
91

ELECTRICAL AND ELECTRONICS ENGINEERING

A methodological approach for asynchronous 
implementation of the Rijndael Algorithm

INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

Aproximación metodológica para la implementación 
asíncrona del algoritmo de Rijndael

§ Rubén D. Nieto*, Álvaro Bernal*

*Grupo de Investigación de Arquitecturas Digitales y Microelectronica, Escuela de Ingeniería Eléctrica 
y Electrónica, Universidad del Valle. Cali-Colombia.

§ ruben.nieto@correounivalle.edu.co, alvaro.bernal@correounivalle.edu.co

(Recibido: 23 de Abril de 2013-Aceptado: 26 de Agosto de 2013)

Abstract
This article describes the implementation methodology of Rijndael algorithm to encryption process, by using 
asynchronous design with assistance of the software tool Balsa, for functional simulation, description and synthesis 
of asynchronous digital circuits. The main results presented correspond to implementations that use the codification 
protocols dual-rail and 1-of-4, for blocks of data and keys of 128 bits over a field-programmable gate array (FPGA) 
hardware platform. The Xilinx ISE tool was used showing a full integration level with the Balsa system.

Keywords: Asynchronous, Balsa, FPGA, Rijndael.

Resumen
En este artículo se describe una metodología de implementación del algoritmo de Rijndael para el proceso de 
encriptación. Se utilizó el estilo de diseño asíncrono con la ayuda de una herramienta conocida como Balsa, la cual 
permite simulación funcional, descripción y síntesis de circuitos digitales asíncronos. Los resultados obtenidos 
corresponden a implementaciones que utilizan los protocolos de codificación dual-rail y 1-of-4, para bloques de 
datos y claves de 128 bits sobre una plataforma hardware de un arreglo de compuertas reprogrammable por el 
usuario (FPGA). Para la síntesis automática sobre la FPGA se utilizó la herramienta Xilinx ISE, que muestra un 
completo nivel de integración con el sistema Balsa.

Palabras clave: Asynchronous, Balsa, FPGA, Rijndael.

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



92

1. Introduction

In October of 2000, the National Institute of 
Standards and Technology (NIST) (NIST, 
2000), selected the Rijndael Algorithm as the 
new Advanced Encryption Standard (AES). 
NIST registered the algorithm as the standard 
FIPS-197 (Federal Information Processing 
Standard- document 197) (FIPS, 2001). The 
Rijndael Algorithm implementations have been 
done in software and Field Programmable Gate 
Arrays (FPGAs). Software implementation 
allows flexibility and low cost, whereas hardware 
implementation results in better performance. 
The algorithm has been also implemented in 
Application Specific Integrated Circuits (ASICs), 
in which encryption velocities are obtained in the 
order of tens of Gbits/s. Those velocities achieved 
make this kind of implementation very useful for 
optical networks encryption.

Some of the main security issues that modern 
cryptography needs to be faced are DPA attacks 
(DPA: Differential Power Analysis) (Weaver, 
2002).  Many of the architectural proposals today 
are oriented toward improving the resistance 
against such attacks. There are few documented 
asynchronous implementations of the standard 
AES for encryption, in (Bouesse et al., 2005) it 
is reported an architecture QDI balanced with 
technology of 0.13μm, 1.2V, coding 1-of-N and 
a delay of 850ns.  In (Shang et al., 2004), (Shang 
et al., 2006) it is reported a pipeline architecture 
with coding dual-rail and technology CMOS of 
0.35μm and a delay of 800ns.  The methodology 
of asynchronous design has become an important 
alternative to reduce the dynamic power 
consumption, which is proportional to the clock 
frequency in synchronous systems, in addition for 
improving the security of the algorithm against 
DPAs.  Experimental results in (Wu et al., 2011) 
show that a proposed asynchronous S-Box, 
implemented in FPGA, is robust against DPA 
attacks and has a lower power consumption than 
its synchronous counterpart. The proposed design 
is based on an asynchronous delay-insensitive 
logic paradigm referred to as Null Convention 

Logic (NCL).  In (Sui et al., 2011) an AES 
S-Box is designed by using NCL, which utilizes 
symbolic completeness of expression to achieve 
self-timed behavior. It has been demonstrated that 
NCL contains all the properties to resist common 
forms of side-channel attack (SCA).

The objective of this article is to show the 
design of the Rijndael algorithm in FPGA 
hardware, within the standard FIPS-197 by using 
the methodology of asynchronous design. To 
accomplish this objective, two different software 
packages were utilized: the description, synthesis 
and simulation of asynchronous systems tool 
known as Balsa (Bardsley, 2000) and the platform 
of implementation and development of digital 
circuits in FPGA Xilinx ISE 9.2i. 

This paper shows the implementation 
methodology of the modules that compose the 
Rijndael algorithm, which are described by an 
asynchronous tool (Balsa) and then synthesized 
on synchronous FPGA using a synchronous tool 
(Xilinx ISE).  At the final stage, asynchronous 
circuits are obtained that respond to input data 
coded either as dual-rail or 1-of-4.

To obtain a better performance and to reduce the 
number of circuits used for transformations that 
constitute the Rijndael algorithm, optimizations 
were implemented based on architectural 
proposals of different authors.  The best options 
are integrated for asynchronous implementation 
of the algorithm.

Section 2 of this paper presents the design 
methodology of the modules that constitute 
the algorithm for encryption process. Circuit 
representations are presented for each module 
made in balsa as well as the descriptions and 
resulting asynchronous handshake diagrams. 
Section 3 presents the results of estimated area 
in terms of the delays caused both by the logic 
elements as well as internal routing resources 
of the FPGA, obtained with Balsa and synthesis 
results on Xilinx FPGA using ISE; the results 
shown here are part of a more extensive research 
work reported in (Nieto, 2009).  Section 4 presents 

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



93

the conclusions and future work derived from the 
research.

2. Rijndael design methodology 

In general, hardware implementations of Rijndael 
algorithm distinguish two fundamental parts: 
the encryption unit and the keys generation unit.  
Both units interact in each round of the algorithm 
execution through the key addition module. 
The encryption algorithm AES (Daemen, 1999) 
includes four transformation functions called 
ByteSub, ShiftRow, MixColumn y AddRoundKey. 
The algorithm operates over a matrix of bytes of 
data arranged in a 4 by 4 columns and rows known 
as state matrix. The bytes represent elements of 
a finite field called Field of Galois GF(28). The 
intermediate results of the transformations done 
by the algorithm are stored in the state matrix.

For the AES algorithm, the length of the entrance 
blocks, exit blocks, and intermediate state is of 128 
bits. These are represented with Nb=4 (number of 
columns in the state), equivalent to the total of 32 
words of 32 bits. The length of the encryption key, 
k, is of 128, 192, or 256 bits, and are represented 
by Nk = 4, 6, or 8 (number of columns), which 
reflects the number of words of 32 bits in the 
encryption key. 

For the asynchronous implementation of the 
Rijndael algorithm, the Balsa software tool 
was used. Nowadays, it is the free distribution 
tool more advanced for the description of 
asynchronous systems. It uses a high level 
language and integrates environments for 
specification, synthesis, and simulation of 
asynchronous circuits, among other tools, which 
allows its implementation over real hardware. 
These tools can run over any environment POSIX 
with X11, which handles integer numbers of at 
least 32 bits (Linux, FreeBSD, MacOS X, Solaris) 
(Edwards et al., 2006).  In order to do a real 
hardware implementation, whether in Silicon or 
in FPGA, it is required the complement of specific 
commercial tools, for instance: the Xilinx design 
software or the design environment Cadence with 
an appropriate technology of cells library.

A circuit described in Balsa language is compiled 
in a communication network formed of a small 
set of components of handshake (about 45).  The 
components are connected through channels where 
communications or handshakes are conducted.  
The channels may have routes of data associated, 
(where a handshake involves a data transfer) or 
they can be of control (in such a situation, the 
handshake acts as a synchronization point).  Each 
channel connects a passive port of handshake 
component to an active port of other handshake 
component.  An active port is a port that begins a 
communication.  A passive port responds (where 
it is ready) to a request made from an active port, 
through an acknowledge signal.

2.1. Rijndael encryption process

The encryption process of the algorithm is 
presented in the Figure 1.  The transformation 
functions have been grouped to make easier 
its integration and asynchronous description.  
Initially, the AddRoundKey, receives the input 
block and the initial key (both of 16 bytes).  Then 
the initial key is sent to the Subkey_Round, which 
begins to generate the different subkeys used in 
the Normal_Round and the Final_Round. The 
grouped transformations (in Normal_Round 
and Subkey_Round) run in an interactive way 
through the AddRoundKey unit.  The MixColumn 
transformation is not executed in the Final_Round 
of the encryption process.

The NormalRound_enc block grouping the four 
functions of algorithm transformation, is executed 
Nr-1 times.  For its asynchronous description in 
Balsa, it is not necessary to include the ShiftRow 
block.  This can be implemented through 
communication of connection lines between the 
ByteSub and MixColumn blocks.  This is possible 
because the order of the sequential execution 
of the transformation functions can be changed 
(Weaver, 2002):

• The ByteSub and ShiftRow transformations 
commutes, which means, a ByteSub transformation 
followed by a ShiftRow transformation is equal to 

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



94

ByteSub
ShiftRow

MixColumn

AddRoundKey

ByteSub
ShiftRow

AddRoundKey

RotWord
SubWord

RCon

Nr-1
Rounds

NormalRound_enc

FinalRound_enc

Nr-1
Rounds

Final 
Round

Final 
Round

Normal 
Round

16 
bytes

16 
bytes

16 
bytes

16 
bytes

Plain 
Text

Encryption Key

Encrypted Text  Final Key
(to decryp)

SubKeyRound_enc Normal 
round

AddRoundKey

Figure 1.  Block diagram for the Rijndael encryption algorithm

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



95

a ShiftRow transformations followed by a ByteSub 
transformation. 

•  The column transformation function MixColumn 
is linear regarding the entrance of the column; 
which means:

MixColumn (state matrix XOR round key)

= MixColumn (state matrix) XOR MixColumn 
(round key)

These two properties allow inverting the sequence 
order of the ByteSub and ShiftRow transformations.  
The order of the AddRoundKey and MixColumn 
transformations can also be reversed whenever 
the columns of the encryption key are modified 
through the MixColumn transformation.  The 
RondaFinal_enc block groups the ShiftRow, 
ByteSub and AddRoundKey functions.

2.1.1.	 Byte substitution function:  ByteSub
 
Optimizing the hardware implementation of the 
ByteSub function is one of the biggest challenges 
for the Rijndael algorithm designers.  According to 
the FIPS-197 standard (FIPS, 2001), the ByteSub 
transformation is a substitution non-lineal of bytes 
that operates independently on each byte of the state 
matrix, using the substitution table known as Sbox.

Due to the transformation at a byte level, a parallel 
architecture requires 20 Sbox tables operating 
simultaneously (16 for the data’s block, and 
4 for the key).  It has been found that an Sbox 
occupies a big area and consumes a lot of power 
of the AES circuit; hence most of the design 
efforts have been focused on getting architectures 
solving the problem from different viewpoints.  
In the literature, there are two main approaches 
to design Sbox circuits (Morioka, 2003):  the 
first one allows getting fast implementations; it 
consists in creating a single combinatorial circuit, 
whose input/output relationship is equivalent 
to the Sbox. Some models of implemented Sbox 
using this method are PPRM (Positive Polarity 
Reed Muller) (Morioka, 2003), BDD (Binary 

Decision Diagram) (Bryant, 1986), or twisted-
BDD (Morioka, 2004). The second method allows 
to use mathematical theorems on Galois Field 
(FG) to achieve reductions in the circuit area; it 
consists in making a circuit that implements the 
function multiplicative inverse, and other circuit 
for the affine transformation and then, connecting 
in serial both circuits (Guajardo, 2004).  An 
example of this methodology is the composed-
field inversion (Rudra et al., 2001), (Sato et al., 
2001) which is based on the idea of transforming 
the original field GF(28) in a field formed by 
smaller fields GF((24)2).

However, a study of power consumption of the 
AES components implemented with libraries 
of Standard Cells of 0.13µm to composed-
fields (Morioka, 2003), shows that the ByteSub 
operation (for 16 Sbox), in a parallel architecture 
that performs a round per clock cycle, consumes 
approximately the 75% of the total power circuit.  
In this research it was found that the main reason 
for the high power consumption of the Sbox of 
composite field, is determined by the creation 
and dispersion of dynamic risks due to the use of 
complicated signal paths, and the dispersion of 
signal transitions related to the type of logic gate, 
particularly for the use of XOR gates.

In order to avoid problems caused by dynamic 
risks appears the idea to implement the PPRM 
multi-stage (Morioka, 2003) architecture in 
asynchronous way.  When the asynchronous 
design is used the dynamic risks problems are 
eliminated.  That is due to the asynchronous style 
based on models insensitive to delays, in which the 
correct operation of a circuit does not depend on 
delays associated to its components.  Based on the 
Sbox PPRM architecture, the Sbox architecture 
was implemented to encryption.  Figure 2 shows 
a block diagram that indicates the asynchronous 
communications through the handshake protocols 
between the modules that compose the Sbox 
PPRM.  The handshake protocol can be of two or 
four phases, while the codification can be ‘single-
rail’, ‘dual-rail’ type, or 1-of-4 with technology of 
QDI circuit.

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



96

Figure 3 shows, as an example, the code that 
specifies the module of an affine transformation 
in Balsa language.  Figure 4 shows a handshake 
diagram generated by the Balsa system after 
the code synthesis for ByteSub.  In general, the 
handshake diagrams generated by Balsa after 
compilation of the code description of each circuit, 
are quite complex since they reflect different 
signal transitions in each of them. For this reason, 
in this paper the original handshake diagrams will 
be omitted hereafter.

2.1.2.	 ShiftRow  function

According to the FIPS-197 (FIPS, 2001) in the 
ShiftRow transformation, the bytes of the last three 
rows from the state matrix move cyclically on 

different number of positions, or offsets.  The first 
row does not move; the 2, 3 and 4 rows move 1, 
2 and 3 positions to the left respectively, forming 
the new state matrix. The ShiftRow function may 
be implemented in hardware in a simple way 
through interconnection lines without needing 
additional components of hardware.

2.1.3.	 MixColumn  function

This function operates column by column on 
the state matrix and handles each column as 
a polynomial of four terms.  The columns are 
considered as polynomials GF(28), and module 
multiplied x4 + 1 with a set polynomial given by:
						    

c(x)= {03}x3 + {01}x2 + {01}x + {02}   (1)

Figure 2. Asynchronous Sbox for encryption with PPRM architecture

PPRM
 Stage 1

PPRM 
Stage 2

PPRM 
Stage 3

 Asynchronous Inverse Multiplicative

Request

Acknowledge

Request

Acknowledge

Request

Acknowledge

Request

Acknowledge
Input Data Data

Asynchronous
Affin 

Transformation

Request

Acknowledge

Output Data

 Asynchronous SBox

Figure 3. Balsa code for affine transformation

procedure afin1 (input a : byte ; output b: byte) is
variable u    : byte
variable y,taf   : array 0 .. 7 of bit
begin
a ->  u ;
y :=  #u ;
-- Affin Transformation
taf[7] :=  y[3] xor y[4] xor y[5] xor y[6] xor y[7] ||
taf[6] :=  y[2] xor y[3] xor y[4] xor y[5] xor y[6] xor 0b_1 ||
taf[5] :=  y[1] xor y[2] xor y[3] xor y[4] xor y[5] xor 0b_1 ||
taf[4] :=  y[0] xor y[1] xor y[2] xor y[3] xor y[4] ||
taf[3] :=  y[0] xor y[1] xor y[2] xor y[3] xor y[7] ||
taf[2] :=  y[0] xor y[1] xor y[2] xor y[6] xor y[7] ||
taf[1] :=  y[0] xor y[1] xor y[5] xor y[6] xor y[7] xor 0b_1  ||
taf[0] :=  y[0] xor y[4] xor y[5] xor y[6] xor y[7] xor 0b_1;
b <- (taf as byte) – Final result
end

Figure 4. ByteSub transformation handshake

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



97

(3)




















c

c

c

c

S
S
S
S

,3
'

,2
'

,1
'

,0
'

=



















02010103
03020101
01030201
01010302



















c

c

c

c

S
S
S
S

,3

,2

,1

,0

	 for 0 ≤ c < Nb

02   03   01   01

01   02   03   01

01   01   02   03 

03   01   01   02

This may be written as a multiplication of 
matrices, in the following way:	

)()(´ xSxcS ⊗=         (2)
	

The bytes of each column can be replaced by 
the result of multiplications according to the 
following expressions:

   

		   				  
 

Eq (4) shows polynomial multiplications by 
powers of x in GF(28). These operations are 
multiplications of modulus by an irreducible 
binary polynomial Grade 8 [3]. For Rijndael, this 
polynomial is called m (x) and is given by

       1)( 348 ++++= xxxxxm       (5)

To facilitate the implementation of the MixColumn 
transformation in hardware, the algorithm authors 
defined the function called xtime, which simplifies 
the operation of a polynomial by power of x. 
 
Eq. (4) together with the correct use of the 
xtime function, allows to obtain the circuit that 
performs the MixColumn function, and whose 
representation is shown in Figure 5.

2.1.4. Encryption key generation unit

The key unit circuits included in this section are 
based on the description made by the Rijndael 
algorithm authors (Daemen, 1999).  The AES 
algorithm takes the encryption key, K, and 
performs a spread routine to generate an extended 

)}02({)}03({
)}03({)}02({

)}03({)}02({
)}03({)}02({

,3,2,1,0,3

,3,2,1,0,2

,3,2,1,0,1

,3,2,1,0,0

ccccc

ccccc

ccccc

ccccc

SSSSS
SSSSS
SSSSS
SSSSS

•⊕⊕⊕•=′

•⊕•⊕⊕=′

⊕•⊕•⊕=′

⊕⊕•⊕•=′ 02 03

03

03

03

02

02

02

Figure 5. MixColumn circuit representation

S0

S'0

S'1

S'2

S'3

Xtime

Xtime

Xtime

Xtime

S1

S2

S3

key.  The spread routine generates (Nr+1) words: 
the algorithm requires an initial set of Nb words, 
and each of Nr rounds requires Nb words of key 
data. The resulting extended key consists of a 
lineal arrangement of four bytes, denoted by [wi]: 
i  within the range  0 < i < Nb* (Nr + 1)
 
For AES-128 standard (FIPS, 2001), the initial 
key of 128 bits needs to be extended to 4*(10+1), 
it means 44 words of 32 bits.  That is equivalent 
to 11 keys of 128 bits.  The initial key is the 
encryption key, and it is used in the initial round 
of the algorithm.  The following keys are derived 
from the previous key, according to the function 
f as:

 
)( 1−= ii dSubkeyRounfdSubkeyRoun   for all 0<i<11

The initial key is represented as a linear 
arrangement W, in which the round sub-keys are 
gotten of the initial key, K0:

	          ),,,( 01230 wwwwK =        (7)

Figure 6 represents the circuit for the key expansion 
unit for an AES-128 encryption algorithm. Figure 
6 also shows what the less significant column 

(6)

(4) 

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



98

of the sub-key matrix (column 4) is transformed 
in different ways to the other columns of the 
key. Through Sbox, it is applied to the column 
the SubWord transformation (equivalent to a 
substitution of byte for each element of column).  
The resulting column is modified though a circular 
rotation of position, so that the most significant 
byte of the column becomes the less significant.  
The next function is Rcon (addition of round 
constant), and it consists in performing a XOR 
operation between a vector column {kr,0,0,0}, and 
the resulting column. The kr value byte (round 
constant) depends on the round number that is 
carried out.  The transformations of this column 
are similar to the encryption and decryption 
processes.

3. Results and discussion

To estimate the occupied area by each handshake 
circuit, the Balsa breeze-cost utility has been used 
in all designs. The units returned by the breeze-
cost are micrometers (µm) cell line on a 1μm 

2LM standard CMOS process (Edwards et al., 
2006).  Balsa supports 350ηm and 180ηm AMS 
and SGS-ST technologies, which generate netlist 
formats to produce implementations on silicon. 
Balsa also supports the appropriate technology to 
produce formats used in Xilinx FPGAs.

Table 1 shows the results of implementations 
simulated using the system Balsa.  It relates the 
cost of relative area and delay time of the functional 
simulation for each procedure involved in the 
design of the Rijndael algorithm asynchronous 
hardware. Balsa generates the area cost as a guide 
for the designer to know what proportion of a 
change in the description of a circuit affects its 
size. For implementation in FPGA, Balsa creates 
a file compatible with a Verilog specification for 
each asynchronous circuit. The Verilog file is then 
synthesized using the software Xilinx Integrated 
Software Environment (ISE) version 9.2i.

Table 2 shows results of estimated values utilization 
of the FPGA after Rijndael functions synthesis. 

Figure 6. Encryption Subkeys generation unit

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

SboxSboxSboxSbox

Rcon

SubWord

RotWord 

O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0

a3a2 a1 a0

a3 a2 a1 a0

Num_Round

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



99

It can see that the most used resource of the FPGA 
corresponds to IOBs.  In some cases (functions 
AddRounKey and SubKeyRound_enc) the 
synthesis tool generates IOBs (Input Ouput Blocks) 
over-mapped when exceeding the required amount 
of them for assignment of both inputs and outputs 
necessary in the implementation of the algorithm 
functions.  Table 2 also shows that the percentage 
of use of Look Up Tables (LUTs), in both types 
of data encoding, is lower than the percentage of 
use of IOBs; in addition, the designs require more 
LUTs when functions are synthesized by using the 
encoding 1-of-4. 

Table 3 shows the results of the real asynchronous 
implementation in a Xilinx Virtex-II Pro 
XCV2P30-6ff896 FPGA with 0.13μm CMOS 
technology and using encryption either dual-rail 
or 1-of-4 balanced codification.

The implementation results in Table 3 indicate 
that in both styles of coding, the delays associated 
with asynchronous components interconnection 
paths are larger than the delays induced by the 
logic circuit. 

Table 1.  Area cost and functional simulation delay for asynchronous Rijndael.

Transformation Area Cost reference Functional 
Simulation delay (ns)

ByteSub 12742.0 61800
MixColumn 11746.25 17000
ShiftRow 5469.0 3900
AddRoundKey 12377.0 4700
SubkeyRound_enc 14396.5 85300

Table 2. Estimated values of device utilization in Xilinx Virtex XCV2P30-6ff896 FPGA for Rijndael functions Synthesis 
(Total number of:  LUTs=27392  ,  IOBs=546)

Function
 Dual-rail 1-of-4

LUTs (%) IOBs (%) LUTs (%) IOBs (%)
ByteSub 3369 (12%) 36 (6%) 106 (0%) 36 (6%)

MixColumn 254 (0%) 138 (24%) 382 (1%) 138 (24%)

ShiftRow 161 (0%) 546 (98%) 289 (1%) 546 (98%)
AddRoundKey 305 (1%) 818 (147%) 561 (2%) 818 (147%)
SubkeyRound_enc 407 (1%) 564 (101%) Not implemented

The data shows that the interconnection routes 
have the highest percentage of the total delay 
of each stage (between 53.4 and 58.6%), which 
in this case indicates that the FPGA is not 
used with sufficient interconnection resources 
suitable for asynchronous design requirements. 
The results also show that automatic routing 
algorithms of the system Xilinx ISE are 
not optimized for interconnections between 
asynchronous components.  Both cases point 
out as that the current state of Xilinx FPGAs and 
its design environment has not been oriented to 
the efficient implementation of asynchronous 
circuits; however, this is the only available tool 
for automatic FPGAs synthesis that shows a 
significant integration level with the Balsa system.

Table 3 also contains the delay times of the 
encryption key scheduler (SubkeyRound_enc).  It 
was found that the Balsa system does not generate 
synthesized Verilog files for circuit specification 
codes 1-of-4 containing table definitions; in this 
case only the circuits with dual-rail encoding were 
implemented because of the SubWord function, 
which is part of both circuits of key generation, 

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



100

including tables to implement the Sbox for byte 
substitution. 

Table 3 shows delay times corresponding to 
the specifications of the circuit comprising the 
Rijndael algorithm for encryption as described 
in section 2.1. Although the FPGA used has 
enough logic resources and input/output blocks 
to implement the algorithm, the interconnection 
resources have proved inadequate for the 
connectivity of the functions that comprise it.

4. Conclusions

It has been achieved the asynchronous 
implementation of the functions that make 
up the Rijndael algorithm.  The implemented 
asynchronous circuits demonstrate a good 
integration between the asynchronous tool  
Balsa and  the Xilinx ISE 9.2i development 
platform.  However, it is clear that FPGAs used 
to implement the circuits, have restrictions to 
map asynchronous circuits.  Results obtained 
with the synthesis  tool Xilinx ISE 9.2i, show that 
the circuits implemented in FPGA have a bigger 
interconnection routes delay (over 58%) than the 
logical elements composing each function.

The implementation of the algorithm could 
be made in the near future using FPGAs with 
higher-capacity or allowing asynchronous 
interconnectivity between asynchronous logic 
blocks, the above must be accompanied by the use 
of tools with greatest ability to synthesize and to 
adapt asynchronous digital circuits.

5. References

Bardsley, A. (2000). Implementing Balsa 
handshake Circuits. Ph.D. Doctoral Thesis,  
Faculty of Science and Engineering, University 
of Manchester, England.

Bouesse, F.; Renaudin, M.; Wilton, A.; & 
Germain, F. (2005). A clock-less low-voltage 
AES crypto-processor. Solid-State Circuits 
Conference, ESSCIRC 20005. Proceedings of the 
31st European, p. 403–406.

Bryant, R.E. (1986). Graph-Based Algorithms 
for Boolean Function Manipulation.  IEEE 
Transactions on Computers C-35 (8), 677–691.

Daemen, J., & Rijmen V. (1999).  AES Proposal: 
Rijndael. Proton Worl Int. I, Zweefvliegtuigstraat, 

Table 3. Results of Rijndael functions implementation delay in Xilinx Virtex XCV2P30-6ff896 FPGA

Function
Delay

Dual-rail 1-of-4

ByteSub
217.268ns

Logic 90.240ns (41.5%)
Routes127.028ns(58.5%)

222.574ns
Logic 92.038ns (41.4%)
Routes 130.538ns (58.6%)

MixColumn
86.701ns

Logic 37.029ns (42.7%)
Routes 49.672ns (57.3%)

107.992ns
Logic 46.025ns (42.6%) 
Routes 61.967ns (57.4%) 

ShiftRow
31.788ns

Logic 14.806ns (46.6%)
Routes 16.982ns (53.4%)

38.348ns
Logic 17.855ns (46.6%)
Routes 20.493ns (53.4%)

AddRoundKey
33.290ns

Logic 15.432ns (46.4%)
Routes 17.858ns (53.6%)

39.850ns
Logic 18.481ns (46.4%) 
Routes 21.369ns (53.6%) 

SubkeyRound_enc
371.783ns

Logic 153.151ns (41.2%)
Routes 218.632ns (58.8%)

Not implemented

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)



101

Brussel, Belgium; Katholieke Universiteit 
Leuven, ESAT-COSIC, Heverlee, Belgium. 
Document V. 2.

Edwards, D., Bardsley, L., Janin, L.,  & Toms, W. 
(2006). Balsa: a Tutorial Guide. Version 3.5.The 
Advanced Processor Technologies Group, APT 
Group. Manchester University. Manchester, 
England.

FIPS, Federal Information Processing Standards, 
(2001). Specification for the ADVANCED 
ENCRYPTION NIST STANDARD (AES). 
Publication 197, November 26. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf

Guajardo, M. (2004). Arithmetic Architectures 
for Finite Fields GF(pm) with Cryptographic 
Applications. Dissertation, Doktor-Ingenieurs der 
Fakult¨at f¨ur Elektrotechnik und Informations 
technikan der Ruhr-Universit¨at Bochum von aus 
Caracas, Venezuela.  Bochum.

Morioka, S., & Satoh, A. (2003). An Optimized 
S-Box Circuit Architecture for Low Power AES 
Design. Cryptographic Hardware and Embedded 
Systems (CHES 2002), 2523, p.172-186.

Morioka, S., & Satoh A. (2004). A 10-Gbps Full-
AES Crypto Design With a Twisted BDD S-Box 
Architecture.  IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems 12 (7).

Nieto, R. (2009). Diseño e implementación de un 
cripto-procesador asíncrono de bajo consumo 
basado en el algoritmo de Rijndael. Doctoral 
Thesis, Facultad de Ingenierías, Universidad del 
Valle, Cali, Colombia.

NIST, National Institute of Standards and Technology. 
(2000). http://csrc.nist.gov/CryptoToolkit/aes/rijndael/

Rudra A., Dubey P.K., Jutla C.S., Kumar V., 
Rao J.R., & Rohatgi P. (2001). Efficient Rijndael 
encryption implementation with composite field 
arithmetic. Proc. Cryptographic Hardware and 
Embedded Systems (CHES 2001), Paris, France, 
LNCS 2162, p. 175–188.

Satoh A., Morioka S., Takano K., & Munetoh 
S. (2001). A Compact Rijndael Hardware 
Architecture with S-Box Optimization. Advances 
in Cryptology – ASIACRYPT 2001, p. 239–254.

Shang, D., Burns, F., Bystrov, A., Koelmans, 
A., Sokolov, D., & Yakovlev, A. (2004).  A Low 
and Balanced Power Implementation of the AES 
Security Mechanism Using Self-Timed Circuits. 
International Circuit and System Design: 14th 
International Workshop - PATMOS 2004, 3254 p. 
471–480.

Shang, D., Burns, F., Bystrov, A., Koelmans, 
A., Sokolov, D., & Yakovlev, A. (2006).  High-
security asynchronous circuit implementation 
of AES.  IEE Proceedings Computer Digital 
Technology 153 (2).

Sui Ch., Wu, J., Shi, Y., Kim, Y., & Choi, M. 
(2011).  Random Dynamic Voltage Scaling Design 
to Enhance Security of NCL S-Box.  IEEE 54th 
International Midwest Symposium on Circuits 
and Systems (MWSCAS), Seul, Corea,  p. 1-4.

Weaver, N., & Wawrzynek, J. (2002). High 
Performance, Compact AES Implementations in 
Xilinx FPGAs. U. C. Berkeley BRASS group.

Wu, J., Shi, Y., & Choi, M. (2011). FPGA-
based Measurement and Evaluation of Power 
Analysis Attack Resistant Asynchronous S-Box.  
Instrumentation and Measurement Technology 
Conference (I2MTC), Binjian, China, p. 1-6.

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 91 - 101 (2013)


