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Resumen
Para determinar el rango de aplicación de los métodos de difracción numérica espectro angular y 
transformada Fresnel-Fraunhofer, se han utilizado las nociones ópticas básicas del principio de Babinet y 
el concepto del número de zonas de Fresnel. Usualmente dicho límite se evalúa considerando el correcto 
muestreo de la respuesta al impulso en el espacio libre para cada método en su evolución desde la abertura 

de Fresnel para determinar la fase que debe exhibir un campo óptico propagado numéricamente una 
distancia dada; la desviación de la fase del campo óptico del valor pronosticado constituye la métrica de 
evaluación de la validez del método de propagación. Los resultados obtenidos permiten concluir que el 
límite usado con frecuencia para dividir el rango de aplicación para los métodos de espectro angular y la 
transformada de Fresnel-Fraunhofer debe de ser revisado. Se propone un nuevo límite que considera el 
número de pixeles utilizados para muestrear correctamente un salto de fase de  

Palabras clave: Holografía digital, propagación numérica, teoría de difracción.

Abstract
The range of application of the methods of angular spectrum and Fresnel-Fraunhofer transform to 
compute numerical diffraction is evaluated via the basic optics concepts of Babinet´s principle and 
Frenel´s zones number. Conventionally, such limit is determined by assessing the correct sampling of the 

we make combined use of Babinet´s principle and Fresnel´s zones number to determine the phase that 

method. The results show that the limit of application of the methods angular spectrum and Fresnel-
Fraunhofer transform must be revisited. We propose a new limit that accounts for the number of pixels 
utilized for the correct sampling of a   phase jump.
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1. Introduction 	

Many applications of technology and science 
require the numerical propagation of the optics 
fields. For example the numerical reconstruction 
of the digitally recorded holograms (Kreis, 
2004; Schnars & Jueptner, 2005), synthesis of 
computer generated holograms (Pan et al., 2009), 
numerical correction of optical aberrations in 
microscopy systems (Colomb et al., 2006), 
optical encryption of information (Matoba & 
Javidi, 1999), among many others, are some 
of the applications that require the numerical 
computation of the propagation of optics fields. 
This calculation indicates that is necessary to 
evaluate the wave equation, which in its scalar 
version is reduced to some way of the diffraction 
integral (Goodman, 2005). The numerical 
calculation of the diffraction integral can be 
performed using different numerical methods of 
propagation of optical fields; the methods most 
used are the angular spectrum (Mann et al., 2005) 
and the Fresnel-Fraunhofer transform (Picart & 
Juan-chang, 2012). No matter which propagation 
method used, the numerical computation enforces 
the sampling theorem for both the complex fields 
and propagators, this in order to guarantee the 
correct propagation of the optical field (Goodman, 
2005; Li & Picart, 2012). The condition of correct 
sampling of the propagation kernel needed in the 
computation of the diffraction integral in any of its 
representations, has been the selected parameter to 
find the limit of validity of the different methods 
of numerical propagation (Mendlovic et al., 1997; 
Li & Picart, 2012; Shen & Wang, 2006; Restrepo 
& Garcia-Sucerquia, 2010). Many studies that 
evaluate the validity range for the different 
methods of numerical propagation are based 
on the elimination of phenomena as aliasing or 
redundancy in the diffraction patterns (Sypek et al., 
2003). In this work, we present the evaluation of 
the limits of validity of the numerical propagation 
methods through the reproduction of the results 
predicted in numerical experiments of diffraction 
by the fundamentals concepts of optics Babinet’s 
principle and the number of Fresnel zones. 

In this paper, in the section 2 a review of Babinet’s 
principle and the number of Fresnel zones is done, 
after the propagation methods angular spectrum 
and Fresnel-Fraunhofer transform are explained 
and the utilized numerical experiment is described. 
In the section 3, we show and discuss the results 
obtained; finally, in the section 5 the conclusion 
obtained product of research is presented. 

2. Methodology

An explanation of the optics concepts used to 
carry out the study in this article is done. First, 
Babinet’s principle and the number of Fresnel 
zones is exposed. After, a brief development of 
both theories of the angular spectrum and Fresnel-
Fraunhofer transform, and an explanation of 
numerical experiment is performed.

 2.1 Babinet’s principle 

Babinet's principle was formulated by the French 
physicist, mathematician and astronomer Jacques 
Babinet. The principle states: considering 
a diffracted field due to an opening and its 
complement, the addition of both diffracted fields 
equals the diffracted field through free space (Born 
& Wolf, 2005). In Figure 1 an illustration of 
Babinet´s principle is presented. For propagation 
in free space has been considered a diffracted field 
produced by a circular opening, U0 (x1, y1, z) in 
the lower left portion of that figure. In the upper-
left side, it is shown the diffraction experiment 
to produce U1 (x1, y1, z), namely the diffraction 
by the opening; the proper for its complement is 
presented in the upper-right to create U2 (x1, y1, z). 
In the bottom of Figure 1 the set of optical fields 
that illustrated Babinet´s principle, are shown. The 
right-most in the lower part of Figure 1 is pixel-
wise addition of U1 (x1, y1, z) and U2 (x1, y1, z). This 
result, U1 (x1, y1, z) + U2 (x1, y1, z), matches U0 (x1, 
y1, z). In other words, for   U1 (x1, y1, z) and U2 (x1, 
y1, z) the diffracted fields through an opening and 
its complement at a distance z, respectively, equals 
the diffracted field through free space: 

0 1 1 1 1 1 2 1 1(x , y ,z) (x , y ,z) (x , y ,z)U U U= + (1)
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If one considers a particular point at the propagated 
field in free space equals to  zero,                       , 
then, from Eq. (1) one obtains                                         

           ; this result indicates that the diffracted 

2.2 Number of Fresnel’s zones

The number of Fresnel zones is a postulated by 
the French physicist Augustin-Jean Fresnel. In its 
postulated, Fresnel proposes that the secondary 
spherical waves constituting a wavefront that 
propagates, as was stated by Huygens, can interfere 
each other (Born & Wolf, 2005). This interference 
means that the optical field is composed by sets 
of emitters that irradiate on average in the same 
phase for particular regions in space, denominated 
Fresnel’s zones (Born & Wolf, 2005). The 
wavefields emitted by consecutive Fresnel’s zones 
are   radians out of phase, such that these consecutive 
zones interfere destructively. If it is considering a 
circular opening of radio   illuminated by a spherical 
monochromatic wavefront of wavelength  whit its

fields generated by the opening and its comple-
ment are equal in magnitude with a phase diffe-
rence of

point source at a distance   from the center of the 
aperture and considering a plane of observation 
placed at a distance   from the center of the aperture, 
the number of Fresnel’s zones  is given by: 

Eq. (2) indicates from the conditions of the 
experimental setup can be predicted the value of 
the amplitude on the optical axis, just based on the 
information .provided by the number of Fresnel’s 
zone; it can be predicted that when the system 
subtends an even number of Fresnel´s zones the 
optical axis will be dark and when this number is 
odd the same point will be bright Figure 2.

' '
0 1 1(x , y ,z) 0U =

' ' ' '
1 1 1 2 1 1(x , y ,z) (x , y ,z)U U= −

' ' ' '
1 1 1 2 1 1(x , y ,z) (x , y ,z)U U= −

.π

Figure 1. Numerical simulation of Babinet’s principle.

(2)
2 1 1

f
RN

a bλ
 = + 
 

Figure 2. Fresnel zones. a) Amplitude of optical fields for an odd number of 
Fresnel´s zones. b) Amplitude of optical fields for an even number of Fresnel´s zones
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2.3 Angular spectrum

To calculate the propagation of optics fields involves 
solving the wave equation:

When the wavefront is expressed in the infinity 
base of plane waves propagating in all possible 
directions, the complex amplitude of the optical field 
propagated a distance      can be calculated through the 
expression: 
 	

where,                is the angular spectrum in the 
plane   , that can be computed through 
                                                                        The kernel of pro-
pa gation in Eq. (4) indicates an inverse Fourier 
transform, therefore Eq. (4), can be rewritten in 
terms of the Fourier transform operator      as:

Eq. (5) allows the calculation of an optical field at a 
distance     from the aperture if one knows the optical 
field in the plane             . However, the numerical 
computation of this equation requires of a discretiza-
tion in terms of the input parameters; on considering 
that the input field can be discretized in a grid with 
pixels of sizes               the continuous input coordi-
nates are                                              

2.4 Fresnel-Fraunhofer transform

Another way to solve the wave equation is through 
the Fresnel-Kirchhoff integral:
 

where                                                 is the distance from
a point in the input plane                 to a point in 
the output plane              .    is the angle between 
the vector r and the outward vector normal to the 
input plane. Figure 3 illustrates this process of 
diffraction.

Using the paraxial approximation, by considering 
that the dimensions x1, y1 of output plane are much 
smaller than the distance z of propagation, r can 
be rewritten by means of a Taylor series expansion 
as                                            Substituting this result 
in Eq. (7), one then gets:

2
2

1 2 2

(r, t)1U (r, t) ;    con i=x,y,ziu
v t

∂
∇ =

∂
(3)

(7)

(4)

(5)

(6)

(8)

( )1 1(x , y ,z) ( , , z)exp 2x y x y x yU A f f i f x f y df dfπ
∞ ∞

−∞ −∞

 = + ∫ ∫

( , , z)x yA f f
( )1 1( , , z) ( , , z)exp 2 .x y x yA f f U x y i f x f y dxdyπ

∞ ∞

−∞ −∞

 = − + ∫ ∫
( )1 1( , , z) ( , , z)exp 2 .x y x yA f f U x y i f x f y dxdyπ

∞ ∞

−∞ −∞

 = − + ∫ ∫
z

z

1−ℑ

( ){ } ( )1 2 2 2
1 1 0 0

2(x , y ,z) x , y ,0 exp 1 .x yU U i z f fπ λ
λ

−   = ℑ ℑ − +    

( )0 0x , y ,0
z

0 0 , x y∆ ×∆

0 0 0 0 and x m x y n y= ∆ = ∆                                                  with  integer num-
bers. Furthermore, the output coordinates are 
discretized as 
with p, q, r and s also integer numbers. Replacing 
the continue coordinates by the discrete coordinates, 
the integrals by summations and by using the 
discrete Fourier transform (DFT), Eq. (5) can be 
rewritten as:                                                     

1 1 1 1,  ,   and  x x y yx p x y q y f r f f s f= ∆ = ∆ = ∆ = ∆

( )
2 2

1 2
1 1 0 0

0 0

2( , ,z) , ,0 exp 1 r sU p x q y DFT DFT U m x n x i z
M x N y

π λ
λ

−

         ∆ ∆ =  ∆ ∆  − +       ∆ ∆        

( ) ( )
1 1 0 0 0 0

exp
( , y ,z) , y ,0 (1 cos )

2
ikriU x U x dx dy

r
χ

λ

∞ ∞

−∞ −∞

= − +∫ ∫

( ) ( )2 2 2
0 1 0 1r x x y y z= − + − +

( )0 0, y ,0U x=

( )1 1, y ,zU x= ,χ

Figure 3. Diagram of propagation 
between two planes.
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( ) ( ) ( ) ( ) ( )22 2 2 2
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exp
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∞ ∞
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exp
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2 2
i ikz ik ik ikU x x y U x x y x x y y dx dy

z z z zλ

∞ ∞

−∞ −∞

−
= − + + +∫ ∫
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Eq. (8) is known as the Fresnel-Fraunhofer 
approximation of the diffraction integral or also 
Fresnel-Fraunhofer transform (Goodman, 2005). 
To carry out the numerical calculation of Ec. 
(8), is necessary, as for the angular spectrum, to 
perform a process of discretization that allows 
expressing the Fresnel-Fraunhofer transform in a 
discrete fashion:

Further details about the numerical diffraction 
processes can be read elsewhere Li & Picart 
(2012) or Kreis (2004).

2.5 Numerical experiment

From the analytical point of view the angular 
spectrum present no restriction in the distance of 
propagation, only the spatial frequencies must 
satisfy the exclusion of the evanescent waves, 
namely that                 (Goodman, 2005). The 
Fresnel-Fraunhofer transform presents a restriction 
inherited from the paraxial approximation perfor-
med on the Fresnel-Kirchhoff integral, where the 
condition                                   must be must 
be fulfilled. However, when the angular spectrum 
and Fresnel-Fraunhofer transform are numerically 
calculated, the sampling theorem (Goodman, 
2005) must be met for the discretized equations 
of both propagation methods, Eq. (6) and Eq. (9). 
The correct sampling of the phases terms involved 
on the numerical computation of the wavefield 
propagation is controlled by the wavelength, 
the sizes of the input plane, and the propagation 
distance. Two of the more important studies in the 
literature about the range of application of each 
propagation method were presented by Mendlovic 
et al. (1997) and Sypek et al. (2003).

As can be observed in Eq. (6) and Eq. (9) the 
propagation distance affects the phase terms in 
the numerator for the angular spectrum and in the 
denominator for the Fresnel-Fraunhofer transform; 

this difference is a key factor to find the range of 
propagation for which are valid for the formalisms 
of angular spectrum and Fresnel-Fraunhofer trans-
form. In the angular spectrum case two conditions 

must be fulfilled simultaneously: i)                            to 
guarantee that the computed waves propgate be-
yond the aperture, namely, they are not evanescent 

waves and ii)

with     being the number of pixels needed to sam-
ple a    phase jump. Considering that the maximum 
integer index    along each rectangular direction 
is      , after a Taylor expansion up to second order of 
the latter equation it leads to a condition that must 
be satisfied to perform a correct sampling of the 
propagation kernel:

This condition imposes a limit up to where is 
correct to use the angular spectrum. The result 
shown in Eq. (10) is the same presented by Sypek 
et al. (2003) when the number of pixels              i.e.
          Similarly as we have shown for the 

case of angular spectrum, the critical factor for 
which one must guarantee the correct sampling, 
is the propagation phase factor within the 
kernel of Fresnel-Fraunhofer diffraction integral, 
namely the impulse response function for the 
free space. If one considers that at least     pixels 
are accounted for representing a   phase jump 
in the impulse function, one arrives to the limit 
condition of propagation

this equations is equal to the expression reported 
by Sypek et al. (2003) when           , i.e.
The proposed numerical experiment consist 
in calculating the complex field of a plane 
wave when it is propagated a distance   after 
impinging on an opening and its complement to 
produce                 and                 respectively; the 
aperture and its complement are in contact with

(9)
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a circular opening of radio   as shown in Figure 1. 
In the observation plane is guaranteed an even 
number of Fresnel´s zones, in order to obtain a null 
propagated field                           on the optical axis. 
With this condition, we are able to guarantee that 
the amplitude of the optical field of the opening 
and its complement are equal in magnitude with 
a phase difference of   at the very optical field, 
as was predicted by Babinet's principle, at the 
very optical field, as was predicted by Babinet's 
principle,                                            . This condition is 
used as metric for evaluating the range of validity 
of the propagation methods angular spectrum 
and Fresnel-Fraunhofer transform. The phase 
difference of the optical diffracted fields of the 
opening and its complement is measured while 
the propagation distance varies and the radio  of 
the circular opening is modified to ensure that 
always an even number of Fresnel’s zones. For 
both methods of numerical propagation angular 
spectrum and Fresnel-Fraunhofer transform, the 
propagation distance has been expressed in terms 
of the critical propagation distance       Eq. (10) and 
Eq. (11), respectively. We additionally computed 
the derivative of the phase differences to increase 
the sensitivity in detecting any deviation of the 
predicted value.

3. Results and discussion 

The results obtained for the angular spectrum are 
summarized in the Figure 4. In panel a) the plot 
with dot-lines corresponds to the phase difference 
calculated by subtracting the phases obtained for 
the opening and its complement on the optical axis 
for different distances of propagation; for this plot    
            in Eq. (10) leading to the expression propo-
sed by Mendlovic              . The dash-line plot 
corresponds to the phases difference calculated 
when            , which leads to                                       .

One can see in the panel a) that the phase difference 
when 1.0NP = is      from zero up to approximately 
a distance of propagation of 0.7 times  ; beyond 
this point the phase difference on the optical axis 
presents oscillations that deviate the measured 
phase difference from that predicted by Babinet’s 
principle. Panel b) shows the derivative from the 

phase difference of panel a). From a) and b) we can 
be concluded that for          appear perturbations 
on the phase of the wavefields propagated nume-
rically that affect the transfer function implying a 
subsampling from kernel. However, when 1.5NP =1.5NP =1.5NP =              
the phase difference and its derivative remains 
constant for propagations from zero to  . Distan-
ces of propagation greater that z introduce pertur-
bations in the phase difference measurement on 
the optical axis. These results indicate that to co-
rrectly sample the phase of the propagation kernel 
of the angular spectrum, at least three pixels must 
be used for each    phase jump, Figure 5. This 
indicate that to minimize any phase perturbation 
that affect the correct sampling in the propagation 
kernel of the angular spectrum the distance of pro-
pagation    should be:
 

R

( )0 1 1, y , 0U x z =

π

π

1 1 1 2 1 1(x , y ,z) (x , y ,z)U U= −
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Figure 4. Angular spectrum propagation method. a) 
Phase difference for the recorded wavefields of the 
aperture and its complement at different propagation 
distances for two different values of pixels PN. b) 
Derivative of a) for both values of PN. In  these plots 
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Figure 6 shows the results obtained for the Fresnel-
Fraunhofer transform by using the same methodology 
as in the angular spectrum. When 1.0NP = , as it was 
expected for propagation distances shorter than the 
value of cZ , the phase difference measurements on 
the optical axis are different to the value predicted by 

4. Conclusion

In this work, we have used the basic optics 
concepts Babinet’s principle and the number of 
Fresnel’s zones, in order to evaluate the limit 
up to where both numerical methods of optical 
field propagation, angular spectrum and Fresnel-
Fraunhofer transform, can be used. As metric we 
have used the predicted phase by Babinet’s theorem 

Babinet’s principle until a distance of propagation 
1.6 times  .cZ  This observation is validated in panel 
b) where the derivative of the phase difference 
shown for 1.0NP = . This behavior means that one 
single pixel is not enough to sample a π  phase 
jump in the kernel of propagation. We have then 
increased the number of pixels to 1.5pN =  allowing 
rewriting the value of the critical propagation as 

( )[ ]2
01.5 / 1.5cZ x Mλ= ∆ − . This result indicates that 

like in the angular spectrum, is necessary to make 
use of a minimum three pixels to correctly sample 
a 2π phase jump in the kernel of propagation of the 
Fresnel-Fraunhofer transform. Therefore, in order to 
minimize phase perturbations that affect the correct 
sample in the kernel of propagation of the Fresnel-
Fraunhofer transform the distance of propagation  
should be:

for a geometry that subtend an even number of 
Fresnel zones.  The results obtained indicate that 
for the correct operation of the methods of angular 
spectrum and the Fresnel-Fraunhofer transform, 
is necessary to use at least three pixels to sample 
correctly phase jumps of   in the kernel of propagation 
of each method. This result modifies the equation 
established in 1977 by Mendlovic et al. (1997) and 
ratified for Sypek et al. (2003). 

Figure 5. Number of pixels needed to 
correctly sample of  phase jump.

[ ]
2
01.5 1.5 .xZ M

λ
∆

≥ − (13)

Figure 6. Fresnel-Fraunhofer transform. a) Phase difference for the recorded 
wavefields of the aperture and its complement at different propagation distances for 
two different values of pixels PN. b) Derivative of a) for both values of PN. In these plots 

( )
2
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c N
P xZ M P
λ
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= −



182

Ingeniería y Competitividad, Volumen 18, No. 2, p. 175 - 182 (2016)

5. Acknowledgments

J. Garcia-Sucerquia y Raúl Castañeda acknowledge 
the support provided by the Universidad Nacional 
de Colombia and Colciencias through the program 
Young Researches (Hermes 30553).

6. References

Born, M. & Wolf, E. (2005). Principles of Optics. 
7th ed. Cambridge: Cambridge University Press.

Colomb, T., Kühn, J., Charrière, F., Depeursinge, 
C., Marquet, P. & Aspert, N. (2006). Total 
aberrations compensation in digital holographic 
microscopy with a reference conjugated hologram. 
Opt. Express 14 (10), 4300–4306.

Goodman, J.W. (2005). Introduction to Fourier 
Optics. Greenwood Village: Roberst & Company 
Publishers.

Kreis, T. (2004). Handbook of Holographic 
Interferometry. Weinheim: Wiley-VCH .

Li, J. & Picart, P. (2012). Calculating Diffraction 
by Fast Fourier Transform. In: Digital Holography. 
John Wiley & Sons, Inc., (Chapter 4). 

Mann, C., Yu, L., Lo, C.M. & Kim, M. (2005). 
High-resolution quantitative phase-contrast 
microscopy by digital holography. Opt. Express 
13 (22), 8693-8698.

Matoba, O. & Javidi, B. (1999). Encrypted optical 
memory system using three-dimensional keys in 
the Fresnel domain. Opt. Lett. 24 (11), 762-764.

Mendlovic, D., Zalevsky, Z. & Konforti, N. 
(1997). Computation considerations and fast 
algorithms for calculating the diffraction integral. 
Journal of Modern Optics 44 (2), 407-414.

Pan, Y., Xu, X., Solanki, S., Liang, X., Tanjung, 
R.B.A., Tan, C. & Chong, T.C. (2009). Fast CGH 
computation using S-LUT on GPU. Opt. Express 
17 (21), 18543-18555. 

Picart, P. & Juan-chang, L. (2012). Digital 
Holography. Hoboken: John Wiley & Sons, 2013

Restrepo, J.F. & Garcia-Sucerquia, J. (2010). 
Magnified reconstruction of digitally recorded 
holograms by Fresnel-Bluestein transform. 
Applied optics 49 (33), 6430-6435.

Schnars, U. & Jueptner, W. (2005). Digital 
holography: Digital hologram recording, 
numerical reconstruction, and related techniques. 
Berlin: Springer Berlin Heidelberg.

Shen, F. & Wang, A. (2006). Fast-Fourier-
transform based numerical integration method 
for the Rayleigh-Sommerfeld diffraction formula. 
Appl. Opt. 45 (6), 1102-1110.

Sypek, M., Prokopowicz, C. & Go´recki, M. 
(2003). Image multiplying and high-frequency 
oscillations effects in the Fresnel region light 
propagation simulation. Optical Engineering 42 
(11), 3158-3164.

Revista Ingeniería y Competitividad por Universidad del Valle se encuentra bajo una licencia Creative 
Commons Reconocimiento - Debe reconocer adecuadamente la autoría, proporcionar un enlace a la 
licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no 
de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


