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Abstract

The problem of selection and management of projects is common in the planning process of private and public
companies and is required to manage and allocate scarce resources usually between alternatives that differ in
technical, operational, and financial aspects, in addition to the level of risk. This article presents an application of a
portfolio optimization problem of projects under uncertainty and budget constraints. Firstly, it addresses the problem
using as the objective function the maximization of the Expected Net Present Value (ENPV) of the portfolio of
projects. Secondly, the objective function is the maximization of two indicators of risk associated with the portfolio
ENPV: Maximizing the Net Present Value (NPV) of the portfolio for a certain level of centainty and maximizing the
probability of obtaining a feasible portfolio in economic terms. The methodology was developed in the framework of
a research project funded by an utility company. To illustrate the proposed methodology, a suitable example, which
assumes that the company can partially allocate resources to several projects from a pool of independent investment
alternatives was used. New developments in the area of stochastic optimization can help to improve the quality of
decisions to allocate limited financial resources, through the use of performance indicators related directly to the
company's strategy. The results show the optimal allocation of financial resources to each project taking into account
the uncertainty associated with different input variables, which are modeled using empirical probability distributions
defined a priori by the analyst.

Palabras Claves: Investment analysis, Capital budgeting, Project selection, Linear programming, Monte Carlo
simulation.

INGENIERIA INDUSTRIAL

Seleccion optima de proyectos economicos bajo incertidumbre:

Ilustracion de una compaiia de servicios publicos
Resumen

El problema de la seleccion y ordenamiento de proyectos es comun en los procesos de planeacion de empresas
privadas y publicas que tienen la obligacion de administrar y asignar recursos usualmente escasos, entre alternativas
que difieren en aspectos técnicos, operacionales, financieros, ademas del nivel de riesgo. Este articulo presenta una
aplicacion del problema de optimizacion de portafolios de proyectos en condiciones de incertidumbre y restriccion
presupuestal. En primer lugar, se aborda el problema utilizando como funcién objetivo la maximizacién del valor
presente neto esperado (ENPV) del portafolio de proyectos y en segunda instancia se propone como funcién objetivo
la maximizacion de dos indicadores de riesgo asociados al ENPV del portafolio: Maximizar el NPV del portafolio
para un cierto nivel de confianza y maximizar la probabilidad de obtener un portafolio factible en términos
economicos. La metodologia se desarrollé en el marco de un proyecto de investigacion aplicada financiado por una
empresa de servicios publicos. Para ilustrar la metodologia planteada se hace uso de un ejemplo adaptado, en el cual
se supone que la compania puede asignar recursos en forma parcial a varios proyectos entre un conjunto de
alternativas de inversion independientes. Los nuevos desarrollos en el area de la optimizacion estocastica permiten
mejorar la calidad de las decisiones de asignacion de recursos financieros limitados, mediante el uso de indicadores
de desempeiio relacionados en forma directa con la estrategia de la empresa. Los resultados muestran la asignacion
optima de recursos financieros a cada proyecto teniendo en cuenta la incertidumbre asociada a las diferentes variables
de entrada, las cuales se modelan mediante distribuciones empiricas de probabilidad definidas a priori por el analista.

Keywords: Analisis de inversiones, Presupuesto de capital, Seleccion de proyectos, Programacion lineal,
Simulacion de Monte Carlo.
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1. Introduction

The allocation of financial resources to portfolios
of projects is a common problem. Managers have
to choose them wisely to fulfill their strategic
objectives through the execution of these projects.
Financial planners attempt to select an “optimal
subset” of projects that increases the value of the
company, while complying with the allocation and
the specified budget constraints keeping a desired
level of risk.

One of the most widely studied problems in
Finance and Engineering Economics is the project
selection and configuration of investment
portfolios. This problem has been studied with
traditional methodologies such as Net Present
Value (NPV), Internal Rate of Return (IRR),
Modified IRR and the Value of Future Cash
Flows. All these techniques, if appropriately
applied, lead to good decisions in terms of the
projects to be selected. Also, some Operations
Research models have been studied, using the
maximization of profit or value as the objective
function and subject to technical and budgetary
constraints. Despite the effectiveness of all these
methods, it is relevant to consider methods that
address the uncertainties that are present in real
life projects. The strategic importance of project
selection processes is the critical need to
implement projects that are geared towards the
sustainability of the business in the long term, due
to financial constraints and the uncertainty
associated with the cash flows of each project,
(Powersetal, 2002)

Traditional financial theory has developed
portfolio selection techniques for financial assets,
using the mean variance optimization as the
dominant criterion (Markowitz (1952, 1959)).
Modern portfolio theory is still supported by some
of the principles proposed in Markowitz's model,
such as the assumption that the returns from
portfolios of financial assets are normally
distributed (McVean, 2000). However, some
empirical research projects have found that these
returns do not behave in this fashion. This
situation is especially important when considering
portfolios that include investment in real projects,
which are exposed to various sources of
uncertainty, April etal. (2002).
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Lorie & Savage (1955) presented pioneering work
in project selection and ranking. They used Linear
Programming to select investment alternatives
subject to budgetary constraints. These authors
also questioned the validity of the IRR measure
versus the NPV as a selection criterion. This
question has been extensively discussed in the
engineering economics literature. Based on their
work, several other authors have addressed the
project selection problem using multiobjective
linear optimization techniques (Ringuest & Graves
(1990)), integer programming techniques (Bebed-
Dov (1965)) or goal programming (Mukherjee &
Bera (1995)), and Kalu (1999) proposed a
multiobjective programming model that was
applicable to the petroleum industry, with the
special characteristic of considering the
uncertainty associated to certain input variables of
the model.

In a broader working environment, it is widely
recognized that the problem of project selection
must consider additional aspects of the economic
and financial component. For this reason, some
authors such as Nowak (2005) proposed the use of
multicriteria techniques to link elements of
qualitative and quantitative nature of the problem
of'selection.

Some applications of the problem of selecting
portfolio of projects have been developed in
industries with high levels of uncertainty, such as
the oil industry. An example is the work of Sira
(2006) who applies a scatter search algorithm to
find a portfolio efficient frontier.

The development that evolutionary algorithms for
stochastic optimization have experienced has
made it possible to revise the investment
scheduling to incorporate uncertainty in certain
critical variables. Sometimes, the uncertainty
cannot be modeled analytically, so other
techniques are employed. It is very common that an
investment project has external variables that are
outside of the company's control, and internal
variables that are related to technical and
operational decisions.

Today, there are more powerful optimization
algorithms, which provide a series of simulations
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to produce high quality solutions of problems that
cannot be solved analytically, (Pichittlamken &
Nelson, 2001).

This paper addresses the process of financial
resource allocation to real projects, using decision
criteria that take into account and quantify the
inherent risk present in these projects. To achieve
this, issues such as uncertainty in the project's
revenues, project margin and working capital
requirements are considered. To illustrate the
development of the proposed methodology, the
information supplied by an utility company was
used.

2.Methodology

There are two main sections in this paper. In the
first one, the economic analysis of a set of
investment projects is performed, considering the
uncertainty in the input variables of each project.
In this first section, Monte Carlo simulation is
used. In the second section, stochastic
optimization algorithms are applied to determine
the project subset that maximize the ENPV of the
project portfolio.

2.1 Construction of the project model

This stage refers to the construction of the
computational model of the project. This model
should represent the possible behavior that the
decision criteria will have under different
scenarios determined by the input variables.

1. Input variable
definition and
construction of the
financial model

variables

1.1. Projection of

According to Sefair & Medaglia. (2005), the NPV
of a project could be presented as its discounted
cash flow, affected by a random component o,
which can be estimated using simulation methods
based on the uncertainty associated with the input
variables in the model analysis, as follows:

S CFa(®)
NPV, =) —i 2
’ ; (1+r) )

Where CF), is the cash flow of the project i in the
period ¢, r is the cost of capital and v, is the project
lifei.

The construction of the evaluation model starts
with the definition of the input variables. The
different values that these input variables can take
on will condition the results that the model will
present. Input variables can be external when
macroeconomic, market, and industry sector
information is used; and internal when they refer
to operational issues such as production
capacities, operation times, inventory policies,
and efficiency levels, to mention just a few. Input
variables are necessary to define the costs and
benefits of the alternatives that are under study.

Then, the relationships among variables must be
established. As a result of these relationships, the
cash flow ofthe project is defined. The cash flow is
the cornerstone of the evaluation of the project.
Once the cash flow is known, economic decision
criteria can be applied, such as NPV, IRR,

\ 4

1.2. Relationships
between variables

1.3. Cash flow

construction |

1.4. Decision

criteria (NPV, IRR)

Figure 1. Project model construction process
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modified IRR and discounted payback period,
among others (Figure 1).

2.2 Simulation model of the project

The next step is to simulate the model. Using the
computational model built, the impact of the input
variables on the decision criteria is evaluated.
There are many software tools available that
enable simulation processes in spreadsheet-based
models (@Risk, Crystal Ball, Insight.xla,
SimTools.xla, EasyPlanex). All these tools
provide a common work basis, since they allow
the user to define uncertainty levels on the input
variables, define correlations between variables,
and assess sensitivity of these variables over the
final results. They also present certain statistical
analysis tools that can be applied on the decision
criteria that will be used for the portfolio selection.
In this paper, athe software known as Crystal Ball
version 11.1 in simulation analysis and OptQuest
in Optimization — Simulation Analysis was used.
(OptQuest is part of CrystalBall®,
DecisionEnginering, 2004). The construction of
the simulation model follows the steps outlined in
Figure 2.

2.3 Definition of uncertainty in input variable

The uncertainty associated to each input variable
in the model can be defined from probability

distributions known to the analyst, based on
previous knowledge of the variable. This is a
common practice in certain types of decisions. For
example, to model the inter-arrival times in
queueing system, the exponential distribution is
assumed. However, it is possible to adjust the data
to a certain probability distribution using
statistical fit tools with tests such as Anderson-
Darling, Kolmogorov-Smirnov, and Chi-square
among others. The application of these tools
would be possible if there were historical data
available on the input variables.

Itis common to find a certain degree of correlation
among input variables in investment projects;
therefore, this fact should be explicitly considered
in the model. For example, the price-demand
elasticity for a certain product affects the revenue
of'aproject in the sense that small changes in price
can cause large swings in demand. Correlations
between input variables might be established by
studying historical data or through assumptions
made by the analyst. In this paper, the input
variables considered are revenue increase caused
by the project, the project's EBITDA margin, and
the increase in working capital, measured as a
percentage of the revenue of each project.

2. Simulation model
for each project

2.1. Definition of uncertainty
in input variables

y
Adjust historical data to
empirical probability
distribution. Anderson Darlin,
Kolmogorov -Smirnov, Chi-
square tests

Historical
data on
critical

variables

available?

A priori definition of
probability distributions for
critical variables
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2.2. Definition of
output variables

(project metrics,
NPV, IRR)

v

2.3. Simulation results analysis (NPV at
risk, mean, variance, variation coefficient

and other statistics for each project).

Figure 2. Characterization of critical variables
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2.4 Definition of output variables

In this paper, the output variables will be the
decision criteria applied to judge the economic
qualities of the project. The ENPV of the portfolio
will be calculated from the sum of the expected net
present values of the various projects likely to be
selected.

ENPV

portafolio

=Y E(NPV)X, (2

where X; is a binary variable that takes the value of

1 if project ies is selected; otherwise, it takes the
value of 0. Sisthe setofprojects to assess.

2.5 Simulation of the model

The last step in this first part of the paper is to
obtain the simulation results. Since Monte Carlo
simulation was used, relevant information is
obtained for each output variable, such as a
frequency histogram, mean and variance values,
maximum and minimum values, kurtosis, and
asymmetry and percentile values. This last element
is very important for the analysis, since the
objective function of the stochastic optimization
model could be built to optimize one of these
percentiles, i.e., the value at risk obtained for a
certain confidence level, associated with the
corresponding percentile.

2.6 Projectportfolio optimization

In the search of optimal values for the budget
allocation variables, the scatter search algorithm
present in OptQuest® was used. Better & Glover
(2006) propose a general framework for
evolutionary algorithms when selecting financial
alternatives, which is presented in the following
expressions:

Max,Min — F(x)

Constraints - Ax<b

Re queriments - g, <G(x)< g,
Bounds —>1<x<u 3)

Where x is the budget allocation for a project (x
can be a continuous or a discrete variable). In the
model under consideration, x is the main decision
variable. F(x) represents the objective function,
that is the value to be optimized, G(x) represents
the bounds associated to the objective function,
and Ax are the technical and budgetary constraints
that might be present in the model.

2.7 Construction of the objective function to
be optimized

In this paper, three independent objective
functions have been considered. The first one
optimizes the ENPV of the portfolio and the
second one has the NPV at risk as the objective. In
the latter, the NPV of the portfolio is used by
assuming a certain confidence level and an upper
bound on the investment resources. The NPV at
risk for an 0% confidence level could be defined as
the value for which a % of the possible NPV
values are lower and (1-a)% are higher. By using
the NPV atrisk as the decision criterion offers two
perspectives for analysis: A project would be
deemed feasible (with a 1-a% confidence level) if
the value of the NPV atrisk is greater than zero; in
an analogous fashion, a project is considered
attractive if the confidence level found for the zero
NPV atrisk is greater than or equal to the threshold
confidence level expected by the decision maker.
The third objective function incorporates the
measurement of the risk associated with the
probability of the non-feasibility of the projects
that are part of the portfolio. In this case, the aim is
to minimize the likelihood of obtaining negative
values in the NPV of'the portfolio.

Ye & Tiong (2000) present the definition of NPV
at risk for an investment project in two different
situations. In the first one, normality is assumed
for the distribution of the decision criterion and the
NPV at risk can be found by using the mean-
variance method, with the difference between the
mean and a multiple of the variance o’ of the NPV,
shown as follows:

NPV at risk = mean NPV —Z(a )c @)

Where Z(a) is the number of standard deviations
that correspond to the confidence level. For
example, for a confidence level of 95%, Z(a) =
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Cumulative
probability

1.0

0 NPVT

v

NPV

Figure. 3. Estimation of the NPV at risk and the confidence level, from the cumulative probability function.

1.65. Assuming that the cumulative distribution
function for the NPV of the project is F(NPV), the
NPV at risk for a confidence level and the

confidence level for NPV = ( can both be found
using percentile analysis (Figure 3).

When the decision criterion is not found to be
normally distributed, Monte Carlo simulation can
be employed to generate a possible distribution for
the criterion. Multiple NPV scenarios for the
project can be generated with this technique, using
different samples for the input variables (from
historical data or from a user-defined
distribution). The generation process can be
repeated as many times as desired. The obtained
results (NPV,, NPV, ..., NPV,)) can be sorted in
ascending order and thus the cumulative
distribution function can be found. The
distribution function can be estimated from the
empirical distribution:

(#NPV, < NPV) )

E,(NPV) =

Eq. (5) corresponds to the relative frequency of the
NPV, where #NPV is the number of results of the
NPV, obtained from the simulation that are lower
than a specified NPV value. Therefore, the NPV at
risk for a certain confidence level can be
calculated using the corresponding percentile:
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F'(a)= NPV, (6)

The confidence level for NPV = 0 can be found
with the probability that NPV is lower than or

equal to zero [P(NPV <0)], which would be:

F (0)= #NPV £0) (7)
n

2.8 Definition of decision variables and
associated constraints

The next step in the optimization process is the
definition of the decision variables associated to
the model. In portfolio selection problems, the
decision variables can be of two kinds. If we talk
about investments such as stocks or bonds for
example, the key decision variable is the
percentage of budget allocation to each type of
investment. However, for portfolios of real
projects such as those presented here, the decision
variables are defined as binary. The variable takes
the value 0 if the project is not selected, and it takes
the value of 1 if the project is part of all projects.

Only one type of budget constraint is considered,
since it has a budget allocated by the company,
which is generally not sufficient to meet the needs
of'total investment.
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2.9 Outputs of the optimization model

The aim of the model is to find the optimal set of
projects in a way that the ENPV of the portfolio is
optimized, complying with all the financial
constraints. The usual practice in these financial
optimization processes is the specification of
requirements for the projected variables from
goals established by the organization itself. For
example, the maximum NPV at risk allowed for a
given confidence level, should be specified.

3. Results and discussion

An applied case was developed to illustrate the
proposed methodology. The information came
from a public utility company. As part of their
management processes, utilities companies must
make up banks of projects in which the
information related to the assessment and
management of individual projects is condensed
to preserve the memory of each project and in this
way, the management of the projects can be
optimized.

A subset of ten projects from the 2007 investment
portfolio of the company was selected. The
selected projects were defined in terms of the
following parameters: Revenue growth rate,

earnings before interest, taxes, depreciation and
amortization (EBITDA) margin, initial
investment and working capital increase. The
model considered the cash flow after paying all the
applicable taxes.

The utility company that served as an example for
this paper has a Technical Planning Department,
comprised by about 20 engineers. They are
dedicated to the configuration and selection of
projects for the expansion and optimization of
their networks. These engineers meet and try to
estimate (by consensus building) the values of the
variables required for the evaluation of the
projects. Of the values defined by the group of
engineers, one can obtain the minimum value, the
more likely and the maximum for each of the key
variables of the model. Afterwards, the values
obtained are used as the vertices of a triangular
distribution for the model that finally enter the
data.

The triangular distribution is used because it is
intuitively easy for the analyst to come up with the
three required values: The minimum and
maximum (which can be identified with best-and-
worst case scenarios) and the most likely value
(the analyst's best guess). The benefits of using this
type of distribution have been widely discussed in
the literature on financial risk. (Johnson (1997),
Williams (1992)).

Table 1. Model Entry Variables

Revenue Growth Rate EBITDA Margin Working Capital Decision
Project Min% Lik% Max% Min% Lik% Max% Min% Lik% Max% Variable
1 8 10 11 40 42 45 6 10 12 (0,1)
2 9 10 15 38 40 42 9 12 13 (0,1)
3 8 9 13 47 48 53 13 15 19 0,1)
4 10 12 14 45 50 52 15 17 18 0,1)
5 17 18 19 37 40 43 9 10 11 (0,1)
6 10 11 12 31 32 33 7 8 10 0,1)
7 8 9 13 44 46 47 4 5 6 0,1)
8 10 13 15 43 47 49 4 7 9 (0,1)
9 8 10 12 41 43 45 3 6 7 (0,1)
10 4 6 8 33 35 36 8 10 14 0,1)
Tax Rate 30%
Depreciation period (years) 4
Available budget 15000
Cost of capital 14%
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Table 2. Cash Flow Model Projects

Cash Flow Project i Year 0 Year 1 Year 2 Year 3 Year 4
Revenue Rev 1 Rev 2 Rev 3 Rev 4
EBITDA EBITDA 1 EBITDA 2 EBITDA 3 EBITDA 4
Depreciation Dep 1 Dep 2 Dep 3 Dep 4
EBIT EBIT 1 EBIT 2 EBIT 3 EBIT 4
Taxes Taxes 1 Taxes 2 Taxes 3 Taxes 4
NOPAT NOPAT 1 NOPAT 2 NOPAT 3 NOPAT 4
+Depreciation Dep 1 Dep 2 Dep 3 Dep 4
CAPEX Capex

WC Increase WC Increase 1  WC Increase2 WC Increase 3 ~ WC_Increase 4
Cash Flow Available Cash Flow 0 Cash Flow 1 Cash Flow 2 Cash Flow 3 Cash Flow 4

Table 3. Main Economic Indicators for each Project

. NPV Inflows \ oy (Cost of
Project (Cost of capital)
capital)

1 1989.9 159.8
2 1815.7 -74.3

3 2309.1 -70.9
4 2035.6 -104.4
5 2232.5 -137.5
6 1704.0 114.0
7 2705.8 205.8
8 2282.8 232.8
9 1952.2 -27.8
10 1845.4 145.4
E(NPV) Portfolio 443

Then the ENPV for the portfolio was calculated
(Table 3). The available budget was only
COP$15000 million, and selecting all projects would

Table 1 presents the parameters and variables for
the model. In addition to the elements specified

before, the depreciation period for each project,
the available budget, the income tax rate, and the
cost of capital are inputs used for the analysis of
the projects.

Once the input variables and parameters of the project
evaluation model were defined, the next step was the
development of the after-tax cash flow for each project
during the analysis period. After this, the NPV was
calculated for each project in the base scenario. Table 2
presents the cash flow structure applied for each
project.

48

require a total initial investment of COP$20420
million. Thus, the problem was to determine which
projects to select to maximize the total ENPV while
staying within the budget limitation, considering
uncertainty conditions associated with the main entry
variables of the model.

Also, a factor of budgetary efficiency was
incorporated into the model, which is typical of public
companies, as the allocation of resources requires a
minimal implementation of the approved budget. In
this case, the minimum factor in the analysis of
budget execution was 80% (Eq. 8). Similarly, the
model is obviously included in the budget restriction.
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Table 4. Output Variable Net Present Value (NPV)

Project
1 2 3 4 5 6 7 8 9
Mean 118.4 -15.9 -50.2 163.2 58 72.3 96.5 143.0 1.0
Median 112.8 -18.3 -55.9 169.8 8.2 71.9 93.1 139.3 -3.0
Standard Deviation 95.5 87.1 136.6 125.5 117.9 50.7 69.8 104.2 71.8
Variance 9115.6 7594.4 18671.5 15761.9 13909.3 2566.0 4868.5 10858.5 5194.4
Skewness 0.2 0.1 0.1 -0.3 -0.1 0.0 0.1 -0.1 0.2
Kurtosis 2.9 2.8 2.6 2.6 2.4 2.6 2.8 2.7 2.8
Coeft. of Variability 0.8 -5.5 -2.7 0.8 20.2 0.7 0.7 0.7 73.7
Minimum -156.5 -257.8 -423.7 -209.6 -275.3 -59.9 -110.3 -150.1 -200.4
Maximum 433.9 233.6 307.0 446.8 321.7 202.9 296.2 428.4 211.8
Mean Std. Error 3.0 2.8 43 4.0 3.7 1.6 22 33 2.3
Prob (NPV>0) 89.8% 43.6% 34.9% 88.2% 51.9% 91.8% 91.7% 91.1% 48.1%
Prob (NPV<0) 10.2% 56.4% 65.1% 11.9% 48.1% 8.2% 8.3% 8.9% 51.9%

The sum of the initial investment of the approved
projects cannot exceed the amount of available
resources

80%x Budget <" I, < Budget (8)

ieS

To analyze the results obtained in addition to the total
portfolio, each project was evaluated individually, with
the purpose of studying the risk profiles of each project,
and for analyzing its impact on the recommended
portfolio, according to each of the studied objective
functions. Table 4 shows the simulation results for each
project under evaluation. Note that the projects present
different profiles in terms of key outcomes such as
ENPYV and the level of risk measured by the probability
of obtaining negative values.

For example, if project 3 is compared with project 5,
we notice that the level of risk taken in project 5 is
much larger when considering issues such as the
coefficient of variation that relates the mean and
standard deviation of the NPV of the project . But when
assessing the possibility of negative results in the NPV,
project 5 has a probability of 48.1% compared to
65.1% of project 3.

Figure 4 shows the results obtained from the simulation
of the total NPV of the project portfolio, without
assuming any kind of budget constraints. In this
scenario, which exceeds the available budget, the risk
of non-feasibility of the portfolio was estimated at
3.55%.

By continuing with the proposed methodology, the next
step was to review the composition of portfolios,
improved from defined objective functions. The goals
pursued with this process were geared towards
improving the overall risk and portfolio ENPV. Figures
5, 6 and 7 show the results obtained with different
portfolios from each of the objective functions.

Different optimization routines were tried using
OptQuest in CrystalBall to search for optimal values for
the budget allocation decision variables. Three
different objective functions were evaluated for
comparison purposes. These results are presented in
Table 5.

It can be noticed that the objective functions that
maximize the ENPV of the portfolio suggest that the
budget allocation should be close for all the projects.
However, when a risk function such as the coefficient of
variation (measured as the relationship between the
mean and the standard deviation of the results) is
considered, the results change considerably.
Companies usually define the maximization of value as
their objective function; however, it is necessary to
consider that this objective can be accomplished
through different levels of risk. In consequence, the
decision makers should consider the risk element
through some relevant measure. In this example, this
consideration was achieved maximizing the 2"
percentile of the weighed NPV distribution.

Table 5 shows that when maximizing the average NPV,
the efficiency factor of the budget is lower, close to
80%, while the option of maximizing the probability
that the portfolio ENPV is greater than zero, improves
the efficiency indicator budget to 94.8%. What is
interesting in the latter recommended portfolio, in
addition to the improvement of the efficiency factor of
the budget, is the reduction of the risk of non-feasibility
of the project portfolio. Additionally, the expected
value of the portfolio under this objective function is
reduced to only COP$ 608 million, i.e. 3.5%. The
recommendation to improve the risk profile of the
portfolio looks reasonable to meet the proposed
objectives without significantly sacrificing the average
value of the portfolio.
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Figure 4. Simulation Results (1000 trials)
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Figure 5. Simulation Result — Portfolio with Objective Function Max E(NPV)
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Figure 7. Simulation Result — Portfolio with Objective Function Max Prob (NPV>=0)

Table 5. Comparison of three objective functions

Project
B t

Portafolio 1 2 3 4 5 6 7 8 9 10 Objective Eﬂ_:'cci‘eg:cy%
1: Max mean NPV portfolio 1 1 0 1 0 0 1 0 1 1 630** 80.3
2: Maximize the 2% Percentile of E(NPV) 1 0 0 0 1 0 1 1 1 1 21 829
Portfolio ’
3: Maximize the Probability that E(INPV) 1 1 1 0 0 1 1 1 1 0 98.3% 048

. 0 -

Portfolio is greater than $0

** Millions $

4. Conclusions

This paper contributes to the existing literature on
performance evaluation in capital budgeting settings by
demonstrating the crucial role of properly designing
income recognition rules in the presence of capital
constraints. In situations with a limited budget or
alternative projects, it is desired to select the NPV-
maximizing investment portfolio.

The consideration of quantitative risk analysis in
portfolio management opens the possibility to set
standards in the evaluation of different kinds of
projects. The definition of risk in the portfolio
optimization analysis can significantly affect the
portfolio selection. In this way, the scenario analysis of
the maximum financial exposure gives a sense of what
could happen to the value of the company by changing
the risk tolerance for new ventures.

For further analysis, models with a higher degree of
complexity should be considered. In addition to
economic uncertainty and budgetary constraints, more

constraints of technical and structural nature could be
included, such as relations of precedence in the
scheduling of certain projects, staffing requirements,
energy consumption, and possible synergistic
relationships between projects to be undertaken, among
other alternatives. The use of stochastic optimization
techniques, as suggested in this paper, may well be
applicable in other decisions which are considered
necessary to include elements that generate uncertainty.

While the definition of the optimal set of projects that a
company should develop usually depends on the
economic factors associated with the generation of
value, other qualitative criteria that attempt to weigh
other factors associated with the development of the
project are often used. For instance, the social impact
and the improvement of product quality are among these
factors. In these cases it is desirable to use other tools and
techniques like the Analytical Hierarchy Process (AHP)
that take into account these aspects. Although our
example focuses primarily on maximizing the expected
NPV, there is evidence that managers in industry
consider alternate measures such as IRR, payback
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period, and return duration, along with NPV, when
making capital budgeting decisions (Barney &
Danielson, 2004). There is also evidence that non-
financial criteria can also play an important role in the
ultimate decision to invest in a project.
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