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1. Introduction

Modal identification techniques estimate the 
dynamic properties of a structure, such as natural 
frequencies, mode shapes and modal damping 
ratios, by measuring its dynamic response. This 
field has gained significant importance in the 
last decades because it is an indispensable step 
for many modal updating techniques (Vélez et 
al., 2009; Zárate & Caicedo, 2008), operational 
modal analysis (Ubertini et al., 2013), human 
induced vibration analysis (Ortiz et al., 2012), 
structural health monitoring methods (Caicedo 
& Marulanda, 2011), structural control (Gómez, 
2011; Gómez et al., 2008) and damage prognosis 
methods (Bartram & Mahadevan, 2014). Several 
techniques for the identification of modal properties 
of structures have been developed and validated 
in the last thirty years (Doebling et al., 1996; 
Farrar et al., 2004). Traditionally, due to physical 
and economic constraints, only a few degrees of 
freedom of the total degrees of freedom of the 
structure are monitored for modal identification. 
A finite number of sensors are placed at key 
locations on the structure creating challenges in 
the identification of the natural or operational 
mode shapes due to low spatial resolution of 
the measurements. Only few structures have 
been densely instrumented such as the Tsing Ma 
suspension Bridge, the Kap Shui Mun cable-
stayed Bridge and the Ting Kau cable-stayed 
Bridge, in Hong Kong (Ko et al., 2000). These 
bridges incorporate a monitoring system with 774 
sensors, including strain gauges, accelerometers, 
displacement sensors, level transducers, anemo-
meters, temperature sensors and weight-in-motion 
transducers. The Commodore Barry Bridge, 
in the United States, has nearly 500 static and 
dynamic transducers operating for monitoring 
vibrations, local deformations, displacements and 
ambient conditions, among other variables (Li 
et al., 2004). An example of one of the world’s 
most densely instrumented structures is the 
Guangzhou New TV Tower in Hong Kong, which 
incorporates 527 sensors in the construction stage 
and 280 sensors in the in-service monitoring 
system (Ni et al., 2009; Yi et al., 2012). Despite 
the fact that these structures have spatially dense 

monitoring systems, subsequent analysis (i.e. 
Modal identification, model updating, damage 
identification) are still a challenge because the 
large amount of data collected during testing or 
operation of the structure. 

Mode shape expansion methods are used to 
calculate spatially dense mode shapes based on 
the information of discrete points, minimizing 
the impact of the low spatial resolution of 
measurements. These techniques can be classified 
into three main groups according to Levine-
West et al. (1994): i) spatial interpolation 
techniques, which use a finite element model 
geometry to expand the mode shape; ii) properties 
interpolation techniques, which use the finite 
element model properties for the expansion; and 
iii) error minimization techniques, which intend 
to minimize the error between the expanded 
and the analytical mode shape using projection 
methods. Methods in the first group are sensitive 
to spatial discontinuities, quantity and location 
of sensors and the mode pairing procedure. The 
Guyan method (Guyan, 1965), which assumes 
negligible inertial forces at the unmeasured DOF; 
and the Kidder method (Kidder, 1973), which 
uses the complete dynamic equations to calculate 
the modal coordinates at the unmeasured DOF, 
are included in the second group. The Procrustes 
method (Smith & Beattie, 1990), which uses 
an orthogonal projection, and the least-squares 
minimization methods are examples of the third 
group of modal expansion techniques.

In general, mode shape expansion methods can 
introduce errors into the modal identification 
process due to: i) discrepancy between the 
location of the sensors and the location of DOF 
in numerical models, ii) measurement errors, 
and iii) modeling errors (Balmès, 2000; Pascual 
et al., 2005). Common solutions to address the 
discrepancy between the location of sensors and 
modeled DOF are ignoring distances between 
the sensor and the numerical DOF, modifying 
the FE model to match sensor locations, and 
adding nodes and/or rigid links in the FE model to 
approximate the location of the sensor. In addition, 
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θn is constant and different to π⁄2. In theory, the 
identification of the r-th mode could be performed as

The measured response is an infinite summation 
of sine functions with the same frequency but 
different amplitudes and phases. The amplitudes of 
the sinusoidal terms vary with time due to the mode 
shape (or with the position of the sensor). For each 
sinusoidal term different to the r-th mode, the phase 

analytical models are based in assumptions that 
might not correctly represent the actual structure. 
These assumptions create modeling errors that 
introduces inaccuracies from a model reduction 
and model updating perspective.

This paper proposes the use of a mobile sensor 
for modal identification in civil infrastructure, 
improving the spatial density of the identified 
mode shapes without substantially increasing the 
number of sensors in the structure (Marulanda 
& Caicedo, 2009). A fine grid of discrete points 
representing the operational mode shape is 
constructed using information of the structures’ 
motion avoiding the need for modal expansion. 
Furthermore, the methodology only requires 
the use of one or few single sensors to calculate 
highly spatial mode shapes. The proposed 
methodology is described for one-dimensional 
systems but it can be easily expanded to two 
dimensional structures such as shells. In addition, 
the methodology does not assume any type of 
model which makes it applicable to any type of 
structural systems. The methodology is verified 
numerically using an Euler-Bernoulli beam and it 
is validated experimentally using a bench-scaled 
steel beam. A traditional modal identification 
technique was applied to the experimental beam 
to obtain baseline results.

2. Methodology

The use of mobile sensors for civil engineering 
applications opens the door to new possibilities in 
sensing technology, modal identification, structural 

health monitoring and damage prognosis. First, 
standard system identification techniques such 
as the Stochastic Subspace Identification (SSI) 
(Van Overschee & De Moor, 1996) are used to 
determine the natural frequencies of the structure 
with a sensor parked at a fixed location. Then, 
the sensor is moved along the structure capturing 
one record of acceleration. Spatially dense mode 
shapes are extracted from this single signal. This 
paper presents the case when the structure is 
excited with a simple harmonic force at a specific 
frequency and the sensor moves with a constant 
velocity.

The methodology is applicable to any structural 
system but for demonstration purposes consider 
the case of a one-dimensional linear time invariant 
system under dynamic excitation. If the response 
of the system is measured with a moving sensor 
travelling at a constant speed v=x⁄t, the acceleration 
response can be written as a function of time only 
(Marulanda & Caicedo, 2009):

where ϕn (vt) is the n-th natural vibration mode and    
  n (t) is the acceleration response of the n-th mode 
in generalized coordinates.

Considering the case where the external force is 
harmonic and in resonance with the r-th natural mode 
of vibration, the measured steady state acceleration 
of the structure can be written as

(1)

(2)

(3)
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Figure 2 shows the comparison between the 
1st and 5th identified mode shapes, using Eq. 
(3), with the corresponding theoretical modes. 
MAC values (Allemang, 2003) for these modes 
are 0.990 and 0.009, respectively. Errors in the 
identification process are due to the influence of 
the non-resonant modes which can be minimized 
using only the peak values of the sin(ωr t-π⁄2)
function in Eq. (3). Therefore the r-th mode can 
be identified as

The comparison between the identified 1st and 5th 
mode shapes using Eq. (5), with the corresponding 
theoretical modes is shown in Figure 3. The 
velocity of the sensor and the resonance frequency 
determine the number of points in the modal 
identification. A total of 57 and 1449 points were 
obtained for the 1st and 5th modes, respectively, 
with a single 20 seconds acceleration signal 
sampled at 200 Hz. MAC values of 1.000 and 
0.999 were calculated between the 1st and 5th 
identified modes and the theoretical ones. Similar 
results to those shown in Figure 3 were obtained 
for the other 8 modes of vibration considered on 
the simulation.

The identification of the mode shapes from Eq. (3) 
poses two main challenges: i) the influence of the 
non-resonance modes, and ii) the synchronization 
between the acceleration record and the sinusoidal 
function in the denominator of the right hand side 
of Eq. (3). 

At resonance, contributions of the non-resonance 
modes are not zero. Consider, for example, a 
uniform simply supported beam, the n-thnatural 
vibration mode shape and its corresponding natural 
frequency are

where L is the total length of the beam, E is the elasticity 
modulus of the material, I is the moment of inertia of 
the cross section, and ml is its mass per unit length. 
Assuming L=60m, E=25GPa, I=6.75m4, ml=150 
kN⁄g⁄m,  n=0.05, the 1st and 5th natural frequencies of 
the structure are 1.45 and 36.24 Hz, respectively. 

Figure 1 shows the simulated acceleration res-ponses 
of a moving sensor at a constant velocity of v=3 
m⁄s when the structure is excited with a sinusoidal 
load with a frequency equal to the 1st and 5th natural 
frequencies. The load is applied at the center of the 
beam with amplitude po=1kN. Ten modes of vibration 
are used to calculate the response of the beam at x=vt, 
simulating the sensor moving at a constant velocity. 

(4)

Figure 1. Simulated acceleration measured by the mobile 
sensor: (a) resonance in mode 1; (b) resonance in mode 5.

(5)

Figure 2. Theoretical and identified mode shapes 
using Eq. (3): (a) 1st mode; (b) 5th mode.
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of vibration are more sensitive to this parameter. 
The influence of the phase lag ξ can be minimized 
by synchronizing the acceleration record such 
that the maximum accelerations correspond to the 
values of t on Eq. (5). In other words, having a 
value of ξ close to zero.

The first step for the use of the proposed metho-
dology in a full scale implementation would be 
the identification of the natural frequencies using a 
standard identification procedure. As in that case will 
be uncertainty in the identified frequencies, Figure 
5 shows the MAC value between the identified and 
the theoretical mode shapes when the identified 
natural frequencies vary from 0.80 to 1.20 of their 
actual value. In each case, the variable frequency 
is used as the forcing frequency and the resonant 
frequency for the mode shape identification. As can 
be seen, the methodology is robust to uncertainties 
of around 10 and 5% in the initial identification 
of the natural frequencies of the 1st and 5th modes, 
respectively. These values of uncertainty are con-
sidered acceptable. Giraldo et al. (2009) use an 
acceptable 2% threshold for the identified natural 
frequencies in an automated identification process 
with experimental data. The authors report average 
errors in the natural frequencies under 0.1% using 
different standard identification techniques.

Figure 3. Theoretical and identified mode shapes 
using Eq. (5): (a) 1st mode; (b) 5th mode.

The phase ξ between the acceleration record and 
the sinusoidal function in the denominator of 
Eq (3) will be present in experimental tests and 
include errors in the identification. Including this 
phase in Eq (5) we obtain

(6)

Figure 4 shows the MAC values between the 
identified and the theoretical mode shape for dif-
ferent values of ξ. The range of acceptable phase 
ξ changes with the identified mode. Higher modes 

Figure 4. MAC values as function of ξ: (a) 
resonance in mode 1; (b) resonance in mode 5.

Figure 5. MAC values for variations in the identified natural 
frequencies: (a) resonance in mode 1; (b) resonance in mode 5.

3. Results and discussion

A 15.24 cm × 0.32 cm × 121.92 cm (6 in × 1/8 in × 
48 in) simply supported steel beam was used for
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the experimental validation of the proposed me-
thodology. A detailed traditional modal iden-
tification procedure was performed to identify the 
dynamic behavior of the beam and compare the 
results with results from the proposed methodology. 

Three capacitive PCB 3701D1FA20G accele-
rometers were used to measure the vibration of 
the beam, each one with a PCB 478A01 signal 
conditioner. The accelerometers have a sensitivity 
of 100 mV/g (± 5 %), a range of ± 20 g, and a 
frequency range from 0 to 300 Hz (± 5 %). The 
signal conditioner powers the sensor, compensate 
for the nominal DC offset and the offset due to 
the effect of gravity and send the signal to the 
acquisition system. To transform the continuous 
signal to digital format a Measurement Computing 
USB-1208LS module was used. The USB module 
has a resolution of 12 bits in differential mode, a 
maximum sampling rate of 1.2 kHz in continuous 
scan mode and a variable input range from ± 1 to ± 
20 Volts. The acquisition module sends the signal 
of up to four channels (in differential mode) in 
digital format to a laptop computer to be recorded 
using a Measurement Computing’s software.

3.1 Traditional modal identification

The natural frequencies and mode shapes of the 
beam were obtained using the Stochastic Subspace 
Identification (SSI) method (Van Overschee & De 
Moor, 1996). The algorithm calculates the dynamic 
properties of the system (i.e. natural frequencies, 
mode shapes and damping ratios) from a state space 
representation. SSI has proven to be a reliable and 
simple tool (Giraldo et al., 2009), and is used in this 
work to identify mode shapes for the experimental 
verification. 

Impact excitation tests using a PCB 086C03 
general purpose modal analysis impact hammer 
were performed to identify the first two natural 
frequencies of the beam. The hammer has a 
mass of 0.16 kg, a sensitivity of 2.25 mV/N (± 
15 %), and a range of ± 2200 N. A reference 
accelerometer was located at 32 inches from 
one end of the beam while the other two sensors 
were moved throughout the beam at two inches 

Figure 6. Identified operational mode shape 
using the SSI.

3.2 Experimental implementation

The proposed methodology was experimentally 
implemented with the previously described setup, 

intervals. Five impact tests of one minute length, 
using a combination of short and long intervals 
between hits, were performed for each testing 
location using a sampling frequency of 400 Hz. 
Mean values and standard deviations of the first 
two natural frequencies were calculated using the 
SSI method. The mean value of the first natural 
frequency is 4.681 Hz with a standard deviation 
of 0.018 Hz. The mean value of the second natural 
frequency is 18.862 Hz with a standard deviation 
of 0.171 Hz. 

A Brüel & Kjær vibration exciter type 4809, 
located at 12 inches from the left support, was 
used to identify the operational mode shapes of 
the beam. The beam was excited with the actuator 
tuned at a constant forcing frequency of 18.8 
Hz, controlled by a Quanser Q8 data acquisition 
and control board, and a Brüel & Kjær power 
amplifier. The reference accelerometer was kept at 
32 inches from the left support of the beam while 
the other two sensors were moved throughout 
the beam at two inches intervals. Five tests of 30 
seconds length were performed for each testing 
location using a sampling frequency of 400 Hz. 
Mean values and standard deviations of the modal 
coordinates of the operational mode shape with 
the actuator tuned at 18.8 Hz were calculated 
using the SSI method, and are shown in Figure 6. 
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standard approach (SSI) and the one using the 
methodology. Differences between the mode 
shapes are mostly in the right half of the mode 
because the mass of the cart is modifying the 
system dynamics. A smaller effect was found 
close to the actuator. The weight per unit length of 
the beam is 0.210 pounds per inch and the weight 
of the car is 1.209 pounds, distributed in the front 
and rear axis which are separated by 2.5 inches.

Figure 7. Experimental setup 
(Marulanda & Caicedo, 2009).

Figure 8. Acceleration time history 
recorded with the mobile sensor.

Figure 9 shows the identified operational mode 
shape using the proposed methodology. A total 
of 32 points were obtained for constructing the 
identified mode with a single 12.6 seconds signal. 
A MAC value of 0.969 was obtained between 
the operational mode shape identified using the 

Figure 10 shows the MAC value between the 
operational mode shape identified using the standard 
approach and the one using the methodology for 
different values of ξ (Eq. (6)). The experimental 
results have good agreement with the numerical 
simulations results shown in Figure 4.

Figure 9. Identified operational mode 
shape using the proposed methodology.

Figure 10. MAC values as function of the phase 
lag in the experimental implementation. 

using a small cart with a constant speed motor 
(Figure 7). An accelerometer was attached to the 
cart and the cart was displaced from one end of the 
beam to the other. The vibration exciter, located at 
12 inches from the left support, was tuned to apply 
a constant frequency harmonic force at 18.8 Hz. 
The cart was reinforced with an aluminum plate 
to reduce local vibrations. Four magnetic wheels 
with 2.395 inches of diameter and 0.25 inches of 
thickness were used to avoid the cart jumping. 
Figure 8 shows the acceleration of the moving 
sensor using a sampling frequency of 400 Hz.
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4. Conclusions 

A methodology for the identification of mode 
shapes of a dynamical system under harmonic 
excitation using mobile sensors was proposed and 
verified using numerical and experimental data. The 
methodology minimizes errors in the identification 
process due to the influence of the non-resonant 
modes and it is robust to uncertainties in the initial 
identification of the natural frequencies. In the 
proposed numerical example, the methodology 
was robust to uncertainties of around 10 and 5% for 
the 1st and 5th modes, respectively. An important 
issue in the experimental implementation of 
the methodology is the synchronization of the 
acceleration record and the sinusoidal function to 
minimize the effect of the phase lag.

The number of points in the modal identification 
depends on the velocity of the sensor and the 
frequency of the identified mode. In this particular 
case, from 57 to 1449 points were obtained with a 
single 20 seconds simulated signal. MAC values of 
1.000 and 0.999 were obtained for the first and fifth 
mode, respectively. Similar results were obtained 
for the other 8 modes of vibration considered on 
the simulation. 

A simply supported steel beam was used for 
experimental validation. A detailed standard modal 
identification procedure was performed to identify 
the dynamic behavior of the beam and compare the 
results with results from the proposed methodology. 
A total of 32 points were obtained for constructing 
the identified mode with a single 12.6 seconds 
signal. A MAC value of 0.969 was obtained 
between the operational mode shape identified 
using the standard approach and the one using the 
proposed methodology. Differences between the 
two identified mode shapes are mostly due to the 
influence of the mass of the cart over the beam. 
This is not expected in full-scale implementations 
on civil structures.
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