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Abstract

In many manufacturing sectors, the product life cycle is becoming increasingly shorter. The direct
application of standard forecasting and inventory control techniques in short life-cycle products
(SLCPs) is not effective because their demand is transitory, non-stationary, and highly variable.
In this paper, we develop an easy-to-implement heuristic method for the inventory control of SLCPs
during their sales season. The heuristic method comprises a single-shipment submodel at the beginning
of the season and a submodel that considers multiple shipments through the season. Both models work
under a Vendor Managed Inventory (VMI) environment within a one-warehouse
N-retailer supply chain, and attempt to minimize the total relevant cost of the system, which consists of
the cost of returns, shortage costs, and fixed shipping costs. The latter costs have been barely considered
in the literature for SLCPs. In the multiple-shipment submodel, we determine the shipment size by
adapting the well-known Economic Order Quantity (EOQ) model. The safety stock is determined by
means of the critical fractile of the newsvendor problem. Based on real sales data of a textbook
publishing company, we compare the behavior of the heuristic method with the current shipping
strategy of the firm. In all the test cases, the total relevant cost produced by the heuristic method was less
than that of the current policy control of the company.

Keywords: Short life-cycle products, Inventory management, Newsvendor problem, Vendor managed
inventory, Heuristics.
INGENIER{A INDUSTRIAL

Un método heuristico para el control de
inventarios de productos de corto ciclo de vida

Resumen

En diversos sectores manufactureros, el ciclo de vida de los productos es cada vez mas corto.
La aplicacion directa de técnicas convencionales de pronostico y control de inventarios a productos de
corto ciclo de vida (SLCPs) no es efectiva porque su demanda es transitoria, no estacionaria y altamente
variable. En este articulo, desarrollamos un método heuristico de facil implementacion para el control
de inventarios de SLCPs durante su temporada de ventas. El método heuristico comprende un
submodelo de un solo despacho al comienzo de la temporada de ventas y un submodelo que considera
multiples despachos a lo largo de dicha temporada. Ambos modelos trabajan bajo un ambiente de
inventario manejado por el proveedor (VMI) dentro de una cadena de abastecimiento con una bodega y
N detallistas, donde se busca minimizar el costo total relevante del sistema, compuesto por los costos de
devoluciones, los costos de faltantes y los costos fijos de despacho. Estos ultimos costos han sido
escasamente considerados en la literatura para productos de corto ciclo de vida. En el modelo de
multiples entregas, se determina el tamafio de envio mediante una adaptacion del conocido modelo de la
cantidad econdémica de pedido (EOQ). El inventario de seguridad es determinado mediante la razon
critica del modelo del vendedor de periddicos. Con base en datos reales de ventas de una empresa
productora de textos escolares, se compara el desempefio del método heuristico con la estrategia actual
de despachos dela firma. Entodos los casos de prueba, el costo total relevante del método heuristico fue
menor que el de laactual politica de control de la compaiiia.

Palabras clave: Productos de corto ciclo de vida, Gestion de inventarios, Problema del vendedor de
periodicos, Inventario manejado por el proveedor, Heuristicos.
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1. Introduction

1.1 Background

More demanding customer needs and
requirements, increasing competitive pressures,
and accelerated technological changes currently
urge companies to adopt innovation as a key factor
to ensure their sustainability. Commonly, four or
five product cycle stages are considered:
introduction, growth, maturity, saturation, and
decline. For many products, the maturity and
saturation stages last for a long time. For other
products, their full life cycle might last for less
than a year or even for a shorter period of time.
Kurawarwala & Matsuo (1996), Kapuscinski et al.
(2004), and Nair & Closs (2006) state that, at
present, it is common to find products whose
demand only occurs during a short period of time,
after which the products usually become obsolete
even if their intrinsic characteristics or quality
features do not change. Such products are known
as shortlife-cycle products (SLCPs).

Given the long manufacturing and distribution
lead times that SLCPs might have and their high
transportation and fixed production costs,
production orders and purchase decisions are
usually made prior to the sales season when
information may be very limited. When shortages
occur during the sales season, it is possible that no
inventory replenishments can be done. Therefore,
the retailer and the manufacturer usually hold
large inventories at the beginning of the season.
On the other hand, holding large inventories may
result in excessive costs of obsolescence because
SLCPs cannot be regularly sold in future seasons.
In some cases, when SLCPs are shipped to other
locations where they can still be sold, companies
must pay significant relocation costs. In some
manufacturing sectors, the combined shortage and
obsolescence costs exceed manufacturing costs
(Fisher & Raman, 1999; Nair & Closs, 2006), and
in many cases the products become obsolete only
after several time periods (Silver et al., 1998).
In these cases, it is possible to place more than one
order during the sales season.

Companies that used to produce products with

long life cycles, have nowadays to manage very
short life cycles and a large variety of products.
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Lee (2002) says that because SLCPs have
transient and highly erratic demand, their design,
manufacturing, physical distribution, and
inventory management are difficult to execute.
Some of the sectors that are most affected by the
short life cycle of their products are: computer
manufacturing, cell phones, garments, and the
publishing industry.

According to Benjaafar et al. (2005), in a
decentralized system with N identical and
independent locations, the amount of inventory
varies linearly with N, whereas, in a centralized
system, the amount of inventory is approximately
proportional to /N . Consequently, in a SLCP
system, centralized decisions and collaborative
strategies, inventory consolidation, and product
postponement can generate important benefits by
lessening the bullwhip effect and reducing
shortages, excess inventory, safety stock, and the
risk of obsolescence. Vendor Managed Inventory
(VMI) is a very good alternative to establish such
collaborative strategies because it attempts to
solve coordination problems by giving the
supplier the responsibility to manage the
replenishment process and decide when and how
much to ship to the customer (Kaipia et al., 2002).
VMI can reduce inventory levels and
simultaneously improve customer service. It is a
way to improve total channel profit, particularly
when there are disagreements in the inventory
systems of the retailer and the supplier, which is
usually the case in the publishing industry (Yao et
al.,2007; Dong & Xu, 2002).

1.2 Relevant literature review and problem
definition

As stated by Kurawarwala & Matsuo (1996), the
literature on demand forecasting and inventory
management does not adequately address topics
about SLCPs. Nair & Closs (2006) state that
traditional forecasting techniques may not be
useful because most of them require at least one
year of data. Even if these data were available,
they would not generate satisfactory forecasts
because some of the forecast technique
assumptions do not hold. In addition, forecasting
becomes more complex when price adjustments
and advertising campaigns are implemented
during the sales season.
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Fisher et al. (2000) state that sales during the first
part of the season are a good predictor of the total
sales of a new product. Empirical results suggest
that forecasts based on early sales are much more
accurate than subjective predictions (Fisher &
Raman, 1999). Rodriguez (2007) proposes a
forecasting method based on the linear regression
of cumulative demand through the sales season,
using data from the demands of products with
similar life cycle to estimate the regression
parameters.

When the length of the season is much shorter than
the replenishment time or when replenishment
costs are high, a widely-studied approach has been
to make a single shipment at the beginning of the
sales season for a quantity that optimally balances
the costs of understock and overstock. This
approach is the well-known newsvendor or
newsboy problem, which has had numerous
extensions (e.g., Chung & Flynn, 2001;
Matsuyama (2006); Chungetal., 2008).

Other researchers have considered multi-shipment
scenarios. Kurawarwala & Matsuo (1996) involve
a stochastic inventory model with finite horizon to
determine the optimal replenishments along the
life cycle. This model disregards fixed
transportation and order processing costs.
Zhu & Thonemann (2004) propose a heuristic to
determine near-optimal inventory policies for
SLCPs. Their model includes an ordering cost per
unit and the holding and shortage costs, but does
not consider fixed ordering costs either. Chen etal.
(2007) formulate a nonlinear mixed-integer
programming model to determine the optimal
number of replenishments over a finite planning
horizon. They assume a deterministic curve of
demand and do not consider shortage costs.

Few real SLCP cases have been reported in the
literature. For instance, Kapuscinski et al. (2004)
present a forecasting technique and a system for
controlling the inventory of components. The
system has been implemented at Dell Computer
Inc. and has helped to save at least 43 million
dollars of inventory cost of one component
employed in computer manufacturing. As Wagner
(2002) states, analysts have made many efforts to
develop effective inventory control methods that
are easy to apply. However, customers continue to

deal with empty shelves and excessive shortages
appear to be unavoidable. Consequently, and
given the complexity of a SLCP inventory control
system, we believe that it is necessary to develop
heuristic methods that can be easily applied to real
cases and that yield satisfactory results. We have
found that these methods outperform empirical
inventory control strategies typically found in
practice. Accordingly, in the present work, we
develop an easy-to-implement heuristic method to
control the retailer inventory of SLCPs under a
VMI environment within a supply chain with a
manufacturing plant, one warehouse, and
Nretailers. In contrast to the majority of previous
works, our model includes fixed ordering costs in
the decision process and is applied in a real case.
The heuristic has been divided into two parts.
First, based on the newsvendor model, we
consider a single shipment at the beginning of the
sales season. Second, we allow the system to have
two or more shipments during the sales season,
based on the forecast of the remnant demand. The
heuristic then selects the policy that most likely
produce the least total cost.

We focus on a real case of distributing textbooks
from one warchouse to 34 different retailers.
Currently, the organization does not have enough
capacity to produce during the sales season and
therefore, it must produce ahead of time. Our
results confirm that the developed heuristic
significantly improves current practices. The
heuristic provides the shipment plan through the
season and minimizes the amount shipped, the
shortages and excess inventory, and the total
relevant cost.

The rest of this paper is organized as follows.
Section 2 describes the inventory control heuristic.
In Section 3, we evaluate the behavior of the
heuristic based on real data from a book publishing
company, and discuss these results in Section 4.
Lastly, in Section 5 we present some conclusions.

2. Development of the heuristic method

2.1 Model assumptions

The development of the heuristic method is based
on the following assumptions:

39



Ingenieria y Competitividad, Volumen 11, No. 1, p. 37 - 55 (2009)

* We consider a supply chain with one warehouse,
and N retailers that share demand information and
make centralized decisions, so facilitating the
application of VMI concepts.

e Product demand is transient, stochastic, non-
stationary, and non-correlated with the level of
inventory at each retailer.

* The product cost, sale price, and replenishment
costs are known and stable along the sales season.

* Any unsatisfied demand is considered as a lost
sale.

* During the sales season, there are no product
shipments among retailers.

» After the sales season, each unsold unit has a
salvage value that is equal to a fraction of the unit
sale price to the retailer. The salvage value
includes the inventory holding cost during the
season at the point of sale. This cost is assumed to
be proportional to the number of units kept in
inventory but not to the time that the products are
maintained in stock. It is based on the assumption
that sales season lasts for a short time.

2.2 Thesingle-shipment submodel

We model the total demand during the sales season
as a triangular probability distribution because it is
a representation easily compatible with aggregate
forecasting systems for short life cycle products.
It also constitutes a simple representation of an

( a+\/<§%§)(c—a)(b—a)

unknown distribution that lies within certain
bounds (Nair & Closs, 2006). It is therefore
necessary, from pre-season information, to
estimate the minimum expected or pessimistic
demand a (the lower bound), the optimistic
demand c¢ (the upper bound), and the most likely
demand b (the mode).

By using the known critical fractile of the
newsvendor model (see, for instance, Chopra &
Meindl, 2004) and the inverse cumulative
distribution function of the demand W '(-), we
determine the optimal size of the shipment O * by
means of Egs. (1) and (2).

In Eq. (1), the unit cost of understock C, is equal to
the difference between the product cost v and the
unit salvage value s. Since Eq. (1) is valid for any
continuous nonnegative random variable, we can
apply it to the inverse cumulative function of the
triangular distribution, and obtain the optimal
shipment size Q* that maximizes the total
expected profit (see Appendix A).

Given that we are looking for the best solution for
the entire supply chain under a VMI environment,
the parameters of the model must be defined from
a global perspective, in order to avoid 'double
marginalization'. This expression means that each
of the supply chain parties perceives a different
portion of the supply chain profit margin and thus
that party makes its own decisions, reducing the
total profit of the supply chain as a whole. To avoid
double marginalization, therefore, one should
consider p as the unit sale price to the final
customer, v as the total unit variable cost paid by

e = ) 0

p—v b—a
0=(5=)< (=)
p—s c—a
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the supply chain to place the product in the point
of sale (including the variable transportation
cost), and s as the net unit salvage value of the
product after discounting the inventory holding
cost during the season as well as the return and
any product recovery costs. O* will then be the
optimal shipment size for the entire supply chain.

Although the newsvendor model attempts to
optimize order size, it does not explicitly
determine whether it is convenient to actually
ship the products. To overcome this shortcoming,
before shipping the products, it is reasonable to
verify whether the net profit remains positive
after considering the fixed replenishment cost 4,,
given in § / shipment. To be precise, the system
will only ship the products if, for any shipment
size O, the expected value of the profit is greater
than zero, that is:

E(U|Q)>0 4)

We calculate this expected profit by using Eq. (3)
(see Appendix B).

2.3 The multiple-shipment submodel

We now develop a submodel that operates under a
VMI approach where the supplier knows the
stock level at each retailer during the sales
season. At the beginning of the sales season, we
have a forecast of the minimum expected demand
a by point of sale. As in the single-shipment
submodel, it is necessary to check whether the
expected profit of the first shipment compensates
the fixed shipping cost. If the first shipment size
is equal to the expected minimum demand a, then
the condition that must be satisfied is:

alp—v) = 4 )

If this constraint does not hold, then the
shipment size should not be equal to « ; in
that case, we should apply the single-
shipment submodel described in the
previous section.

After making the first shipment, we should
determine at each time period whether it is
necessary to replenish. Under the multiple-
shipment scenario, it is not easy to determine
the expected profit of a specific shipment
because, except for the last shipment of the
sales season, any overstock at the end of a
period cannot be considered as a product
return. Consequently, instead of determining
the economic feasibility of making each
shipment, its size is calculated by using the
Economic Order Quantity (EOQ) model.
At each time period, the shipment size Q is
defined by the interval:

Max(Qa,Q5) < Q < Q¢ (6)

where Q is the amount (in units) to ship if
shipping is feasible, Q, is the forecast of the
amount (in units) required to satisfy the
expected demand of the period plus the
corresponding safety stock, Q, is the
economic order quantity (in units), and Q.
is the forecast of the amount (in units)
required to satisfy the remaining expected
demand of the sales season plus the
corresponding safety stock.

We will consider the possibility for

replenishment whenever Q, > 0. We
calculate Q, based on the equation:

Qa= ZXjyrer + kGjrper — 1 (7

)
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where [ is the inventory level (in units) at the
retailer at the end of period j , k is the safety
inventory factor for the period, L is the
replenishment lead time (in time units), R is the
review interval (in units), R = 1 ,X,,,, is the
forecast demand (in units) from period j + 1 to
period j+R+L,and 6,,,, isthe estimation of the
standard deviation (in units) of the forecast error
demand from period j+ 1 to period j + R + L, to
calculate the corresponding safety stock.

As stated by Kapuscinski et al. (2004), the safety
factor k can be determined by using the critical
fractile of the newsvendor model:

k=0 (L) ®)

where @ '(+) is the inverse cumulative standard
normal distribution and C,’ is the holding cost of
an unsold unit between consecutive periods, given
in § / (unit - period). Since any unsold unit in a
period may be sold in the next period, we assume
that

NC,'=C, ©)

where N is the total number of periods into which
the sales season has been divided. Since NC,’
stands for the holding cost of a unit for the rest of
the sales season, this expression is equivalent to
the holding cost that the standard EOQ model
contains. So, from Eq. (9) and the known EOQ
expression, we obtain:

2XA4, (10)
Cg

Qg =

where X is the forecast (in units) of the total
demand of the season.

In addition, it is necessary to verify that Q, plus
the stock at the point of sale do not exceed the
estimated amount to satisfy the demand of the
remainder of the season and the corresponding
safety stock. To accomplish this, we calculate the
following quantity:

Qc= Xy +kyoy—1; (11)
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where k, is the safety inventory factor for the
remainder of the season, determined by means of
Eq.(8) by using C, instead of C,', x, is the
forecast demand (in units) over the rest of the
season, and G, is the standard deviation (in units)
of the forecast errors of the remaining demand
over the rest of the season, used to calculate the
corresponding safety stock.

It is important to note that the economic order
quantity Q, may be slightly less than the amount
necessary to satisfy the remnant demand of the
season, Q.. For instance, suppose that the required
amount to satisfy next week's demand forecast
plus the safety stock is equal to 20 units, that the
EOQ is 91 units, and that the expected total
demand including safety stock for the rest of the
season is 98 units. If we decided to ship an EOQ
of 91 units, then it would be likely that a possible
upcoming shipment to satisfy the remaining
demand would not be profitable.

However, since we know that the EOQ model is
not very sensitive to lot size, we may define a
range, i.e., from 90 % to 110 % of the optimum Q,,
to adjust the shipment size in order to reduce the
risk of shortages in the last periods of the season.
Specifically, in our heuristic, whenever
1.1 90, > Q,., we set the shipment size equal to Q...
If we ship this quantity, we can assume that it will
not be necessary to make an additional shipment,
unless an unexpected increase in demand occurs
by the end of the season. Therefore, the expected
understock and overstock of the shipment will
then be the expected understock and overstock of
the rest of the season. Accordingly, we can
compare the expected profit of the shipment with
the expected profit when nothing is shipped.

Similarly, the expected profit of the last shipment
of the season should be calculated to determine
whether such a shipment is profitable. We assume
a normal distribution of the forecast errors of the
demand through the end of the season. So, to
calculate the expected profit U as a function of
the necessary inventory 7 to fulfill the demand of
the remainder of the season, we used Eq. (12) (see
Appendix C).
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A T -3y . Zy
E(U|T)=[xN_UNGz(—A )]P"‘O'NGz( =
On 0,

where G,(°) isthe unitnormal loss function, and:

If when the shipment is not sent

I+ 0Q; when the shipment is sent,

(13)

where Q, is the amount (in units) to ship in period ,
if shipping is fleasible.

To develop the heuristic for the multiple-shipment
case, we need to define some additional variables:
Fal is the variable to accumulate shortages (in
units), /, is the initial inventory (in units) at the
point of sale, j is the period counter, M is the
shipment counter, Q, is the size (in units) of the
first shipment, X is the variable to accumulate
demand (in units), and x; is the observed demand
(inunits) in period ;.

Figure 1 shows the complete heuristic method. It
is important to note that, according to our
experiments, we have found that by defining the
first shipment Q, equal to:

24,Q
Cg

Qy=a+

(14)

we obtain a total cost lower than the cost
corresponding to O, = a. The rationale for this
expression is the following. Since a is the
minimum expected demand, it should be the
minimum feasible initial shipment. However, this
value should be adjusted by considering the
optimal shipment O* and the associated fixed cost
A,, incorporating the triangular probability
distribution of demand and the relationship
between shortages and overstock. As shown in
Eq. (14), we do this by adding a quantity derived
from an adaptation of the EOQ model.

Another interesting result that we found is that, for
all the cases we tested, the ratio O,/ O* is an

)s—vT—AO (12)

N

indicator of whether the single-shipment
submodel or the multiple-shipment submodel will
produce the least total costs. This has been
implemented in the heuristic by defining a
threshold P that can be specified based on
empirical results. Inany particular case, however,
the heuristic can be run for both submodels with
preliminary data and then the user can estimate the
critical value P  that produces the best
performance of the heuristic.

It is well known that the EOQ model is not highly
sensitive to variations in the lot size. Therefore,
we can establish the following empirical rule.
Whenever Q,(1 + a) is greater or equal than Q*,
then itis better to send a single shipment of optimal
size Q*. Therefore, the critical value P can be
calculated as

P=0/0%*=0,/[0,/(1=a)]=1/(1-a)
(15)

3. Application of the heuristic method
3.1 Data

The current policy of the company is to make a
single shipment at the beginning of the season,
based on a simple empirical rule, i.e., the shipment
amount is 125 % of'the total expected demand.

To compare the behavior of the heuristic method
with the inventory policies of the company, we
used the data shown in Table 1. These data
correspond to the sales of a SLCP in 34 retailers
during the 2006 season, which lasted for 12 weeks
approximately. Figure 2 illustrates the behavior of
the sales at six randomly selected retailers. These
data are representative because they reflect
different life cycle patterns of products with
different sales volume over the season. We used
sales instead of demand data because the latter are
extremely difficult to obtain from self-service
retailers.
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End |«

Figure 1. Flow diagram of the heuristic method.
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Figure 1. (continued)
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Table 1. Weekly sales(in units) in 34 retailers during the 2006 season.

WEEK
Retailer 1 2 3 4 5 6 7 8 9 10 11 12 TOTAL
1 3 21 51 70 76 28 33 9 7 4 0 0 302
2 3 15 54 61 67 37 21 13 1 1 1 2 276
3 1 24 45 63 44 33 23 14 3 32 1 256
4 1 2 52 54 61 17 23 12 2 7 3 0 254
5 4 20 37 59 37 23 29 18 13 8 4 1 253
6 0 26 66 43 46 23 35 8 3 0 0 0 250
7 4 21 27 73 59 24 18 13 4 2 2 2 249
§ 2 28 41 72 59 24 3 5 2 1 o 1 238
9 7 45 18 19 68 31 14 15 3 8 3 0 231
10 7 52 62 47 31 22 5 3 3 0 0 0 232
mn 1 19 33 33 40 29 34 2 6 1 2 1 226
12 3 22 40 55 42 20 18 11 6 5 2 0 224
13 2 24 38 71 52 15 5011 1 1 2 0 222
14 2 15 43 9 59 12 16 7 5 1 0 2 221
15 2 27 34 38 51 26 21 3 6 2 5 3 218
16 2 37 29 27 4 25 29 6 11 7 1 1 219
17 0 10 17 31 19 4 28 64 35 8 0 2 218
18 5 30 63 7 23 3 1 6 5 0 1 0 214
19 1 18 44 53 57 713 3 1 4 2 1 204
20 3 27 38 50 38 19 16 5 3 0 o0 2 201
2 7 2 35 42 53 18 14 6 4 0 0 0 201
2 0 23 37 60 39 17 17 3 2 0 0 1 199
23 5 25 47 69 10 7 18 9 2 12 1 196
24 1 18 38 41 47 20 15 5 4 2 0 0 191
%5 1 17 29 50 41 18 16 8 3 32 1 189
26 0 0 0 0 64 62 25 21 11 4 2 0 189
27 3 30 15 11 45 31 23 16 5 7 3 0 189
26 2 19 4] 51 37 13 12 6 3 4 1 0 189
29 3 20 27 46 37 14 15 10 3 2 4 0 181
30 2 24 48 42 2311 9 4 3 2 1 1 170
31 0 6 12 13 23 5 2 49 22 4 1 0 161
32 0 16 26 27 41 18 15 8 8 2 1 0 162
33 310 23 11 33 13 2 16 9 6 7 1 158
4 0o 3 6 18 10 10 11 49 40 7 0 0 154
TOTAL g9 736 1216 1,541 1476 679 627 458 239 107 54 24
&0
70
&0
e 50
8
5 a0
8
% 30
il
10
L]

Time (weeks)

-l Retailer | @ Rctailer2 —& Retailer3 - Retailerd - Retailer5 =/ Retailer6

Figure 2. Weekly sales in six randomly selected retailers.
Note: the continuous lines facilitate the figure interpretation and do not represent continuous functions.
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X = PBo+ BuXj+ PoXj—1; for m=N,j+1; where j = 2,3,..,N—1

3.2 Model parameters

A common practice of system and market
analysts and demand planners is the direct
parameter estimation, commonly based on
information from other SLCPs because these
products are almost always new and their demand
information is very limited. In order to emulate
the forecasting system of the company, we
applied the STATFIT® software to obtain
estimations of the pessimistic, optimistic, and
most likely demands from the data in Table 1.
Our results yielded o = 143 units, » = 189 units,
and ¢ = 311 units. In addition, we used the
following parameters: p = 45 $ / unit,
s=10$/unit, 4,=208$ / shipment, L =0, and
R = 1 week. Implementing changes in these
values is straightforward.

To forecast weekly demands and the total demand
of the season at each retailer, as required by the
multiple-shipment model, we applied a double-
linear regression model of cumulative demands
of 50 products with similar life cycle for the 2005
season. Eq. (16) was applied for that purpose.

(16)

where N is the number of periods of the season,
X is the cumulative sales up to period j, X is the
forecast of cumulative demand up to period m, f,
is the estimator of the independent term in the
double-linear regression model, p, is the
estimator of the coefficient of cumulative demand
up to period j in the double-linear regression
model, f, is the estimator of the coefficient of

cumulative demand up to period j—1 in the
double-linear regression model.

Eq. (16) indicates that the regression model must
be applied for m =N and for m =j + I, because
it is necessary to estimate the cumulative demand
from period j to the end of the sales season and
the demand of the next period.

This process is to be carried out from period j = 2
to periodj = N— 1. InTable 2, we show the value
of the estimators and the typical regression errors
that we obtained. The typical regression errors
were used in the multiple-shipment model as
estimators of the typical forecast errors.

3.3 Computational results
We applied the heuristic method to the data of the

34 retailers shown in Table 1, and randomly
selected six retailers to present our results.

Table 2. Parameters of the regression model based on sales of products with similar life cycle.

Regression of sales for the whole season

Regression of sales for the next period

Typical Parameters Typical Parameters
regression regression
€rror Bo B B2 €Iror Bo B B>
Week (units) (units )
1 124.57 193.13 6.15 14.11 19.84 2.52
2 83.45 6198 -10.51 6.61 15.36 -3.95 0.28 2.34
3 80.33 62.81 2.79 1.59 10.47 11.26 0.61 1.26
4 52.62 —4.45 -5.80 5.68 16.73 =536 -2.21 2.88
5 20.95 8.13 -2.08 2.76 11.65 542 -1.10 1.98
6 8.52 —-1.68 -0.89 1.82 5.74 -0.54 -0.46 1.44
7 4.77 -0.78 -0.69 1.70 3.64 -1.76  -0.51 1.52
8 2.33 1.40 -0.27 1.27 1.49 051  -0.19 1.19
9 1.55 0.64 —-0.28 1.28 0.93 053  -0.12 1.11
10 1.09 —-0.04 -0.26 1.26 0.93 -0.20 -0.23 1.23
11 0.46 0.19 —-0.07 1.07 0.46 0.19  -0.07 1.07
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Figure 3 illustrates the behavior of the inventory
level at each selected retailer and Figure 4 shows
the inventory levels when we forced the selected
retailers to have a single shipment of optimal size
during the season. From the two figures, it is clear
that, when we applied the heuristic, the inventory
level at the six chosen retailers, for most periods,
was significantly less than that for the single-
shipment approach. This fact has a positive effect
on the total relevant cost, the level of returns, and
the level of shortages, as will be noted below.

In addition, Figure 5 exhibits the distribution of
shipments through the sales season for the six
selected retailers after applying the heuristic. Itis
important to note that the shipments were
distributed through the season in all cases. We did
not observe a constant pattern of shipments for
different retailers; this behavior suggests that the
management of the model and its specific
application to each retailer depend on the retailer,
according to its particular demand through the
season.

Table 3 shows the expected total relevant cost and
the expected returns and shortages estimated for
the current policy of the company, and contrasts
them with those obtained from the application of

Inventory (units)
cRxzsBEEEEEENZE

the single-shipment submodel and of the
heuristic to the shipment planning at the 34
retailers. The heuristic achieved a total relevant
cost that is 52.7 % less than that of the current
system and 36.1 % less than the cost obtained by
applying the single-shipment submodel. These
cost decreases are mainly caused by the decrease
in returns yielded by the heuristic (63.3 % with
respect to the current situation and 26.5 %
regarding the single-shipment model).

It is important to note that the current policy
reaches the least percentage of shortages with
respect to the total amount shipped (0.51 %), but
at the highest total relevant cost, total amount
shipped, and returns. Under the single-shipment
scenario, the shortage percentage is 2.6 %,
whereas the percentage reached by the heuristic is
0.59 %, which is a satisfactory result.

4. Discussion

In Table 3, we illustrated the advantages of
applying the designed heuristic for the inventory
control of SLCPs. Now, we analyze the
sensitivity of these results caused by different
fluctuations in product price, salvage value, and
fixed shipping costs.

Time (weeks)

-l Retailer |

@ Retailer2 - Retailer3 =+ Retailer4 = Retailer5 =/ Retailer6

Figure 3. Inventory level at six retailers when applying the heuristic method.
Note: the continuous lines facilitate the figure interpretation and do not represent continuous functions.
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Figure 4. Inventory level at six retailers when applying the single-shipment submodel.
Note: the continuous lines facilitate the figure interpretation and do not represent continuous functions.

Retailers

@ Retailer 1 @ Retailer 2 m Retailer 3
& Retailer 4 Retailer 5 ¥ Retailer 6

Figure 5. Size of the multiple shipments to six retailers through the sales season.
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Table 3. Comparison between the heuristic method application, the current situation,

and the single-shipment scenario.

Total Total
. amount Returns Shortages
Scenario relevant cost . . .
) shipped (units) (units)
(units)
Current situation 20,360 9,044 1,853 46
A single shipment of optimal
size 15,080 7,956 925 206
Applying the heuristic method 9,630 7,841 680 46

The results are shown in Table 4, where the
highlighted cells represent the least total cost for
each combination of parameters. Itis important to
note that, in this case, by defining a threshold
value P =0.87 (representing an o, value of 0.15),
the heuristics determined whether the single-
shipment submodel or the multiple-shipment
submodel would produce the best results. This
means that even if the company were to merely
apply the newsvendor model to optimize a single
shipment at the beginning of the season, the
heuristic would produce at least equal or, for most
cases, better results. Additionally, from Table 4 it
is clear that the fixed shipping cost A, may have a
significant impact on the best shipment approach
and on the minimum total relevant cost.

Table 5 summarizes the response of the heuristic
to extreme changes in the costs of overstock and
understock. In this analysis, the sale price p has
been kept constant. The changes in the costs of
overstock and understock were obtained by
varying the salvage value s or the unit variable cost
v. The blank spaces in the table correspond to
infeasible combinations of p, v, and s, since the
latter would take on negative values.

As expected, when the costs of overstock or
understock are negligible, the best is to apply the
single-shipment approach. In this case, the critical
value P = (.87 is not a good predictor of the best
submodel. Therefore, although it is not easy to
find these cases in practice, if they occur, the
single-shipment approach is highly
recommended.
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5. Conclusions

In this paper, we develop a heuristic method for
the inventory control of products with a short life
cycle in a one-warehouse N-retailer supply chain
under a VMI environment. The heuristic
combines single and multiple shipment
approaches for the sales season. The developed
models search for the best profit for the entire
supply chain rather than for the particular interest
of'some of the links of the chain.

In the literature, we could not identify an
inventory management model for SLCPs that
considers fixed shipping costs under a multiple-
shipment scenario. However, taking the fixed
shipping cost into account is important as is
shown in this work. The model exhibits a good
behavior when the cost of shortages and returns
are not negligible, which is the case in most real
cases.

The heuristic provides the shipment plan through
the season, automating the decisions of ' when to
ship'and'in what quantities'. Moreover, it allows
a better inventory allocation through the supply
chain, thus reducing total system inventory and
the risk of obsolescence. By applying the
heuristic in a textbook publishing company with
34 retailers, we could significantly reduce the
total relevant cost, the amount shipped, the
shortages and the excess inventory, which is
precisely one of the most complex problems of
the inventory control of SLCPs. Implementing
the heuristic on electronic sheets is relatively
simple, which can be very useful for the inventory
management of many SLCPs.
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Table 4. Response of total relevant cost ($) for the optimal single shipment and for the heuristic method
to variations in price p, salvage value s, and fixed shipping cost A,.

14 s 0 Scenario Fixed shipping cost 4, ($)
G G W 0 30 60 90 120 150
Singleshipment 11,335 12,355 13,375 14,395 15415 16,435
Heuristic 7,985 8,975 12,445 14,395 15,415 16,435
15 266 Oy (units) 143 199 223 241 256 269
65 Qo /Q* 0.538 0.748 0.838 0906 0962 1.011
Single-shipment 23,355 24,375 25,395 26,415 27,435 28,455
5 239 Heuristic 14,115 14,970 21,030 23,145 27,060 28,455
Qo (units) 143 174 187 197 205 212
O /0 : 0.598 0.728 0.782 0.824 0.858  0.887
Single-shipment 9,105 10,125 11,145 12,165 13,185 14,205
|5 ps3 Heuristic 5965 8,165 11,145 12,165 13,185 14,205
Oy (units) 143 198 221 238 253 266
45 QO/Q* 0.565 0.783 0.874 0.941 1.000  1.051
Single-shipment 17,775 18,795 19,815 20,835 21,855 22,875
s gy Heuristic 11,060 13,510 18,175 20,835 21,855 22,875
Oy (units) 143 173 185 195 203 210
Qo /Q* 0.641 0.776 0.830 0.874 0910 0.942
Single-shipment 4745 5,765 6,785 7,805 8,825 9,845
\s 5o Heuristic 2920 5,765 6,785 7,805 8,825 9,845
Qo (units) 143 193 214 230 243 255
55 0,10 0.681 0919 1.019 1.095 1.157 1214
Singleshipment 7,115 8,135 9,155 10,175 11,195 12215
s gy Heuristic 5615 8,135 9,155 10,175 11,195 12215
Qo (units) 143 170 182 190 198 204
Qo /Q* 0.765 0909 0.973 1.016 1.059 1.091

Table 5. Response of total relevant cost ($) and Q,/ Q* ratio for a single shipment and for multiple
shipments to variations in the costs of overstock ( C,) and understock ( C).

Cost of Cost of understock Cr ($)
overstock Scenario
Ce (%) 1 15 30 44
Single-shipment 1,629 3,241 3,660 3,843
1 Multiple-shipment 2,384 3,527 3,632 3,814

00/0° 0.829 0.633 0.611 0.600
Single-shipment 2,707 14915 20,150

15 Multiple-shipment 4,592 12,895 12,690
00/0" 1.055 0.829 0.763
Single-shipment 2,697 19,340

30 Multiple-shipment 6,826 17,245
00/0" 1.094 0.897
Single-shipment 2,703

44 Multiple-shipment 8,644

00/0" 1.115
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6. Appendices
6.1 Appendix A

The probability density function of the triangular
distribution (a <b<c)1s:

2(x—a)

fl(x)=—(c_a)(b_a) ,asx<b
fl) = 2 -
c—Xx
fz(x)=—(c_a)(c_b) »b<x<c
(AD)
Since

Px<X) = F(x) = f FG)dx (A2)
0

the cumulative distribution function is given by:

| @  asx<b
Fay =1
b x
j fi(x)dx+J f(x)dx | bsx<c
a b
(A3)

When solving the integrals in Eq. (A3), including
the intervals where the density function is not
defined, we obtain:

0 R a<x
(x — a)?
—(c—a)(b—a) , a<x<b
F(x) =4
1_& b<x<c
(c—a)(c—Db) ’ -
\ 1 , x>c
(A4)

This result may be used to get the value of x from a
given cumulative probability R such that

R=P(X =x). Findingx, we finally get
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a++R(c—a)(b—a) , 05R<IC]:
FY(R) =
b—a
c-JA-R-ac-b , ——<Rs1
(A5)

6.2 Appendix B

Consider the triangular probability density
function described in Appendix A above. To
determine the expected returns and the expected
shortages, two cases must be taken into account:

6.2.1 CaseQ<b

Since Q is less than the most likely value of
demand, the expected returns are given by:

Q
E(Q—x) = f (@ - D (0)dx
_” (B1)

By substituting the function on this interval, we
get:

Q 2(x — a)
E(QQ—-x) = fa @ —x)mdx
(B2)
which is equivalent to:
_ -
EQ-x) = 3(c—a)(b—a)
(B3)

To determine the expected value of shortages, we
may consider:

o Q @
f (x—Q)f(x)dx = f (x—Q)f(x) dx + f (x—Q@)f(x) dx
—0 —o0 Q

(B4)
Now,

» » Q
f (- Q)f () dx = f (- Q)f () dx + f © - 0f @) dx

Q -0 -
(B5)
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For the triangular distribution

(a+b+c)

| c-orea=EE

(B6)

and from Egs. (B1) and (B3), we get to the final
result:
(a+b+c¢) Q—a)3

3 3(c—a)(b—a)

E(x- Q) =

(B7)
6.2.2 CaseQ =b

Here, we follow a similar procedure as in the
previous case, that is

E(x— Q) = f (x - Q)f (Wdx
Q

(B8)
By substitution, we get:
2(c—x)
E(x - Q) —j (X—Q)md
(B9)
That s, the expected shortages are:
T P Gl
" 3(c—b)(c—a) (B10)

Now, following a similar procedure, the expected
returns will then be:

(c—Q)3 (a+b+c0)
3(c—b)(c—a)+ B 3

(B11)

E(Q - x) =

The expected profit can be calculated as the sum of
the revenues from the units we expect to sell, plus
the revenue from the units returned at the end of
the season, minus the cost of the purchased units,
minus the fixed shipping cost. This is equivalent
to:

E(U) = [E(x) —E(x — Q)]lp + E(Q —x)s —vQ — A,

(B12)

By substituting the above expressions for E(x — Q)
and E (O —x) in Egs. (B7) and (B11), respectively,
into Eq. (B12), the expected profit (given the
shipment size () is given by the following
equation, which corresponds to Eq. (4):

p-5)Q-a)?
Q(P—V)—m—Ao » Q<b
EUIQ) = ) ) s i
at+tb+c)p-s5) (@P-s)(c—Q)
3 _3(c—b)(c—a)+Q(s_v)_A°
ey
(B13)

6.3 Appendix C

Given a random demand x with normal
probability distribution, with standard deviation ¢
and expected value x for a given level of
available inventory / , the expected number of
shortages is given by (Thomopoulos, 1980):

E&—D=j (= DF®) = 06, (k)
1

(CD

where f (¢) is the normal probability density
function, G. (¢ ) is the unit normal loss function,
and kis the standard normal variable, such that

(C2)
Similarly, the expected number of returns is given
by:

E(l —x) = aG,(—k) (C3)

The expected profit, given an available inventory /
can be calculated as follows:

EU|ID=Ex)—Ex—-Dlp+E(U—-x)s—vI—A4,

(C4)
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where p, s, v, and 4,have been already defined in
Section 2.3.

By substituting Egs. (C1)-(C3) into Eq. (C4) be
obtain Eq.(C5) which matches Eq.(12) with its
corresponding variables:

s t-r (o

)s —vl -4,
(C5)
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