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Abstract

This paper deals with non-uniform turbulent particle-laden jet flows. These flows are frequently found in 
industry and are characterized by a large value of the particle fluctuating-velocity anisotropy, much larger 
than the one corresponding to the carrier phase. As the classical Eulerian and Lagrangian approaches to the 
description of the dispersed phase fail in the estimation of such anisotropy, two extended Eulerian models 
for the particle phase are introduced in this work; one of them is algebraic [the Algebraic Particle Stress 
(APS) model] and the other one is differential [the Particle Reynolds Stress (PRS) model]. 
The performance of these two Eulerian models and a classical Lagrangian approach is evaluated against 
some experimental measurements available in the literature. The PRS model provides results in good 
agreement with the experiments for all available variables, including the particle fluctuating-velocity 
anisotropy. The differential equations that describe the dispersed phase in the PRS model are decomposed 
into their basic terms and analyzed separately. In the case of high inertia particles, it is shown that 
modeling of the so-called interaction terms is the crucial point, as these terms govern the existing 
equilibria in the Eulerian equations that describe the dispersed phase. 

Keywords:  Two-phase flow, Eulerian approach, Lagrangian approach, Particle-laden flows, Fluctuating 
velocity, Anisotropy.

Resumen

El presente artículo considera flujos turbulentos no uniformes tipo chorro cargados con partículas. Estos 
flujos se encuentran frecuentemente en la industria y se caracterizan por altos valores de anisotropía de la 
velocidad fluctuante de las partículas, mucho mayor que la de la fase portadora. Dado que los enfoques 
euleriano y lagrangiano clásicos para la descripción de la fase dispersa son incapaces de estimar 
correctamente esa anisotropía, en este trabajo se introducen dos modelos eulerianos extendidos para la 
fase de las partículas; uno de ellos es algebraico (el modelo algebraico de esfuerzos, APS) y el otro es 
diferencial (el modelo de esfuerzos de Reynolds, PRS). El desempeño de ambos modelos y de un modelo 
lagrangiano clásico se evalúa con respecto a mediciones experimentales disponibles en la literatura. 
El modelo PRS proporciona resultados que concuerdan con los experimentos para todas las variables 
medidas, incluyendo la anisotropía de la velocidad fluctuante de las partículas. Las ecuaciones 
diferenciales que describen la fase dispersa se descomponen en sus términos básicos y se analizan 
separadamente. En el caso de partículas de gran inercia, se demuestra que el modelado de los términos de 
interacción es crucial ya que éstos gobiernan los equilibrios existentes en las ecuaciones eulerianas que 
describen la fase dispersa.

Palabras clave: Flujo bifásico, Enfoque euleriano, Enfoque lagrangiano,  Flujos de partículas, Velocidad 
fluctuante, Anisotropía.
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Regarding the dispersed phase in a two-phase flow 
(solid, droplet or bubble suspensions), it is mainly 
described by using one of two theoretical 
approaches. In the so-called Lagrangian method, 
the discrete elements are tracked through a 
turbulent-flow field by solving their equations of 
motion. In the so-called Eulerian method, the 
phases are handled as two interpenetrating 
continua and are governed by a set of differential 
equations representing conservation laws. Two 
possibilities come out for establishing the 
dispersed element equations. Firstly, the second 
phase can be considered as a fluid, for all effects. 
This corresponds to the well-known two-fluid 
model. Secondly, the non-continuous phase can be 
regarded as a cloud of material elements, whose 
behavior, depending on the variables of each 
element, is governed by a probability density 
function (PDF) that obeys a kinetic transport 
equation similar to the Maxwell-Boltzmann 
equation. The continuum equations for the second 
phase are obtained by taking the statistical 
moments of such PDF evolution equation.

In both cases, however, the underlying physics is 
the same, which can be described as follows. A 
large number of particulate trajectories (called 
trajectory realizations) are considered, and by 
averaging over these realizations, the required 
quantities, such as number density, mean particle 
velocities and particle velocity fluctuations, are 
derived. However, in the Eulerian approach, the 
trajectory constructions and the subsequent 
averaging are not explicitely carried out at a 
computational level. Instead, these operations are 
implicitely achieved at a conceptual level, so the 
discrete character of the underlying process is 
‘washed out’ to provide a theory involving a 
continuum associated with the particles. 

As the conceptual part of the work is carried out  
by the brain (not by a computer), Eulerian codes 
are fast-running, which makes them attractive 
from an engineering point of view. 

The price paid for this computational efficiency is 
that by relying on intensive modeling, 
assumptions must be introduced to succeed in the 
closure of the particle fluctuating correlations. 
Conversely, in the Lagrangian approach, 
trajectory realizations are explicitely simulated by 

the computer which also carries out the 
subsequently-required averaging. The price paid 
is more time-consuming runs.

However, the traditional closures, even giving 
approximate values for the mean fields, fail for the 
prediction of the particle velocity fluctuations, 
specially for non-uniform flows. To overcome this 
fact, considerable effort has been devoted to 
develop turbulence closures at the level of second 
moments of the particulate phase (Reeks, 1993; 
Wang et al., 1997; Hyland et al., 1998; Simonin, 
1991). In fact, the traditional Lagrangian 
strategies for modeling the particle phase, grossly 
underpredict the anisotropy of the particle velocity 
fluctuation in non-uniform flows such as jets 
(Berlemont et al., 1997; Chen, 2000). On the other 
hand, the classical Eulerian methods make no 
attempt to predict such anisotropy. Moreover, after 
reviewing a number of experimental results, Laín 
& Aliod (2000) suggested that in axisymmetric jet 
flows laden with high inertia particles, the 
streamwise and transversal velocity fluctuations 
of the solid phase could hold the approximate 

2 2 
relationship (u)  / (v)  10, as soon as a developed 

2
 flow is reached. Here, (u) corresponds to the axial 

2
  fluctuating velocity and  (v) corresponds to the 

radial one. Such a ratio is much larger than the one 
corresponding to the continuous phase, which is of 
order unity. Therefore, there is a need for 
improving the existing two-phase flow models to 
reproduce the particle fluctuating velocity 
anisotropy that is observed in non-uniform 
turbulent flow configurations.

The purpose of this paper is to propose and 
evaluate simple, computationally efficient, 
dispersed-phase Eulerian second-order models to 
improve the prediction of the particle 
fluctuating-velocity anisotropy in non-uniform jet 
flows. In that direction, two Eulerian stress 
models, one of them algebraic [the Algebraic 
Particle Stress (APS) model] and the other one 
differential [the Particle Reynolds Stress (PRS) 
model], are presented and evaluated together with 
a classical Lagrangian approach for the 
configuration of axisymmetric turbulent 
particle-laden free jet. The computational results 
are compared with the measurements of Mostafa 
et al. (1989). As a result, the differential version of 
the Eulerian stress model provides a good 

1.  Introduction

The subject of two or multiphase flow has become 
increasingly important in a wide variety of 
engineering systems for their optimum design and 
the safety of operations. However, that subject is 
not limited to modern industrial technology, and 
multiphase flow phenomena are present in a 
number of biological and natural systems that 
require a better understanding. As relevant 
applications of multiphase flow, we can cite, 
among others, power systems (boiling and 
pressurized water nuclear reactors), power plants 
with boilers and evaporators, geothermal energy 
plants, heat transfer systems (heat exchangers, 
evaporators, condensers, spray cooling towers, 
film cooling systems), process systems (fluidized 
beds, chemical reactors, stirred tank reactors, 
porous media), transport systems (air-lift pumps, 
pneumatic conveyors, ejectors), lubrication 
systems (two-phase flow lubrication, bearing 
cooling by cryogenics), environmental control 
(refrigerators, dust collectors, sewage treatment 
plants, air pollution control, life support systems 
for space applications), geo-meteorological 
phenomena (sedimentation, soil erosion, sand 
dune formations, river floodings, physics of the 
clouds) or biological systems (respiratory system, 
capillary transport, blood flow).

On the other hand, as the size of engineering 
systems becomes larger and the operating 
conditions are being pushed to new limits, the 
precise understanding of the physics governing 
these multiphase flow systems is paramount for 
safe and economically-sound operations. This 
means a shift of design methods from those 
exclusively based on static experimental 
correlations to the ones based on mathematical 
models that can predict dynamical behavior of 
systems such as transient responses and stabilities. 
The optimum design, the prediction of operational 
limits and, very often, the safe control of a great 
number of systems depend on the availability of 
realistic and accurate mathematical models of 
two-phase flow. However, such models are 
complex and not amenable to analytical solution; 
therefore, they must be solved numerically by 
properly implementing Computational Fluid 
Dynamics (CFD) simulation tools. The potential 
of CFD to address phenomena related with 

multiphase flow in process industries was 
highlighted in the Winter 2002 issue of The 
Bridge, a quaterly journal of the National 
Academy of Engineering (Davidson, 2002).

In this paper, our interest is focused on dispersed 
two-phase gas-particle dilute flows, which 
pervade the chemical,  pharmaceutical,  
agricultural and mining industries. In that context, 
the solid particles (discrete elements) are the 
dispersed phase and the gas is the continuous 
phase. Dilute flow is characterized by a volume 

-3
fraction occupied by the particles of less than 10 , 
which, in a cubic array, corresponds to an 
interparticle spacing of eight particle diameters. 
In such conditions, inter-particle collisions can be 
neglected (Crowe et al., 1998).

To describe the dynamics of the dispersed phase 
in a turbulent  two-phase f low, some 
continuous-phase properties are required, such as 
the mean fluid velocity and the root-mean-square 
fluctuating fluid velocities (i.e., the flow turbulent 
characteristics). These properties are obtained 
either from experimental work or some 
appropriate computational procedure for 
predicting the turbulent flow field. For this 
purpose, methods such as Direct Numerical 
Simulation (DNS) or Kinematic Simulation (KS) 
provide unique opportunities to study specific 
effects like particle trapping in eddies (Eaton & 
Fessler, 1994) but are limited to small Reynolds 
number flows (DNS) or do not incorporate all of 
the physics involved in the Navier-Stokes 
equations (KS). Large eddy simulations (LES) 
allows one to handle complex flows (Wang et al., 
1997) but the computational requirements are 
substantial, so these models are not used widely. 
The best quality / price ratio is, up to now, obtained 
by using the so-called Reynolds Averaged 
Navier-Stokes (RANS) equations, e.g., k-ε 
(or any or its variants) or Reynolds stress 
formulations. This kind of models consists of a set 
of partial differential equations expressing 
conservation laws for different time-averaged 
variables, e.g., continuity, momentum, turbulent 
kinetic energy, dissipation rate, etc. Moreover, 
these models have to be supplemented with 
several extra terms, the interaction terms, to 
account for the influence of the dispersed phase on 
the turbulence (the so-called two-way coupling).
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Fluctuating kinetic energy equation
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Here, V,  , υ are the ensemble-averaged 
dispersed-elements velocity, volume fraction, and 

fluctuating velocity with respect to V,  υ  υV.
d   is the density of the discrete elements and is 
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is the standard interaction term due to the 
aerodynamic drag (U represents the fluid mean j 
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velocity), the volumetric forces f   ( )g   j j

take into account the weight and the buoyancy. 
                           is the standard production term 

Walso found in single phase flow and I  is the 
 fluctuating work exchangedwith the fluid.

WIt is worth to remember the closure for I :

where

is the particle relaxation time defined as the rate of 
response of particle acceleration to the relative 
velocity between the particle and the carrier fluid.  

 is the Lagrangian time-scale of the fluid flow L 

turbulence defined in terms of the turbulent kinetic 
energy of the gas flow, k, and its dissipation rate, . 

In this work, these variables are known from 
previous continuous-phase computations. 

The performance of the closure given by 
Eqs. (7a-d) for axisymmetric jets laden with high 
inertia particles has been assessed by Laín & Aliod 

d(2000), who made a very accurate prediction of  k  
for a set of experiments corresponding to such a 
configuration. 

However, the model given by Eqs. (4)-(6) can only 
dbe solved for k ; therefore, it is unable to provide 

a n y  i n f o r m a t i o n  a b o u t  t h e  p a r t i c l e  
fluctuating-velocity anisotropy. To obtain some 
estimation of that anisotropy, the former model 
must be extended somehow. 

The transport equations that govern the particle 
velocity correlations         can be found in 
different works, for example, Simonin (1991). For 
dilute flows, by neglecting collisions between the 
discrete elements, the following expression can be 
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by particle velocity fluctuations,    is the 
production contribution (which does not need to 
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agreement for all availables quantities, such as the 
mean and fluctuating velocities for both phases, 
gas and particles. Moreover, the dispersed-phase 
equations for the momentum and fluctuating 
velocities of the PRS model are decomposed into 
their contributions (convection, diffusion, source, 
and interaction) which allows one to obtain a 
global picture of the momentum and fluctuating 
energy transfer in the jet.

2.  Lagrangian approach

In the Lagrangian framework, a single particle of 
the dispersed phase is observed on its way through 
the flow field by solving the equations of the 
particle motion and the particle position. In this 
paper, we deal with solid particles with high 
inertia; therefore, by performing an order of 
magnitude analysis of the relevant time scales of 
the flow system, a reduced form of the particle 
equation of motion can be obtained that considers 
only the drag and gravity / buoyancy forces. 
In the end, the following system of equations has 
to be solved:

The drag coefficient  C is given as follows:D   

In the above equations [Eqs. (1)-(3)] the 
superscript  d  is used to identify a single particle, 
  and x  are the components of the instantaneous i i

particle velocity and position, respectively, d  is p

the particle diameter,  ρ is the density and  g is the   i  

component of the acceleration of gravity. 
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as   where  is the dynamic                                                       

viscosity of the fluid. 

The instantaneous fuid velocity  along the i 

particle trajectory was obtained by applying the 
Langevin equation model (for details, see 
Sommerfeld et al., 1993).  

To obtain the relevant information about the 
underlying flow field, the continuous-phase 
equations have to be solved as well. Therefore, the 
time-averaged Navier-Stokes equations were 
solved in connection with an appropriate 
turbulence model. These equations include 
particle source terms (or interaction terms) to take 
the effect of two-way coupling into account. 
These source terms were calculated by using a 
modified version of the particle-source-in-cell  
(PSI-cell) approximation of Crowe et al. (1977). 
A detailed description of this procedure was given 
by Kohnen et al. (1994). 

3. Dispersed-phase Eulerian transport 
equations

In the context of isothermal dilute flows (Laín & 
Aliod, 2000), by using the dispersed-elements-
PDF-indicator function-ensemble conditioned 
average (Aliod & Dopazo, 1990; Zhang & 
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d
Here, V,  , υ are the ensemble-averaged 
dispersed-elements velocity, volume fraction, and 

fluctuating velocity with respect to V,  υ  υV.
d   is the density of the discrete elements and is 

  D d d p 
supposed to be constant. I    (UV ) /   j  j j

is the standard interaction term due to the 
aerodynamic drag (U represents the fluid mean j 

dV d d
velocity), the volumetric forces f   ( )g   j j

take into account the weight and the buoyancy. 
                           is the standard production term 

Walso found in single phase flow and I  is the 
 fluctuating work exchangedwith the fluid.

WIt is worth to remember the closure for I :

where

is the particle relaxation time defined as the rate of 
response of particle acceleration to the relative 
velocity between the particle and the carrier fluid.  

 is the Lagrangian time-scale of the fluid flow L 

turbulence defined in terms of the turbulent kinetic 
energy of the gas flow, k, and its dissipation rate, . 

In this work, these variables are known from 
previous continuous-phase computations. 

The performance of the closure given by 
Eqs. (7a-d) for axisymmetric jets laden with high 
inertia particles has been assessed by Laín & Aliod 

d(2000), who made a very accurate prediction of  k  
for a set of experiments corresponding to such a 
configuration. 

However, the model given by Eqs. (4)-(6) can only 
dbe solved for k ; therefore, it is unable to provide 

a n y  i n f o r m a t i o n  a b o u t  t h e  p a r t i c l e  
fluctuating-velocity anisotropy. To obtain some 
estimation of that anisotropy, the former model 
must be extended somehow. 

The transport equations that govern the particle 
velocity correlations         can be found in 
different works, for example, Simonin (1991). For 
dilute flows, by neglecting collisions between the 
discrete elements, the following expression can be 
written:

where             represents  the  transport  of
by particle velocity fluctuations,    is the 
production contribution (which does not need to 
be defined as a positive quantity):

and    is the exchanged work rate between the 
dispersed phase and the fluid, and is expressed as:
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agreement for all availables quantities, such as the 
mean and fluctuating velocities for both phases, 
gas and particles. Moreover, the dispersed-phase 
equations for the momentum and fluctuating 
velocities of the PRS model are decomposed into 
their contributions (convection, diffusion, source, 
and interaction) which allows one to obtain a 
global picture of the momentum and fluctuating 
energy transfer in the jet.

2.  Lagrangian approach

In the Lagrangian framework, a single particle of 
the dispersed phase is observed on its way through 
the flow field by solving the equations of the 
particle motion and the particle position. In this 
paper, we deal with solid particles with high 
inertia; therefore, by performing an order of 
magnitude analysis of the relevant time scales of 
the flow system, a reduced form of the particle 
equation of motion can be obtained that considers 
only the drag and gravity / buoyancy forces. 
In the end, the following system of equations has 
to be solved:

The drag coefficient  C is given as follows:D   

In the above equations [Eqs. (1)-(3)] the 
superscript  d  is used to identify a single particle, 
  and x  are the components of the instantaneous i i

particle velocity and position, respectively, d  is p

the particle diameter,  ρ is the density and  g is the   i  

component of the acceleration of gravity. 
The particle Reynolds number is defined 
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as   where  is the dynamic                                                       

viscosity of the fluid. 

The instantaneous fuid velocity  along the i 

particle trajectory was obtained by applying the 
Langevin equation model (for details, see 
Sommerfeld et al., 1993).  

To obtain the relevant information about the 
underlying flow field, the continuous-phase 
equations have to be solved as well. Therefore, the 
time-averaged Navier-Stokes equations were 
solved in connection with an appropriate 
turbulence model. These equations include 
particle source terms (or interaction terms) to take 
the effect of two-way coupling into account. 
These source terms were calculated by using a 
modified version of the particle-source-in-cell  
(PSI-cell) approximation of Crowe et al. (1977). 
A detailed description of this procedure was given 
by Kohnen et al. (1994). 

3. Dispersed-phase Eulerian transport 
equations

In the context of isothermal dilute flows (Laín & 
Aliod, 2000), by using the dispersed-elements-
PDF-indicator function-ensemble conditioned 
average (Aliod & Dopazo, 1990; Zhang & 
Prosperetti, 1994), the following equations for the 
dispersed phase (consisting in a population of 
solid particles of equal diameter d ) are initially p

considered:

Mass conservation equation:

Momentum conservation equation:
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with C  = 0.4. Eq. (15) can be regarded as a L

‘natural’ extension of Eq. (7). By collecting Eqs. 
(13), (15) and substituting them into Eq. (10),       
      can be expressed as:

Together with Eqs. (16) and (11), Eq. (13) is a 
system of three equations for the particle 
fluctuating velocity correlations (i = j) that can be 
solved once those expressions for the fluid stresses 

d and k are provided.

Figure 1 presents the results obtained from both 
the Euler-Lagrange approach (E-L) and the APS 
model as compared to the experimental 
measurements of Mostafa et al. (1989). In that 
figure, the particle fluctuating velocity 
correlations, in the axial direction (              ) and 
in the radial direction (            ), are shown as 
compared to the experiments of Mostafa et al. 
(1989) on a particle-laden round free jet and the 
output of the classical Euler-Lagrange approach 
(Sommerfeld et al., 1993) for two sections, 
X / D = 6.2, X / D = 12.45. X stands for the distance 
downstream of the nozzle and D for the diameter. 
It is noteworthy that the Euler-Lagrange approach 
provides acceptably accurate values for all fluid 
variables, including the Reynolds stresses and the 
mean velocities of the particles, but it considerably 
underpredicts their axial fluctuating component. 
This is a typical situation that also appears in the 
classical two-fluid model (Issa & Oliveira, 1998).

While the results for the transversal direction are 
similar in both calculation strategies (even the 
Euler-Lagrange method seems to work somewhat 
better), the situation is different for the streamwise 
component. In both cases, that component is 
underpredicted, particularly in the symmetry axis, 
but the APS-model version is noticeably closer to 
the experiments.

In spite of the fact that the performance of  the APS 
model is not very accurate, the improvements 
made are encouraging to expect that a simplified 
Particle Reynolds Stress (PRS) model may 
enhance the quality of the predictions even more. 
This task will be carried out in the next section.
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5.  Particle Reynolds Stress (PRS) model 

The proposed model is based on the set of Eqs. (8), 
(9) and (16). Also, as previously stated, for 
non-uniform, strongly anisotropic flows laden 
with high-inertia particles, the closure for the 
particle shear stresses, given by Eq. (11), will be 
assumed.

The term that represents the transport by particle 
velocity fluctuations in Eq. (8) is closed, for 
practical purposes, by using a Boussinesq 
approximation (Wang et al., 1997):

where an implicit summation in subscript k           
is now indicated.       stands for the turbulent 
Schmidt numbers and in our case we only need to 
consider the case i = j. The  values chosen for these 
numbers   are                      and
(where w is the azimuthal direction). The election 

d of          was suggested by the value used in the k
             equation (Laín & Aliod, 2000), whereas  for      

and       the simplest value of 1.0 was assigned 
because the performance of the PRS model does 
not depend appreciably on that value .
   
In summary, the proposed PRS model consists of 
the system of three equations [Eqs. (8) with i = j ], 
the definition of    given by Eq. (9) and the 
closures given by Eqs. (11), (16) and (17).

Comparisons with the experiments of Mostafa et 
al. (1989) are shown for the two transversal 
sections  X / D = 6.2,  X / D = 12.45. In Figure 2, the 
calculated profiles for the three particle 
fluctuating velocity correlations (and the kinetic 
energy calculated from them) are plotted versus 
the experimental data. It is remarkable that the 
anisotropy of particle fluctuating velocity 
correlations is well captured, in spite of the 
simplicity of the model, which only presents three 
extra equations with respect to the standard 
models.
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where u stands for the fluctuating velocity of the 
fluid with respect to the ensemble-averaged value  
           .

By following the theoretical work of Reeks (1993) 
and Zaichik (1997), the Boussinesq-Prandtl 
hypothesis is feasible for modeling the particle 
shear stresses, in the limit of large inertial particles 
in simple shear flows, as considered in this work.  
These stresses are decomposed into a 
homogeneous component, whose structure is the 
same as if the local carrier flow were 
homogeneous, and a deviatoric component that 
involves terms proportional to the mean shear of  
the dispersed and the carrier flows. However, for 
long particle response times, the deviatoric 
component dominates over the homogeneous 
contribution reaching a finite value of                 

            where   is the long-time particle diffusion 
dcoefficient in the transverse direction and  S   is 

the shear gradient of the dispersed phase. 
In addition, the particle diffusivity momentum 

d
coefficient,  , is said to be proportional to     in 

this limit. Therefore, in spite of the fact that the 
diffusivity momentum should be a tensor, in the 

d
limit stated,   can be written as a scalar quantity. 
In this context, the following expression for the 
particle shear stresses can be written:

with                             ; (x, r) denote the axial and 
transversal coordinates, respectively. The closure 
given by Eq.(11) will be assumed in the following 
to be valid in the cases considered in this work.

4.  Algebraic Particle Stress (APS) model 

As the simplest approximation, an algebraic 
model formulation for the particle normal stresses 
can be proposed by extending the ideas of the 
Algebraic Stress Model (ASM) developed by 
Rodi (1972) for single phase flow. The assumption 
is that the sum of convection and diffusion terms 

of the transport equations for particle velocity 
correlations,           is proportional to the sum of 
the convection and diffusion terms of the particle 

dturbulent kinetic energy  k  :   

where D d represents  the transport by particle k
dvelocity fluctuations of    k . Substitution of Eqs. (6) 

and (8) into Eq. (12), leads to the following 
approximate balance for the particle velocity 
correlations:

Here, the only non-closed terms appear in the fluid  
particle velocity correlation that is included in     
   [Eq. (10)]. Simonin (1991) has worked out 
several methods for handling this fluid-particle 
velocity correlations, deriving algebraic as well as 
differential equations for them. Unfortunately, the 
required CPU time grows rapidly as the number of 
equations increases. 

The approach proposed in this work is simpler. 
A relationship between the fluid-particle velocity 
correlation      and the fluid and particle 
fluctuating velocity correlations is assumed as 
follows:

where the tensor       is written as: 
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with C  = 0.4. Eq. (15) can be regarded as a L

‘natural’ extension of Eq. (7). By collecting Eqs. 
(13), (15) and substituting them into Eq. (10),       
      can be expressed as:

Together with Eqs. (16) and (11), Eq. (13) is a 
system of three equations for the particle 
fluctuating velocity correlations (i = j) that can be 
solved once those expressions for the fluid stresses 

d and k are provided.

Figure 1 presents the results obtained from both 
the Euler-Lagrange approach (E-L) and the APS 
model as compared to the experimental 
measurements of Mostafa et al. (1989). In that 
figure, the particle fluctuating velocity 
correlations, in the axial direction (              ) and 
in the radial direction (            ), are shown as 
compared to the experiments of Mostafa et al. 
(1989) on a particle-laden round free jet and the 
output of the classical Euler-Lagrange approach 
(Sommerfeld et al., 1993) for two sections, 
X / D = 6.2, X / D = 12.45. X stands for the distance 
downstream of the nozzle and D for the diameter. 
It is noteworthy that the Euler-Lagrange approach 
provides acceptably accurate values for all fluid 
variables, including the Reynolds stresses and the 
mean velocities of the particles, but it considerably 
underpredicts their axial fluctuating component. 
This is a typical situation that also appears in the 
classical two-fluid model (Issa & Oliveira, 1998).

While the results for the transversal direction are 
similar in both calculation strategies (even the 
Euler-Lagrange method seems to work somewhat 
better), the situation is different for the streamwise 
component. In both cases, that component is 
underpredicted, particularly in the symmetry axis, 
but the APS-model version is noticeably closer to 
the experiments.

In spite of the fact that the performance of  the APS 
model is not very accurate, the improvements 
made are encouraging to expect that a simplified 
Particle Reynolds Stress (PRS) model may 
enhance the quality of the predictions even more. 
This task will be carried out in the next section.

 d

xxu '2 
 d

rr 2

      

5.  Particle Reynolds Stress (PRS) model 

The proposed model is based on the set of Eqs. (8), 
(9) and (16). Also, as previously stated, for 
non-uniform, strongly anisotropic flows laden 
with high-inertia particles, the closure for the 
particle shear stresses, given by Eq. (11), will be 
assumed.

The term that represents the transport by particle 
velocity fluctuations in Eq. (8) is closed, for 
practical purposes, by using a Boussinesq 
approximation (Wang et al., 1997):

where an implicit summation in subscript k           
is now indicated.       stands for the turbulent 
Schmidt numbers and in our case we only need to 
consider the case i = j. The  values chosen for these 
numbers   are                      and
(where w is the azimuthal direction). The election 

d of          was suggested by the value used in the k
             equation (Laín & Aliod, 2000), whereas  for      

and       the simplest value of 1.0 was assigned 
because the performance of the PRS model does 
not depend appreciably on that value .
   
In summary, the proposed PRS model consists of 
the system of three equations [Eqs. (8) with i = j ], 
the definition of    given by Eq. (9) and the 
closures given by Eqs. (11), (16) and (17).

Comparisons with the experiments of Mostafa et 
al. (1989) are shown for the two transversal 
sections  X / D = 6.2,  X / D = 12.45. In Figure 2, the 
calculated profiles for the three particle 
fluctuating velocity correlations (and the kinetic 
energy calculated from them) are plotted versus 
the experimental data. It is remarkable that the 
anisotropy of particle fluctuating velocity 
correlations is well captured, in spite of the 
simplicity of the model, which only presents three 
extra equations with respect to the standard 
models.
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where u stands for the fluctuating velocity of the 
fluid with respect to the ensemble-averaged value  
           .

By following the theoretical work of Reeks (1993) 
and Zaichik (1997), the Boussinesq-Prandtl 
hypothesis is feasible for modeling the particle 
shear stresses, in the limit of large inertial particles 
in simple shear flows, as considered in this work.  
These stresses are decomposed into a 
homogeneous component, whose structure is the 
same as if the local carrier flow were 
homogeneous, and a deviatoric component that 
involves terms proportional to the mean shear of  
the dispersed and the carrier flows. However, for 
long particle response times, the deviatoric 
component dominates over the homogeneous 
contribution reaching a finite value of                 

            where   is the long-time particle diffusion 
dcoefficient in the transverse direction and  S   is 

the shear gradient of the dispersed phase. 
In addition, the particle diffusivity momentum 

d
coefficient,  , is said to be proportional to     in 

this limit. Therefore, in spite of the fact that the 
diffusivity momentum should be a tensor, in the 

d
limit stated,   can be written as a scalar quantity. 
In this context, the following expression for the 
particle shear stresses can be written:

with                             ; (x, r) denote the axial and 
transversal coordinates, respectively. The closure 
given by Eq.(11) will be assumed in the following 
to be valid in the cases considered in this work.

4.  Algebraic Particle Stress (APS) model 

As the simplest approximation, an algebraic 
model formulation for the particle normal stresses 
can be proposed by extending the ideas of the 
Algebraic Stress Model (ASM) developed by 
Rodi (1972) for single phase flow. The assumption 
is that the sum of convection and diffusion terms 

of the transport equations for particle velocity 
correlations,           is proportional to the sum of 
the convection and diffusion terms of the particle 

dturbulent kinetic energy  k  :   

where D d represents  the transport by particle k
dvelocity fluctuations of    k . Substitution of Eqs. (6) 

and (8) into Eq. (12), leads to the following 
approximate balance for the particle velocity 
correlations:

Here, the only non-closed terms appear in the fluid  
particle velocity correlation that is included in     
   [Eq. (10)]. Simonin (1991) has worked out 
several methods for handling this fluid-particle 
velocity correlations, deriving algebraic as well as 
differential equations for them. Unfortunately, the 
required CPU time grows rapidly as the number of 
equations increases. 

The approach proposed in this work is simpler. 
A relationship between the fluid-particle velocity 
correlation      and the fluid and particle 
fluctuating velocity correlations is assumed as 
follows:
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6. Analysis of the momentum and 
fluctuating energy transfer in the jet

To get some insight into the mechanisms that drive 
the dynamics of the particle-laden turbulent round 
jet, the dispersed-phase equations for the 
momentum [Eq. (5)] and particle fluctuating 
velocity correlations [Eq. (8)] in a representative 
axial section are decomposed into four global 
contributions:

convection = diffusion + source + interaction

Here, the sources have been divided into two 
categories. On the one hand, the so-called 
interaction contribution is considered in the terms 
denoted by     in the system of Eqs. (5) and (8) and, 
on the other hand, the rest of source terms, are 
grouped in the source contribution. The snapshots 
of these contributions, in a typical axial section, 
were lumped together and are shown in Figures 3 
and 4. As follows from those figures, the 
formulation of the interaction terms plays a 
fundamental role in the Eulerian-like 
dispersed-phase equations because those terms 
govern the existing equilibria in the equations. 

The following notation is adopted:

In the axial velocity equation shown on the left 
section of Fig. 3, the     term  (that represents the 
force exchanged between the phases) 
compensates the convective term, which 
determines the acceleration of the particle phase 
(the diffusion and source terms are negligible 
relative to the convective term). This fact 
expresses nothing else than Newton’s second law 
of motion, i.e., that the variation of the particle 
momentum is due to the forces that act on the 
particles. In this case, as the associated interaction 
term is negative, the particle phase delivers a 
linear momentum to the gas in the axial direction,  
decreasing the velocity of the particles.
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In the radial velocity equation (on the right section 
of Figure 3), beyond the zone near the symmetry 
axis, the most relevant contributions are the source 
and interaction terms, which are modulated by the 
convection term, the diffusion term being small 
enough relative to the other terms. The fact that the 
source terms equilibrate the interaction term 
implies that the expansion of the jet is performed 
at the expense of transferring linear momentum to 
the fluid. Moreover, the source term,                  , 
represents the force per unit volume responsible 
for the spreading of the jet (Lain & Aliod, 1999). 
This term comes from the potential energy per unit 
volume              , where      is the solid density and          
   is the strength. Therefore,   controls the 
spreading rate of the particles in the radial 
direction of the jet. This agrees with Reeks' 
conclusions in the limit of large particle inertia 
(Reeks, 1993). In consequence, the correct 
p r e d i c t i o n  o f  t h e  e v o l u t i o n  o f  t h e    
    profile depends on the accurate estimation of 
the particle radial fluctuating-velocity correlation.

Figure 4 shows the behavior of the different 
contributions (convection, diffusion, source and 
interaction) in the particle fluctuating correlation, 
Eq. (8). Here, as happened with the particle 
momentum  equations,  the  interaction  terms
are relevant contributions and should be taken into 
account. From the axial fluctuating-velocity 
correlation,     , it follows (Fig. 4, top left) that the 
particulate phase transfers energy to the fluid, 
because the associated interaction term is 
negative. The convection term is roughly 
compensated with    , while the diffusion and 
source (production) terms modulate this balance. 
Therefore, the change in         is mainly due to the 
interchange of fluctuating work between the 
phases.   is an intrinsic source of particle 
turbulence in the jet due to the interaction between 
the shear stresses and the radial component of the 
gradient of axial  velocity                     .  Part of 
this supplementary fluctuating energy is directly 
dissipated by the fluid and part of it is 
redistributed, via the continuous phase, to provide 
energy to the radial and azimuthal particle velocity 
fluctuations, as shown in Figure 4 (top right and 
bottom).  In the plot  for the particle 
radial fluctuating velocity correlation,    , the 
production contribution is negative, i.e., it acts as a 
sink, mainly due to the interaction between 
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Figure 1. Particle fluctuating velocity correlations for the experiments of Mostafa et al. (1989) in two transversal sections:  
versus the output of the APS  and Euler-Lagrange approach (E-L). 
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Figure 2. Particle fluctuating velocity correlations for the experiments of Mostafa et al. (1989) in two transversal sections: 
X / D = 6.2 (left) and  X / D = 12.45 (right) versus the output of the PRS model. Symbols defined as in Figure 1;  w  
corresponds to the azimuthal direction and                                       .
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the potential energy      and the radial 
component of the gradient of radial velocity,         .
 
This contribution is interpreted as the power per 
unit volume that is required to spread the solids 
across the jet. Moreover, the interaction 
contribution     is approximately compensated by 
the production term     , which means that the work 
performed   by   the   particle   radial   stress         
against the gradient of radial velocity (to spread 
the particles in the jet) is supplied by the exchange 
of energy between the phases. The balance 
between the different terms for the      is rather 
similar  to  what  happens  with  the      equation 
(Figure 4, bottom). It is remarkable that the shape 
of the interaction term is very similar to that 
obtained by Wang et al. (1997) in a channel flow 
using a more complete formulation and large eddy 
simulations.

7.   Conclusions

In this paper, an evaluation has been made on the 
performance of the Eulerian and Lagrangian 
modeling strategies for the dispersed phase in non-
uniform dispersed two-phase flow. In the Eulerian 
frame, two second-order models have been 
proposed: an algebraic model, in the spirit of 
single phase flow, and a Reynolds stress 
differential model, in which only the equations for 
the three particle fluctuating velocity 
correlations                    had to be solved, while 
the calculation of the shear stresses relied on a 
Boussinesq approximation which has been 
justified theoretically and numerically. In the 
Lagrangian frame a classical approach is used 
(Sommerfeld et al., 1993).

The models have been applied to the configuration 
of particle-laden turbulent round jet and compared 
with the experiments of Mostafa et al. (1989). 
In fact, the Lagrangian approach is not adequate 
enough to describe the particle fluctuating velocity 
anisotropy. This also happens with the Eulerian 
algebraic stress model, although the results for the 
anisotropy are closer to the measurements. In the 
end, the differential particle Reynolds stress model 
provided a good agreement between calculations 
and experiments for all available variables of both 
phases, including the particle fluctuating velocity 
anisotropy. 

The results obtained with the differential particle 
Reynolds stress model have been used to get a 
snapshot of the different contributions 
(convection, diffusion, source and interaction) that 
enter the differential equations for the dispersed 
phase. From an analysis of these terms, in a 
representative axial section, it has been possible to 
get a picture of the momentum and fluctuating 
energy transfer in the jet. It has been shown that the 
particle axial fluctuating velocity correlation    
component transfers fluctuating energy to the 
fluid; part of it increases the production and 
dissipation of turbulent energy in the continuous 
phase, and the rest is injected, via the fluid, in the 
transversal particle fluctuating velocity 
correlations         and        . Moreover, the accurate 
description of the spreading of particles across the 
jet requires the correct calculation of the particle 
radial fluctuating velocity        . 
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Figure 3. Snapshot of the balance of the different terms in the particle momentum equations (in a typical section) for 
the experiment of Mostafa et al. (1989): axial momentum (left) and radial momentum (right).

Figure 4. Snapshots of the terms in the equations for the fluctuating velocity correlations of the dispersed phase in the axial 
station  X / D = 12.45 for the experiments of Mostafa et al. (1989).
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