saraswat (1993), has
proposed concurrent constraint programming
(CCP) as a model for specifying concurrent
systems in terms of constraints. An extension of
this calculus is the TCC calculus (Saraswat et
al., 1994), aimed at programming and modeling
timed, reactive systems. Frank Valencia and
Catusia Palamidessi proposed the temporal
concurrent constraint programming calculus, ntcc,
in (Palamidessi and Valencia, 2001; Valencia,
2002). NTCC extends TCC with the notions
of asynchrony and no determinism. Another
extension of TCC, proposed in (Olarte et al., 2007;
Olarte, 2009) by Carlos Olarte, Frank Valencia
and Catusia Palamidessi is called UTCC. This
calculus increases TCC expressivity allowing
infinite behavior and mobility by introducing the
abstraction notion. One of the main purposes of this
model is to verify security protocols. Jorge Perez
and Camilo Rueda proposed a timed concurrent
constraint process calculus with probabilistic
and non-deterministic choices as a description
language in Perez and Rueda (2008). This calculus,
called PNTCC, is a TCC calculus for analyzing
reactive systems involving constraints, explicit
time, probabilities and non-determinism. Finally,
RTCC, an extension of NTCC to model real-time
behavior, was proposed by Gerardo M. Sarria
M. and Camilo Rueda in Sarria & Rueda (2008).
This formalism extends NTCC in three directions:
it introduces resources as a native notion of the
calculus, it enriches the time notion by thinking
time as a discrete sequence of minimal units, and
it adds constructs to interrupt and delay processes.
The semantics of the *tcc calculi described above
and its application in music is well-explained in
Olarte et al. (2011).

Camilo Rueda and Frank Valencia have proposed
NTCC as a model for expressing temporal
music processes and applications like rhythm
patterns and controlled improvisation (Rueda and
Valencia, 2001). In Rueda and Valencia (2002)
some musical properties were formally proved
using the linear temporal logic of NTCC. NTCC
was also proposed to model an audio processing
system. In Rueda and Valencia (2005) this calculus
was used to describe a framework for audio
processing able to model higher-level musical
structures and to build formal proofs of properties
for a given audio process. On the other hand,
musical scores involving static and interactive
events, which are bound by some logical
properties (like Allen’s relations (Allen, 1983)),
called interactive scores (Desainte-Catherine
and Allombert, 2004), were represented by using
NTCC (Allombert et al., 2006) and UTCC (Olarte
and Rueda, 2009). A computational model for
musical dissonances was proposed in Perchy and
Sarria (2009), using the RTCC calculus. Finally,
in Assayag and Dubnov (2004) a model based
on the Factor Oracle algorithm (Allauzen et al.,
1999) was proposed for machine improvisation
and related style simulation. Later, in Olarte and
Rueda (2009), Perez and Rueda (2008) and Rueda
et al. (2006), the factor Oracle was modeled using
NTCC, PNTCC and UTCC to be used in learning,
improvisation and performance situations.

3. Results and discussion

Some considerations for each mentioned formal
model are presented, remarking strengths and
weaknesses (those characteristics that are
important and have musical significance, and
those crucial in musical environments, which are
not part or are not native in those formalisms).
The λ-calculus was created several years ago;
hence, one of the main advantages of this calculus
is its maturity and robustness. It has a countless
number of applications in different areas of
knowledge. However, it lacks native notions as
time and constraint. Without these elements, it
is difficult to express different musical temporal
aspects, calculations involved, representation

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

109

of objects, constraints in different applications,
and partial information. Applications based on λ
and λ& calculi do not have any base supplying
insights to define new concepts as primitive
temporal entities, either to express repetition
and eventuality notions or to provide different
models to organize objects in time (OpenMusic
and Elody, for instance, provide some of these
characteristics, but as an implementation out
of the formal model capabilities). Furthermore,
there is no formal notion of a constraint system
in λ-calculus, which limits the possibilities of
applying constraints, and prevents a formal
statement of what exactly valid manipulations
of temporal objects are, and what the visual
representation of musically significant temporal
constraints stands for (although OpenMusic has
been enhanced with a constraint library called
“Situation” (Rueda and Bonnet, 1998), but this is
not native in the formalism). Additionally, notions
as interaction and concurrency, quite typical in
music, are not a priority in λ-calculus. This limits
the possibility of expressing parallel composition
of processes, synchronization of musical pieces,
musicians’ dynamics, etc.

An advantage of using CSP in modeling
applications in different areas of knowledge is
that it is conceptually simple, yet provides an
appropriate solution to common synchronization
problems. However, as in λ-calculus, time and
constraints are not native notions. Time can be
modeled by taking into account a discrete variable,
which never decreases its value and changes
its value in an infinite recursion. Nevertheless,
there is no control on change rate, this means,
time is logic. The same kind of time model was
observed in the NTCC calculus: it is not possible
to associate this logic time exactly to physical
time; all depends on several other conditions. On
the other hand, the behavior of CSP processes
depends on its environment. Therefore, it is
difficult to assert global properties. Then, there is
an absence in terms of the precise specification in
system properties, which is natural in a constraint-
oriented language.

Avispa research group managed to integrate
concurrent objects and constraints using PiCO.
This calculus permits representing partially-
defined complex objects as musical structures in
a compact way, and describing harmony relations
easily. Nevertheless, since there is no explicit
notion of time in PiCO, some musical problems
involving time and synchronization are difficult
to express. Moreover, since there is no formal
logic associated with the calculus, reasoning
about musical processes behavior is hard to
accomplish. Given the convenience of graphical
representations as Block-Diagrams, in Tavera
(2008), an extension of Pico, called GraPico, was
proposed as a visual representation of the calculus.
An abstract view of musical behavior is possibly
the main advantage of the MWSCCS calculus. The
intuitive “programming language” feeling and the
mathematical foundations of process calculi allow
building and analyzing compositions written in
MWSCCS. Since this calculus is based on CCS,
it has rich semantics, an easy way to handle
concurrent activities and the ability to formally
model specific domain systems. CCS, CSP, and
ACP (Bergstra and Klop, 1984) were the first
proposed in calculus process field; nevertheless,
all of them have similar disadvantages to those
previously mentioned as absence time and
constraint notions.

The Block-Diagram Algebra is a visual language,
which is more intuitive, takes the user to a
higher level of abstraction, and makes program
analysis easier. This calculus in an appropriate
formalism for visual languages because of
the graph representation of a block-diagram,
its denotational semantics, which describes a
program meaning by denoting what is computed
(the mathematical object), and its suitability
for formal manipulations: λ calculus, partial
evaluation, compilation.

The NTCC, UTCC and PNTCC calculi have proved
to be convenient for modeling music problems
and proving properties in a musical environment.
Their well-defined semantics and logic permit
easily expressing and proving temporal properties.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

110

Notwithstanding, they may not be adequate for
solving complex musical improvisation problems
due to real time requirements in these systems. On
the other hand, the RTCC calculus handles this
limitation with precise notions of time, resources
and useful operators. Unfortunately, RTCC does
not have a well-structured associated logic; that
is, it is difficult to prove properties in models
written in this calculus.

4. Conclusions

Recently, a significant increase of formal
models has arisen, particularly computational
calculi proposed in many fields. Music is not
the exception. With formal theories composers
and musicians can use tools based on rigorous
principles, rules, equations, theorems, models,
and languages to solve specific musical problems,
to build musical theories, to synchronize devices
in music interaction settings, to build musical
programming languages, to prove musical
properties, to construct complex musical material,
and many others. In this paper, some important
calculi used in music, and formalisms used in
practical musical situations were presented.
Nevertheless, many of these formalisms were not
originally intended for being used in music; thus,
their applicability in many musical environments
is difficult to deal with. Some mentioned models
lack explicit notions which are crucial in music such
as processes, time, constraints, and concurrency;
however they have been widely studied. Temporal
concurrent constraint calculi like NTCC and
RTCC, designed to model interactive systems,
fit better in music applications where processes
interact in complex ways. Notwithstanding, their
limitations concerning the abstract notion of time
or the absence of an associated logic to prove
properties were shown.

Many music programming languages and musical
software use the expressivity and usefulness
of formal models (see Loy and Abbott (1985)
to know about the former): logics, for instance,
were used as music models in Gibbins (1976) and
as a music theory tool in Alan Marsden’s MTT

(Marsden, 1997). Petri Nets have been applied to
model music as a concurrent activity in Haus and
Sametti (1991).

Besides, music theory has used formal models.
One of the first theoretical writings outlining
a mathematically rigorous music theory was
proposed by Joseph Schillinger in Schillinger
(1941) and Schillinger (1948). Geraint
Wiggins in Wiggins (2009) reviewed various
computational representations of musical
systems. Geometrical spaces have been used
to represent chords in Tymoczko et al. (2006).
A fractal music development was presented in
Wright (1995). Hierarchical structures have been
used to represent musical objects in Desainte-
Catherine (1996). Trace theory has been applied
to music in Chemillier and Timis (1988). A
deductive object-oriented approach to formalize
jazz piano knowledge was proposed in Hirata
(1995). Algebraic structures were introduced in
Chemillier (1989) approaching a formalization of
musical structures. A formal definition of sound
was proposed in Kaper (1999). Finally, a category-
oriented framework was presented in Mazzola
and Andreatta (2007) to describe the relationship
between musical and mathematical activities.

5. References

Agon, C. A. (1998). Openmusic: A langage visuel
pour la composition musicale assistée par ordinateur.
Ph.D. thesis, Univeristé Paris VI, Paris, France.

Agon, C. A. (2004). Mixing visual programs and
music notation. Perspectives in Mathematical
and Computational Music Theory. Electronic
Publishing Osnabruck.

Allauzen, C., Crochemore, M., & Raffinot, M.
(1999). Factor oracle: A new structure for pattern
matching. In Proceedings of the Conference
on Current Trends in Theory and Practice of
Informatics. p. 295–310.

Allen, J. F. (1983). Maintaining knowledge about
temporal intervals. Communications of the ACM
26 (11), 832–843.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

111

Allombert, A., Assayag, G., Desainte-Catherine, M.,
& Rueda, C. (2006). Concurrent constraint models
for specifying interactive scores. In Proceedings of
the 3rd Sound and Music Computing Conference
(SMC’06). Marseille, France.

Alvarez, G., Diaz, J. F., Quesada, L. O., Valencia,
F. D., Assayag, G., & Rueda, C. (1998). Pico:
A calculus of concurrent constraint objects for
musical applications. In Proceedings of the
European Congress on Artificial Intelligence
(ECAI’98), Brighton, England.

Assayag, G. (1998). Computer assisted
composition today. In 1st Symposium on Music
and Computers. Corfu, Grecia.

Assayag, G., Agon, C. A., Rueda, C., & Delerue,
O. (1998). Objects, time and constraints in
openmusic. In Proceedings of the International
Computer Music Conference (ICMC’98), ICMA,
Ed. University of Michigan, Ann Arbor, USA.

Assayag, G. & Dubnov, S. (2004). Using
factor oracles for machine improvisation. Soft
Computing 8 (9), p. 604–610.

Assayag, G., Rueda, C., Laurson, M., Agon, C. A., &
Delerue, O. (1999). Computer-assisted composition
at ircam: from patchwork to openmusic. Computer
Music Journal 23 (3), 59–72.

Balaban, M., Barzilay, E., & Elhadad, M. (2002).
Abstraction as a means for end-user computing
in creative applications. IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems
and Humans 32 (6), 640–653.

Barzilay, E. (1996). Booms object oriented music system.
M.S. thesis, Ben-Gurion University of the Negev, Israel.

Bergstra, J. A. & Klop, J. W. (1984). Process
algebra for synchronous communication.
Information and Control 60 (1–3), 109–137.

Cardelli, L. & Abadi, M. (1996). A Theory of
Objects. Springer.

Castagna, G. (1998). Foundation of object-
oriented programming. Tutorial Notes –
Laboratoire d’Informatique de l’École Normale
Supérieure – France.

Chemillier, M. (1989). Structure et méthode
algébriques en informatique musicale. Ph.D.
thesis, Univeristé Paris VII, Paris, France.

Chemillier, M. & Timis, D. (1988). Towards a
theory of formal musical languages. In Proceedings
of 14th International Computer Music Conference
(ICMC’88). GMIMIK, Kologne, Germany, p.
175–183.

Church, A. (1985). The Calculi of Lambda
Conversion. Princeton University Press.

Dannenberg, R. B. (1984). Arctic: A functional
language for real-time control. In Proceedings
of the ACM Symposium on LISP and Functional
Programming (LFP’84). ACM Press, Austin,
Texas, United States, p. 96–103.

Dannenberg, R. B. (1989). The canon score
language. Computer Music Journal 13 (1), 47–56.

Dannenberg, R. B., Fraley, C. L., & Velikonja, P.
(1991). Fugue: A functional language for sound
synthesis. IEEE Computer 24 (7), 36–42.

Desainte-Catherine, M. (1996). The hierarchical
structure may improve the resolution of
musical problems. In Proceedings of Journees
d’Informatique Musicale (JIM’96). Île de Tatihou,
Basse Normandie, France.

Desainte-Catherine, M. & Allombert, A. (2004).
Specification of temporal relations between
interactive events. In Proceedings of the Sound and
Music Computing (SMC’04). Ircam, Paris, France.

Diaz, J. F., Rueda, C., & Valencia, F. (1999). A
calculus for concurrent processes with constraints.
CLEI Electronic Journal 1 (2), p. 20–33.

Gaudrain, E. & Orlarey, Y. (2003). A Faust Tutorial.
Grame, Centre National de Création Musicale.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

112

Gibbins, P. (1976). Logics as models of music. The
British Journal of Aesthetics 16 (2), 157–160.

Hanappe, P. (1999). Design and Implementation of
an Integrated Environment for Music Composition
and Synthesis. PhD thesis, Paris VI, Paris, France.

Haus, G. & Sametti, A. (1991). Scoresynth: A
system for the synthesis of music scores based on
petri nets and a music algebra. IEEE Computer 24
(7), 56–60.

Hirata, K. (1995). Towards formalizing jazz
piano knowledge witha deductive object-oriented
approach. In Proceedings of the Artificial
intelligence and Music (IJCAI’95). p. 77–80.

Hoare, C. A. R. (1978). Communicating sequential
processes. Communications of the ACM 21 (8),
666–677.

Hudak, P., Makucevich, T., Gadde, S., & Whong,
B. (1996). Haskore music notation - an algebra of
music. Journal of Functional Programming 6 (3),
465–483.

Kaper, H. G. (1999). Formalizing the concept
of sound. In Proceedings of the International
Computer Music Conference (ICMC’99), ICMA,
Ed. Beijing, China.

Laurson, M. (1996). Patchwork: A visual
programming language and some musical
applications. Ph.D. thesis, Sibelius Academy,
Helsinki, Finland.

Loy, G. & Abbott, C. (1985). Programming
languages for computer music synthesis,
performance, and composition. ACM Computing
Surveys 17 (2), 235–265.

Marsden, A. (1997). Mtt - a music theory tool. In
Proceedings of Journees d’Informatique Musicale
(JIM’97). Bibliotèque de la Part-Dieu, Lyon - France.
Mathews, M. V., Miller, J. E., Moore, F. R., Pierce,
J. R., & Risset, J. C. (1969). The Technology of
Computer Music. The MIT Press.

Mazzola, G. & Andreatta, M. (2007). Diagrams,
gestures and formulae in music. Journal of
Journal of Mathematics and Music 1, 23-46.

Milner, R. (1980). A Calculus of Communicating
Systems. Lecture Notes in Computer Science.
Springer-Verlag.

Milner, R., Parrow, J., & Walker, D. (1992).
A calculus of mobile processes, parts i and ii.
Information and Computation 100 (1), 1–40.

Olarte, C. (2009). Universal temporal concurrent
constraint programming. Ph.D. thesis, Ecole
Polytechnique - France, France.

Olarte, C., Palamidessi, C., & Valencia, F. (2007).
Universal timed concurrent constraint programming.
Logic Programming. Lecture Notes in Computer
Science 4670, Springer-Verlag, 464-465.

C. Olarte, C. Rueda, G. Sarria, M. Toro, & F.
Valencia. (2011) Concurrent constraints models of
music interaction. In: G. Assayag and C. Truchet
(editors), Constraint Programming in Music.
(Chapter 6), p 133-153. Wiley.

Olarte, C. & Rueda, C. (2009). A declarative
language for dynamic multimedia interaction
systems. In Proceedings of the Second
International Conference of the Society for
Mathematics and Computation in Music
(MCM2009). Communications in Computer and
Information Science (CCIS), 38. Yale University
in New Haven, Connecticut, USA.

Orlarey, Y., Fober, D., & Letz, S. (1997).
L’environnement de composition musicale elody.
In Proceedings of the Journees d’Informatique
Musicale (JIM’97). Bibliothèque de la Part-Dieu,
Lyon - France.

Orlarey, Y., Fober, D., & Letz, S. (2002).
An algebra for block diagram languages. In
Proceedings of the International Computer Music
Conference (ICMC’02), ICMA, Ed. Gothenburg,
Sweden, p. 542–547.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

113

Orlarey, Y., Fober, D., Letz, S., & Bilton, M.
(1994). Lambda calculus and music calculi.
In Proceedings of the International Computer
Music Conference (ICMC’94), ICMA, Ed.
DIEM, Danish Institute of Electroacoustic Music,
Denmark, p. 243–250.

Palamidessi, C. & Valencia, F. (2001). A temporal
concurrent constraint programming calculus.
In Proceedings of the Seventh International
Conference on Principles and Practice of Constraint
Programming. Lecture Notes in Computer Science,
2239. Springer-Verlang, p. 302–316.

Perchy, S. & Sarria, G. (2009). Dissonances: Brief
description and its computational representation in
the rtcc calculus. In Proceedings of the 6th Sound
and Music Computing Conference (SMC2009).
Casa da Música, Porto, Portugal, p. 53–58.

Perez, J. A. & Rueda, C. (2008). Non-determinism
and probabilities in timed concurrent constraint
programming. In Proceedings of the 24th
International Conference on Logic Programming
(ICLP 2008). Lecture Notes in Computer Science
5366 (1), p. 677–681.

Puckette, M. (1988). The patcher. In Proceedings
of the International Computer Music Conference
(ICMC’88), ICMA, Ed. GMIMIK, Kologne,
Germany.

Quesada, L. O., Rueda, C., & Tamura, G. (1998).
The Visual Model of Cordial. In Proceedings
of the XXIV Conferencia Latinoamericana en
Informática (CLEI98), Quito, Ecuador.

Roads, C. (1985). Research in music and artificial
intelligence. ACM Computing Surveys, 17 (2), 163–190.

Ross, B. J. (1995). A process algebra for
stochastic music composition. In Proceedings of
the International Computer Music Conference
(ICMC’95), The Banff Centre for the Arts,
Alberta, Canada.

Rueda, C., Alvarez, G., Quesada, L. O., Tamura,
G., Valencia, F., Diaz, J. F., & Assayag, G. (2001)

Integrating constraints and concurrent objects in
musical applications: A calculus and its visual
language. Kluwer Academic Publishers 6 (1), 21–52.

Rueda, C., Assayag, G., & Dubnov, S. (2006). A
concurrent constraints factor oracle model for
music improvisation. In Proceedings of the XXXII
Conferencia Latinoamericana en Informática
(CLEI2006), Santiago de Chile, Chile.

Rueda, C. & Bonnet, A. (1998). Un langage visual
basee sur les constraintes pour la composition
musicale. Recherches et Applications en
Informatique Musicale. Paris: Hermes Science
Publications.

Rueda, C. & Valencia, F. (2001). Formalizing timed
musical processes with a temporal concurrent
constraint programming calculus. Musical
Constraints Workshop (CP’2001). Cyprus.

Rueda, C. & Valencia, F. (2002). Proving musical
properties using a temporal concurrent constraint
calculus. In Proceedings of the International
Computer Music Conference (ICMC’02),
Gothenburg, Sweden.

Rueda, C. & Valencia, F. (2005). A temporal
concurrent constraint calculus as an audio
processing framework. In Proceedings of the
2nd Sound and Music Computing Conference
(SMC’05). Salerno, Italy.

Saraswat, V. A. (1993). Concurrent Constraint
Programming. ACM Doctoral Dissertation
Award. The MIT Press, Cambridge, MA, USA.

Saraswat, V. A., Jagadeesan, R., & Gupta,
V. (1994). Foundations of timed concurrent
constraint programming. In Proceedings of the
Ninth Annual IEEE Symposium on Logic in
Computer Science, Paris, France. p. 71–80.

Sarria, G. (2008). Formal models of timed musical
processes. Ph.D. thesis, Escuela de ingeniería de
sistemas y computación, Universidad del Valle,
Cali, Colombia.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

114

Sarria, G. & Rueda, C. (2008). Real-time concurrent
constraint programming. In Proceedings of
the XXXIV Conferencia Latinoamericana en
Informática (CLEI2008), Santa Fe, Argentina.

Schillinger, J. (1941). The Schillinger System of
Musical Composition. Carl Fischer, New York.
Reprinted by Da Capo Press in 1978.

Schillinger, J. (1948). The Mathematical Basis of
the Arts. The Philosophical Library. Reprinted by
Da Capo Press in 1976.

Seleborg, C. (2004). Interaction temps-réel/temps
différé: Élaboration d’un modèle formel de max
et implémentation d’une bibliothèque osc pour
openmusic. M.S. thesis, Université Aix-Marseille II,
Marseille, France.

Steele, G. L. (1990). Common Lisp The Language.
2nd Edition. Digital Press.

Taube, H. (1990). Common music: A music
composition language in common lisp and clos.
Computer Music Journal 15 (2), p. 21–32.

Tavera, C. (2008). Diseño, implementación
y corrección de grapico: Un cálculo visual,

orientado al objeto y por restricciones compilado
a PiCo. Ph.D. thesis, Escuela de ingeniería
Eléctrica y Electrónica, Universidad del Valle,
Cali, Colombia.

Tofts, C. (1990). A synchronous calculus of
relative frequency. In Proceedings of Theories
of concurrency: unification and extension
(CONCUR’90), Lecture Notes in Computer
Science 458, Springer-Verlag, p.467-480

Tymoczko, D., Callender, C., & Quinn, I. (2006).
The geometry of musical chords. Science 313,
72–74.

Valencia, F. (2002). Temporal concurrent
constraint programming. Ph.D. thesis, University
of Aarhus, Dinamarca

Wiggins, G. A. (2009). Computer-representation
of music in the research environment. In Crawford,
T. T. and Gibson, L., editors, Modern Methods for
Musicology: Prospects, Proposals and Realities,
Digital Research in the Arts and Humanities, p.
7–22. Ashgate, Aldershot, UK.

Wright, P. (1995). Generating fractal music. Ph.D.
thesis, University of Western Australia.

Ingeniería y Competitividad, Volumen 15, No. 2, p. 103 - 114 (2013)

