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Abstract
This article proposes a methodology to model a competitive electricity market using the concurrent constraint 
programming paradigm (CCP). The market considered is cleared by merit order and based on the game theory 
equilibrium model, Supply Function Equilibrium (SFE), with asymmetric step functions with multiple blocks. Also, 
it shows results for a reference case with 3 generation companies (Gencos) to reveal the model behavior.

Keywords: Electricity markets, Constraint programming, Supply Function Equilibrium

Resumen
Este artículo propone una metodología para modelar un mercado de electricidad competitivo usando el paradigma 
de programación concurrente con restricciones (CCP). El mercado considerado es despejado por orden de mérito y 
basado en el modelo de equilibrio de teoría de juegos, Función de Suministro de Equilibrio (SFE), con funciones de 
paso asimétricas con bloques múltiples. También, se muestran resultados para un caso de referencia con 3 compañías 
de generación (Gencos) para revelar el comportamiento del modelo.
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1. Introduction

The problem of determining the possible 
equilibria reached in a competitive electricity 
market, with strategic generators influencing the 
market’s clearance price, can be represented as a 
combinatorial problem or a constraint satisfaction 
problem (CSP). In this case, concurrent constraint 
programming (CCP) can be used to solve a 
CSP. Hence, as shown in(Londoño, 2012), it is 
possible to use constraint programming to analyze 
electricity markets, particularly with SFE models 
using step functions (block form). The SFE model 
has been widely used (Green & Newbery, 1992), 
(Von der Fehr & Harbord, 1993), (Berry, et al., 
1999), (Anderson & Philpott, 2002), (Rudkevich, 
2003), (Correia, et al., 2003), (Li & Shahidehpour, 
2005), (Liu, et al., 2006), (Bompard, et al., 2006), 
(Yuan, et al., 2007), (Holmberg, 2008), (Hasan, 
et al., 2008), (Hasan & Galiana, 2008), (Gao & 
Sheblé, 2010), (Bompard, et al., 2010), (Sahraei-
Ardakani & Blumsack, 2012) but seldom in block 
form (Von der Fehr & Harbord, 1993) which is 
closer to real market condition; besides, it is 
limited to a few participants. On the other hand, 
to consider bigger systems and with asymmetric 
generation companies (Gencos), many approaches 
have used linear SFE (Baldick, et al., 2004). 
Recently, a method that allows many asymmetric 
Gencos with multiple blocks (Hasan, et al., 2008) 
has been proposed, expressing the problem as a 
mixed integer linear program (MILP). However, 
computations times are still high in large systems 
and it is necessary the linearization of system 
equations for this kind of market. CCP, which is 
the proposed solution method in this paper for this 
kind of market, is a programming paradigm that 
reduces the search space of a problem using its 
constraints and makes a controlled search using 
distribution strategies; then, it is possible to find 
the market outcomes at low computation times. 
CCP allows also a much more natural modeling 
and the linearization of system equations for this 
kind of market is not necessary. In this way, the 
proposed solution method makes a contribution 
to the electricity market modeling problem with 
several Gencos and multiple blocks each. This 

article describes the methodology followed to 
implement this electricity market model using 
CCP, presenting an example of its application.

This article is organized as follows: in section 2, 
it offers a general description of what a constraint 
satisfaction problem is and then, how it is solved 
through constraint programming. Section 3 
presents the methodology for implementing 
an electricity market model using constraint 
programming, showing a particular application 
case. Finally, some conclusions are presented in 
Section 4.

2. Solving constraint satisfaction problem 
(CSP) with constraint programming

Constraint satisfaction problems exist when a 
finite set of variables, each with an associate 
domain and with a set of constraints on subsets 
of these variables, are defined. This problem can 
be represented by (X; D; C), where X is a set of n 
variables in the problem, so that X:= {x1,…,xn}. D 
are associated domains to each of the n variables 
(D1,…,Dn); these domains add domain constraints 
to the problem in which xi ∈ Di, that is, values 
that can be assigned to xi remain restricted to the 
values that compose its associated domain Di.  The 
cardinality of each domain is |Di| and a variable x 
∈ X is fixed if |D(x)|=1.

Additionally, there is a set of constraints C, each 
over a subset of X, where values (x, c) are the set 
of all possible values that x may have given that 
c is met. Let Xi be a set of k variables, a subset 
of X (that is, Xi ⊆ X), over which constraint ci is 
applied and having Xi: = {xi1,…,xik}, constraint ci 
will be a subset of Di1…Dik.  Besides, if k = 1, 
then the constraint applies over only one variable 
and it will be a unary constraint; if k = 2, two 
variables will be involved and it will be a binary 
constraint, and, finally, if the constraint involves 
three or more variables (k ≥ 3), it will be a n-ary 
constraint.

The solution of a CSP consists of a sequence of 
values for all its variables for which all of the 
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problem’s constraints are met. Considering a CSP 
(X; D; C), where X := {x1,…,xn} and its associated 
domains are D1, …, Dn, with xi ∈ Di, and bearing in 
mind that {di ∈ Di} is a value assigned to variable 
xi, an n-tuple (d1,…,dn) ∈ D1x…xDn is a solution 
to (X; D; C) if it satisfies each constraint c ∈ C. To 
determine if this n-tuple satisfies a constraint ci ∈ 
C over the set of variables X: = {xi1,…,xik}, where 
Xi ⊆ X, we must verify if (di1,…,dik) ∈ ci. A CSP 
is consistent if it has a solution; on the contrary, it 
is inconsistent.

2.1 Constraint programming 

Constraint programming combines traditional 
search techniques with constraint propagation 
algorithms for reducing the search space. From 
the latter, the original problem is transformed into 
one or more equivalent CSPs, removing values 
included in the domains of variables that cannot 
be part of a solution. That is, first a search space 
pruning is made. This allows, with the proposed 
method in this paper using CCP, to find a result in 
a more efficient way than the traditional methods.

The constraint programming paradigm works 
under the propagation and search approach, 
which, according to (Van Roy & Haridi, 2004), is 
based on three main ideas:

- Maintaining partial information
- Using local deduction
- Carrying out controlled search

The processes are repeated with each sub-problem 
created until finding a successful solution or a 
failed space, in whose case at least one variable 
exists without values in its domain that comply 
with the problem’s constraints. In the process, a 
search tree is obtained [Figure1].

In Figure 1, each circle corresponds to an 
undefined space and can be the root node or an 
inner node; the rest are leaf nodes in which have 
been determined a failed space (square) or a solved 
space (diamond). More information on concurrent 
constraint programming and its application can be 

found in (Van Roy & Haridi, 2004),(Apt, 2003), 
(Schulte & Smolka, 2000), (Barber & Salido, 
2008).

3. Implementation methodology using CCP

In general terms, to solve a CSP we must: (a) 
model the problem and (b) find its solution. 
Figure 2 presents the proposed methodology in 
this paper to model agent´s strategic behavior 
within a competitive electricity market.

Figure 1. Search tree

Figure 2. Modeling methodology using CCP

The first stage in this methodology includes the 
specification and representation of the problem 
that, along with the selection of propagators in the 
second stage, constitute the problem modeling. 
The other two parts in the second stage establish 
how the search for the solution will be conducted. 
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Finally, the problem can be implemented in a 
specific programming language.

3.1 Specification and representation of the 
problem

The first step to be done is to specify and describe, 
in detail, the problem to be solved, including all the 
conditions that must be met, the types of variables 
of the problem, its characteristics, and what it 
needs to be determined. From the specification we 
can identify what the variables are, their domains, 
and the problem´s constraints.

Specification of the problem

To show the methodology used, we consider the 
problem of finding the possible equilibriums of 
a centralized electricity market and dispatched 
by order of merit. This market has N generating 
agents that can present their postures or bids to 
sell energy to a central operator through step 
functions comprised of NB energy blocks. Block 
j (j = 1, 2,…,NB) of generator i (i =1, 2,…,N) 
has a marginal cost (MCij) equal to aij and each 
of the N generating agents present a function 
comprised of a set Xi: = {xi1,…,xi NB}, organized in 
ascending manner, and the capacity limits of each 
of its blocks, . The problem’s 
generating agents are strategic players that can 
offer a different value of their marginal cost to 
obtain a greater benefit by trying to manipulate 
the market´s clearance price (λ) or system’s 
marginal price; additionally, it is considered that 
they are rational players, hence, xij ≥ aij, ∀ij. 
However, market rules impose a maximum offer 
price that permits controlling market power these 
agents can exert; this price is denominated price 
ceiling or price cap, then, xij ≤ price_ceiling ∀ij. 
For their part, market operator seek to cover the 
system’s demand, D, with the lowest cost possible 
from bids presented from generating agents, 
considering the following restricted optimization 
function:

                			 

Subject to: 

                        				  
	
                        			 
		
Market equilibria expected as a result will be 
comprised of the offer prices from each of the N 
agents that led to that equilibrium, the generation 
programming determined to minimize system 
costs, and the clearance price; that is, sets Xi =: 
{xi1,…,xi NB} ∀i, Pi =: {pi1,…,pi,NB} ∀i, and the 
market’s marginal price (λ) that fulfill the condition 
that each generator obtains a greater benefit than 
offering at cost and minimizing system costs is 
accomplished for the bids presented.

Representation of the problem

The problem described can be represented through 
the following conditions:

Karush-Kuhn-Tucker conditions (Castillo, et al., 
2002) in Eq. (4) – (11), that permit solving the 
constrained optimization problem presented in 
Eq. (1) – (3), where λ and µ are the Kuhn-Tucker 
multipliers. Conditions in Eq. (12) – (14) are also 
known functions for these types of markets and 
can be obtained from the problem specification. 
Condition in Eq. (15) is a known characteristic in 
these types of markets, which permits eliminating 
alternatives that will not lead to a solution. Finally, 
conditions in Eq. (17) – (19) were included for 
this particular model.
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xij ≤ Price_ceiling ∀ i,j
	

xij ≥ aij ∀ ij
	

aij ≥ ai j-1 ∀ i, j ≥ 2
	

xij = aij, ∀ i≠ m, with Gm being the 
marginal generator

 
	

xij ≥ xi j-1 ∀i, j ≥ 2 
	

Beni ≥ Ben_MCi ∀i 
	

 
	
Now, it is necessary to identify the variables, their 
domains, and the problem’s constraints.

Variables and their associated domains

As a result, per equilibrium we expect to obtain 
the price bids presented by the generators leading 
to that equilibrium and the power dispatched by 
the central operator in each case. The domains can 
be obtained from the problem’s specification.

xij ∈  ∀ ij

Pij ∈  ∀ ij

Variable parameters

Other parameters of interest exist like: system’s 
marginal price (λ) and benefit of each generator 
(Beni); however, both are determined when 
variables xij and Pij are defined.

3.2 Selection of propagators

To have the complete representation of the CSP 
as {X; D; C}, where X is the set of n variables in 
the problem, X: = {x1,…,xn}; D are the domains 
associated to each of the n variables (D1,…,Dn), 
and C is a set of constraints, each over a subset 

of X; it is necessary to select the propagators 
that will be used to implement the problem’s 
constraints. With the propagators we can, as 
the name indicates, “propagate” or disseminate 
information of constraints among the variables 
involved, reducing the search space of a CSP and 
transforming it into one or more equivalent CSPs, 
in which local consistency is accomplished, 
conserving, in the domains of variables, only 
those values that can be included in a solution. 
Considering the search process as a tree, through 
constraint programming the tree is pruned prior to 
initiating a search.

The constraints the problem must fulfill correspond 
to conditions in Eq. (4) – (19) presented in the 
previous point; to implement them, the following 
propagators were selected: constraints in Eq. (4) 
– (9); the last two equations in KKT conditions 
are not necessaries because they are already 
considered within the ranges of variables Pij ∀ij. 
Constraints in Eq. (16) – (19) were also selected 
as propagators.

The selection criterion in this case was simply 
based on that the representation of the problem 
were as natural as possible. However, from the 
computational point of view, it is possible that 
other propagators exist that permit implementing 
these constraints, further reducing the domains of 
the variables and, thereby, having a more efficient 
search.

3.3 Distribution strategies

Upon completely defining the representation of 
the CSP {X; D; C}, it is necessary to determine the 
strategy that will be used to go over (explore) the 
search tree and find the solution to the problem. 
When propagators can no further reduce variable 
domains, it is said that the space becomes stable. 
At this point, the space can be failed, solved, 
or still undetermined; in the first two cases no 
additional process is needed, given that a response 
is available from the program – whether an 
inconsistency among constraints (failed space) or 
each of the variables with a possible unique value 
(solved) –.

(11)

(12)
	
(13)

(14)

(15)

(16)

(17)

(18)

(19)
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In the third case, that is, when the space is still not 
completely determined, it is necessary to conduct 
a search. This is done by dividing the problem into 
two or more sub-problems, each of which delivers 
a new constraint; thus, permitting the return to the 
propagation process for further reduction of the 
solution space. Obtaining these sub-problems is 
accomplished by using “distribution strategies”.

To accomplish a distribution of the space, first 
select one of the still undefined variables, for 
example x, then select one of the possible values 
of this variable, for example n; thus, two new 
constraints x = n and x ≠ n will be available, which 
together include all the possible solutions. With 
these two new constraints or propagators, two 
new problems are created where it is possible to 
again undergo propagation.

Determination of the new constraint then includes 
two processes: the first consists of selecting one 
of the still undetermined variables and the other 
in distributing over this variable, selecting one of 
its possible values. The criteria that permit this 
determination form the distribution strategy, and 
the search efficiency also depends on this criteria.

In programming systems based on languages that 
support constraint programming, incorporated 
distribution strategies exist that can be used 
in any problem. However, depending on the 
type of problem, it may be possible that these 
strategies will not be sufficient to accomplish 
an exploration that permits reaching a solution; 
hence, these programming systems also permit 
including distributors designed by the user, using 
available standard distribution options or others 
also designed by the user. In this case, knowledge 
of the problem may be used to improve search 
efficiency.

The methodology that must be considered to 
design the distributor is:

- Variables for distribution
- Filtering
- Selection criterion

- Distribution criterion
- Determination of new constraints

By only using the distribution strategies available 
in the programming system, it was not possible 
to reach convergence; hence, for the problem 
considered it was necessary to design two 
distribution strategies: one for the amount of 
generation dispatched and another for the offer 
price by block. Figure 3 and Figure 4 present 
the flow diagrams that permit a general view of 
the strategies designed for the amount and price 
variables, respectively.

3.4 Selection of exploration method

In the search or exploration method in this 
programming paradigm it may be indicated if 
it is sufficient with one, if all are required, or if 
we should seek the best of all possible solutions, 
according to a specific criterion. Hence, different 
outcomes may be obtained depending on the case 
we wish to analyze.

Figure 3. Flow diagram, distribution amount variable
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With the set of propagators and distribution 
strategies specified before, it was possible to 
implement the reference market using CCP. Figure 
5 presents the search tree obtained for this case by 
using constraint programming when all players 
are strategic. This tree shows all possible market 
outcomes, among them, all Nash equilibria. In 
this figure, circles correspond to the nodes where 
there is a problem division, i.e., when there are 
still some variables to define; the squares show a 
fail state, and diamonds show the found solutions.

In Table 2, the obtained results when all generators 
are strategic players are shown. The first row in 
this table corresponds to all generators bidding at 
true marginal cost. This table include identification 
of Genco gaming, profit obtained for each one, 
and system marginal price (λ); the last column 
shows whether the solution is a Nash equilibrium. 
The result when all Gencos bid at cost and the 3 
Nash equilibria are the same obtained in reference 
(Hasan, et al., 2008). The other ones are not Nash 
equilibria but also meet all constraints of the 
problem.

Figure 4. Flow diagram, price distribution variable

Table 1. Quantity and true IC: 3-Genco case

Genco
Block capacity

[MW]
True Block IC

[$/MWh]
b1 b2 b3 b1 b2 b3

1 40 20 40 1 4 6
2 50 50 50 2 5 10
3 60 40 50 3 7 9

Figure 5. Search tree case 3-Gencos

The case considered in this article looks to 
determine all the possible market outcomes in 
which all the generators obtain greater benefit 
than offering at cost.  To accomplish this, it is 
first considered that all the generators are price-
makers; we include as an additional input the 
benefit of offering at cost and the condition that 
all benefits reached must be greater than such; 
finally, it is indicated to look for all the possible 
outcomes.

3.5 Validation and implementation

In order to show the implementation of the 
proposed methodology, results obtained with 3 
generation companies (Gencos) with 3 blocks 
each will be presented. However, we test also with 
30 and 60 generation companies. In all cases, the 
expected results were obtained and were reached 
at low computing time.In the considered case, 
there are 3 generation companies (Gencos), 
each of them owns one generation unit and bids 
3 blocks. The data for these blocks from the 
generators, quantity and incremental cost (IC), are 
taken from reference (Hasan, et al., 2008) and are 
included in Table 1. The demand to be met in this 
case is 145 MW.

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 35 - 43 (2013)



42

4. Conclusions

It has been demonstrated that it is possible to use 
constraint programming to simulate a competitive 
electricity market using step functions with 
multiple blocks to represent bids of competitors, 
accomplishing adequate computational times 
that permit considering big systems, which is 
complicated with traditional methods. This article 
presents the detail of the methodology used to 
implement this model.

The methodology posed sought for the 
implementation of the model to be as natural 
as possible; however, it is recognized that from 
the computational point of view there may be 
considerations like, for example, the selection of 
propagators, which lead to a much smaller search 
tree, permitting further increase of efficiency in 
the search for a solution.

It is important to highlight that although the 
description of the methodology in this article is 
accompanied by an example of application for a 
particular market model, it is possible to include 
modifications to the model and maintain the 
methodology posed.

As presented in the methodology, it is necessary 
to define or design the distribution strategies to 
conduct a search when the computing space 
becomes stable. This article presents the diagrams 
of the two strategies designed for this particular 
case; however, it is possible to design other 

strategies for either this problem or for another 
problem or model considered. In order to design 
distribution strategies, it is only necessary to 
follow the general methodology presented 
and guarantee that with the criteria considered 
solutions are not lost.

The proposed solution method makes a 
contribution to the electricity market modeling 
problem with several Gencos and multiple blocks. 
From this, it finds the market outcomes at low 
computation times, allowing a much more natural 
modeling and the linearization of the equations 
system it is not necessary.

Until now, the target was to demonstrate that it 
was possible to use CCP to simulate a competitive 
electricity market with SFE and leaving a 
modeling methodology using this programming 
paradigm. For this purpose, systems with 3, 30 
and 60 generation companies were used. In all 
cases, the expected results were obtained and 
reached at low computing time. In this first stage, 
the system was single node; it is recognized that 
for analysis purposes it is necessary to include the 
network, which is within the steps to follow.
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