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Objective: To design and implement a liquor identification system using TinyML, employing an MQ-135 sensor and an 
ESP32 microcontroller from Espressif Systems. The objective is to optimize local processing for high precision and low 
latency, thereby validating its viability as an accessible solution in resource-constrained environments.
Methodology: The methodology employed an Artificial Neural Network (ANN) to classify liquors based on volatile com-
pounds detected by the sensor. A dataset comprising 6,000 measurements was collected, and the ANN model was trained 
in MATLAB® R2018a. For performance evaluation, the dataset was split into 70% for training, 15% for validation, and 15% 
for testing, with the Mean Squared Error (MSE) used as the primary metric.
Results:The deployed ANN model converged after 375 epochs, achieving a minimal Mean Squared Error (MSE) of 
1.05×10⁻⁹ and a correlation coefficient (R) of 1.0. Synthesized onto the ESP32 microcontroller, the model utilized only 
24.8% of Flash memory and 6.3% of RAM. The inference time recorded for execution was 2.43 ms, yielding a classification 
accuracy of 84.4%. This cost-efficient solution, priced at 15 USD, outperforms existing commercial options.
Conclusions: It achieves an exceptionally fast inference time of 2.43 ms with a minimal operational energy consumption 
ranging from 5 mA to 10 mA. This performance, coupled with the low fabrication cost (15 USD), contrasts sharply with 
commercial solutions often exceeding hundreds of dollars. Consequently, the system is highly viable for implementation 
in embedded quality control and food industry applications.

Resumen
Objetivo: Diseñar e implementar un sistema de identificación de licores mediante TinyML, empleando un sensor MQ-135 y un mi-
crocontrolador ESP32 de Espressif Systems. El objetivo es optimizar el procesamiento local para lograr alta precisión y baja latencia, 
validando así su viabilidad como solución accesible en entornos con recursos limitados.
Metodología: La metodología empleó una Red Neuronal Artificial (RNA) para clasificar licores según los compuestos volátiles 
detectados por el sensor. Se recopiló un conjunto de datos con 6000 mediciones y el modelo de RNA se entrenó en MATLAB® 
R2018a. Para la evaluación del rendimiento, el conjunto de datos se dividió en un 70 % para entrenamiento, un 15 % para validación 
y un 15 % para pruebas, utilizando el Error Cuadrático Medio (EMM) como métrica principal. 
Resultados: El modelo de ANN implementado convergió tras 375 épocas, alcanzando un Error Cuadrático Medio (EMM) mínimo de 
1,05 × 10⁻⁹ y un coeficiente de correlación (R) de 1,0. Sintetizado en el microcontrolador ESP32, el modelo utilizó solo el 24,8 % de 
la memoria Flash y el 6,3 % de la RAM. El tiempo de inferencia registrado para la ejecución fue de 2,43 ms, lo que arroja una preci-
sión de clasificación del 84,4 %. Esta solución rentable, con un precio de 15 USD, supera las opciones comerciales existentes.
Conclusiones: Alcanza un tiempo de inferencia excepcionalmente rápido de 2,43 ms con un consumo energético operativo mínimo, 
de entre 5 mA y 10 mA. Este rendimiento, sumado al bajo coste de fabricación (15 USD), contrasta marcadamente con las soluciones 
comerciales, que a menudo superan los cientos de dólares. En consecuencia, el sistema es muy viable para su implementación en 
aplicaciones integradas de control de calidad y de la industria alimentaria.

Palabras clave: TinyML, Clasificación de licores, Redes neuronales artificiales, sensor MQ135, Microcontrolador ESP32.
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Why was this work conducted?
This work was conducted to demonstrate the capability of Tiny Machine Learning (TinyML) in liquor classification. TinyML enables the execution of machine 
learning models on resource-constrained devices, representing a novel solution compared to conventional approaches. The technology was applied to the 
classification of six types of alcoholic beverages: medicinal ethyl alcohol, wine, pisco, cachaça, tequila, and whiskey. The core objective was to develop a 
system characterized by its ultra-low cost (approximately 15 USD) and high computational efficiency (inference times of 2.48 ms, making it viable for imple-
mentation in embedded devices.

What were the most relevant results?
The results indicated a classification accuracy of 84%, which is comparable to some more expensive commercial solutions, such as the Gasboard-3210Plus 
(800 USD) or the Anton Paar analyzers (1,500 – 2,100 USD). With a latency of 32 ms, the system allows for fast and efficient real-time classification.

What do these results contribute?
The developed classification system, with an estimated cost of only 15 USD, represents an accessible alternative for beverage authentication. These findings 
suggest its strong potential for application in quality control, adulteration detection, and monitoring within the alcoholic beverage industry.
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Introduction

Currently, the development of low-cost devices for substance classification and detection has 

gained significant relevance, particularly in sectors such as the food and beverage industries. Tiny 

Machine Learning (TinyML), which enables the execution of machine learning models on resource-

constrained devices, presents itself as an innovative solution for real-time classification tasks (1,2).

This technology offers considerable potential for implementing efficient and accessible systems that 

facilitate product identification, such as in the case of liquors, without the need for expensive or 

specialized equipment. The determinant factor for selecting TinyML as the core technology in this 

work is its capability, as demonstrated by Schizas et al. (3), to enhance performance and efficiency 

by processing data locally with minimal latency and significantly reduced energy consumption. By 

minimizing data transmission to the cloud, TinyML strengthens security and decreases operational 

costs, thereby consolidating its role as the foundation for intelligent, low-cost, and highly 

autonomous embedded systems.

A systematic literature review was conducted following the PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) methodology to identify TinyML applications in classification 

systems. In the identification phase, the keywords “TinyML,” “Classification Machine Learning,” and 
“Arduino” were employed in databases available at the Universidad Pedagógica y Tecnológica de 

Colombia (UPTC, Tunja): ScienceDirect (25), Web of Science (18), Scopus (30), Elsevier (12), and 

Google Scholar (40), yielding 125 records. During the screening stage, pertinent titles and abstracts 

were considered, and subsequently, in the eligibility phase, only articles with full text available 

were analyzed. Ultimately, 12 studies met the inclusion criteria and were incorporated into the final 

analysis.

Diverse applications of TinyML and low-cost instrumentation have been explored in the literature. 

Tsoukas et al. (4) developed an autonomous TinyML–based system for ammonia leak and smoke 

detection, achieving an F1-Score of 0.77 for smoke and 0.70 for ammonia. Bagheri et al. (5) 

evaluated TinyML on microcontrollers and environmental sensors for real-time aquatic pollutant 

monitoring, highlighting its low cost and cloud-independent autonomy. Atanane et al. (6) 

implemented a water leak detection system in buildings using acoustic sensors, accelerometers, 

Convolutional Neural Networks (CNN), and TinyML on an Arduino Nano 33 BLE, achieving a 

precision of 97.45%. 

Regarding liquor classification, Zhou et al. (7) reported 100% accuracy in classifying eight brands of 

Chinese liquor using gas sensors and Discriminant Function Analysis (DFA). Zhang et al. (8) utilized 

an electronic nose with doped ZnO sensors and Principal Components Analysis (PCA), Cluster 

Analysis (CA), and Learning Vector Quantization (LVQ) techniques, achieving up to 94.1% precision 

in characterizing Chinese vinegars. Scorsone et al. (9) developed an electronic nose using conductive 

polymer (CP) sensors for early fire detection, reducing false alarms through PCA analysis. Related 

research includes Zhang et al. (10) who employed zinc oxide (ZnO) gas sensors doped with MnO2, 

TiO2, and CO2O3, reaching a precision of 89.3% with LVQ. 

https://www.researchgate.net/publication/386579238_Tiny_Machine_Learning_TinyML_Systems
https://doi.org/10.1145/3469029
https://doi.org/10.3390/fi14120363
https://doi.org/10.1109/MOCAST54814.2022.9837510
https://doi.org/10.3390/s23229210
https://doi.org/10.1016/j.snb.2011.08.015 
https://doi.org/10.1016/j.snb.2005.02.017
https://doi.org/10.1016/j.snb.2005.12.059 
https://doi.org/10.1016/j.snb.2006.01.007 
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Furthermore, Wongchoosuk et al. (11) designed a portable electronic nose with hybrid carbon 

nanotube–SnO2 sensors to detect methanol contamination in whisky, successfully identifying 

1% methanol contamination. Other relevant applications include the wireless carbon monoxide 

monitoring system (MQ-9 sensors and LPWAN) by Vega-Luna et al. (12), achieving 11.8 km 

coverage, and the system by Nagy et al. (13) for measuring seven pollutant gases using MQ-2 and 

MQ-5 sensors on a Raspberry® Pi 3. 

Finally, Jiang et al. (14) applied Machine Learning models, specifically Random Forest, achieving 

over 90% accuracy in predicting white wine quality. Specifically, within the Colombian context, 

Botero-Valencia et al. (15) successfully applied TinyML in an environmental monitoring station, 

achieving a 2.67% improvement in precision. This demonstrated a practical success case of utilizing 

the specified low-resource microcontrollers for high-impact environmental sensing in local settings, 

further justifying the architectural approach taken in the present study.

The relevant results of the literature review, highlighting the year, application, and location, are 

shown in Table 1.

Table 1. Literature Review Results

Year Authors Application Microcontroller Measured Variables Sensors Used Country

2023
Tsoukas, V. et al. 

(4)

Gas leak 

detection
Not specified Smoke, ammonia Gas sensors Greece

2023
Bagheri, M. et al. 

(5)

Environmental 

monitoring in 

water

Not specified Water pollutants
Environmental 

sensors
Iran

2023
Atanane, O. et al. 

(6)

Water leak 

detection

Arduino™ Nano 

33 BLE
Vibrations, acoustics

Accelerometers, 

acoustic sensors
Morocco

2011 Zhou, Q. et al. (7)
Classification of 

Chinese liquors
Not specified Volatile compounds MOX sensor China

2006 Zhang, Q. et al. (8)

Classification 

of Chinese 

vinegars

Not specified Volatile compounds
Doped ZnO 

sensors
China

2006
Scorsone, E. et al. 

(9)

Early fire 

detection
Not specified Smoke

Conducting 

polymer sensors
Italy

2005
Zhang, Q. et al. 

(10)

Classification of 

Chinese liquors
Not specified Volatile compounds

Doped ZnO 

sensors
China

2010
Wongchoosuk, C. 

et al. (11)

Methanol 

detection in 

whiskey

Not specified Methanol
CNT-SnO2 

sensors
Thailand

https://doi.org/10.1016/j.snb.2010.03.072
https://doi.org/10.17163/ings.n18.2017.09 
http://scielo.sld.cu/pdf/eac/v41n1/1815-5928-eac-41-01-34.pdf   
https://doi.org/10.54097/hset.v39i.6548
https://doi.org/10.1016/j.ohx.2023.e00477
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Year Authors Application Microcontroller Measured Variables Sensors Used Country

2017
Vega-Luna, J. I. et 

al. (12)

Carbon 

monoxide 

monitoring

PIC18F8722 Carbon monoxide MQ-9 sensor Mexico

2020
Nagy, A. S. et al. 

(13)

Simultaneous 

gas 

measurement

Raspberry® Pi 3
Gases, temperature, 

humidity

MQ-2, MQ-5, 

DHT11
Cuba

2023 Jiang, X. et al. (14)
Wine quality 

prediction
Not applicable

Physicochemical 

properties
Not applicable China

2023
Botero-Valencia, 

J. S. et al. (15)

Environmental 

pollution 

monitoring

ESP32-CAM Air, noise, light

SPS30, SCD30, 

SCD40, BME680, 

BH1750, AS7341

Colombia

 

Complementary research has explored the application of TinyML across various distinct areas. 

Hayajneh et al. (16) proposed a framework based on TinyML and transfer learning to predict soil 

moisture in smart agriculture, utilizing drones and IoT sensors. Karras et al. (17) developed TinyML 

algorithms for data management in IoT, enhancing data cleaning, compression, and storage, with 

implementation on the Raspberry® Pi platforms. 

Schizas et al. (3) conducted a systematic review on TinyML in low-power IoT deployments, 

highlighting benefits concerning transition, bandwidth, security, privacy, latency, energy efficiency, 

and low cost. Dutta and Bharali (18) analyzed the integration of TinyML in IoT, emphasizing 

advantages such as cost reduction and cloud independence, alongside associated hardware 

challenges. Srinivasagan et al. (19) designed a TinyML sensor to estimate the shelf life of fresh dates 

using VisNIR spectrometry. 

Capogrosso et al. (20) classified development approaches into three categories: algorithmic, 

hardware-centric, and co-design. Banbury et al. (21) proposed benchmarks to evaluate TinyML 

platforms. Hymel et al. (22) presented Edge Impulse, a platform simplifying model development and 

deployment. Finally, Lê et al. (23) reviewed optimization techniques in neural networks for resource-

limited microcontrollers. The relevant applications using TinyML technology are shown in Table 2.

https://doi.org/10.1049/smc2.12072 
https://doi.org/10.3390/fi16020042 
https://doi.org/10.3390/fi14120363 
https://doi.org/10.1016/j.iot.2021.100461 
https://doi.org/10.3390/s23167081
https://doi.org/10.1109/ACCESS.2024.3365349 
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2212.03332 
https://arxiv.org/abs/2311.11883 
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Table 2. Literature Review Results on TinyML Applications.

Year Authors Application Country

2023 Hayajneh, A. M. et al. (16)
Soil moisture prediction in smart 

agriculture. UAVs, IoT devices TinyML

Jordan / United 

Kingdom

2024 Karras, A. et al. (17)
Big Data Management in IoT with TinyML 

Algorithms
Greece

2022 Schizas, N. et al. (3) TinyML in low-power IoT deployments Greece

2021 Dutta, L. y Bharali, S. (18) TinyML integration in IoT India

2023 Srinivasagan, R. et al. (19) Shelf life estimation of fresh dates
Saudi Arabia / 

Egypt

2023 Capogrosso, L. et al. (20) Review of TinyML Learning Algorithms Italy

2020 Banbury, C. R. et al. (21) Benchmarking TinyML platforms Not Specified

2023 Hymel, S. et al. (22)
Edge Impulse platform for TinyML 

Deployment
Not Specified

2023 Lê, M. T. et al. (23)
Optimization techniques for neural 

networks on microcontrollers for TinyML
France

With this background, this study aims to propose an ultra-low-cost TinyML based device with the 

goal of classifying alcoholic beverages. Alcoholic beverages is a relevant context where speed 

and accuracy is critical since the importance around making the right classification within order 

of terms. The aim is to create an accurate, portable, and easy to follow path to classify types of 

alcoholic beverages based on conventional sensors and algorithms. The present work addresses 

the identified gap by proposing an ultra-low-cost device based on TinyML technology for liquor 

classification, an application where both precision and speed are critical factors. 

The term ultra-low-cost characterizes embedded systems whose total cost of materials (Bill of 

Materials – BOM) is minimal, prioritizing economical components without compromising essential 

system functionality. The solution is implemented on the ESP32 microcontroller from Espressif 

Systems, selected specifically due to its low market cost (approximately 8 USD), wide market 

availability, and extensive developer documentation. This microcontroller features a dual-core 

Tensilica LX6 processor (up to 240 MHz), 520 KB of SRAM, 4 MB of Flash memory, and UART, SPI, 

I2C, and 12-bit ADC interfaces. 

This architecture allows for the efficient execution of machine learning models despite its limited 

computational resources, integrating low-cost sensors to develop an accurate and economically 

accessible tool for alcoholic beverage identification. This proposed system is anticipated to 

contribute to both industrial operational efficiency and the democratization of advanced 

technologies in contexts with budgetary constraints (24,25).

https://doi.org/10.1016/j.jksuci.2021.11.019
https://doi.org/10.1109/JPROC.2017.2761740
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Methodology
The classification system is based on the MQ-135 gas sensor and an Artificial Neural Network 

(ANN). The MQ-135 sensor is a widely adopted metal oxide semiconductor (MOS) device capable 

of detecting various gases, including carbon monoxide (CO), alcohol, carbon dioxide (CO₂), toluene 

(C₇H₈), ammonia (NH₄), alcohol, carbon dioxide (26). The sensor’s operating principle relies on the 

variation in the resistance of the sensitive material Rs in response to gas concentration.

Calibration is performed following the manufacturer’s recommendations to determine the 

coefficient R0 which corresponds to the sensor’s baseline resistance in clean air. This R0 value is 

crucial for normalizing the sensor response, as the ratio Rs / R0 isolates the resistance change 

specifically due to the presence of target gas concentrations. This normalization is essential 

for validating the model’s robustness against typical ambient fluctuations, such as changes in 

temperature and humidity. The relationship between the measured resistance Rs and the gas 

concentration C is expressed by a logarithmic model derived from the sensor’s characteristic curve, 

as presented in Equation 1.

(1)

where Rs is the sensor resistance at a gas concentration C, R0 is the resistance in clean air, and A 

with B are experimentally determined constants specific to the type of gas.

The ANNs were employed to identify liquors based on their distinct volatile organic compound 

(VOC) signatures, resulting in robust and high-precision models suitable for quality control 

and beverage authentication. Specifically, the system is designed to perform quality control by 

verifying the VOC signature against a known standard and beverage authentication by detecting 

unauthorized variations, such as dilution or the presence of adulterants like methanol. In general 

terms, a Multilayer Perceptron (MLP) network can be represented by the following expressions 

shown in Equations 2 and 3.

(2)

(3)

where xi represents the input variable corresponding to the voltage value obtained from the MQ–

135 sensor, wij are the synaptic weights, bj are the associated biases, and yk is the activation function 

(27).

The neural network training was conducted in MATLAB® R2018a utilizing the ‘nntraintool’, which 

simplifies the configuration and training via algorithms such as backpropagation and provides 

graphical tools for evaluating model performance (28). The optimized model was then implemented 

on an ESP32 board, a microcontroller with performance adequate for IoT, TinyML, and Edge 

Processing applications. Edge processing is understood as the capacity to execute analysis and 

decision-making tasks directly on the device without reliance on a continuous cloud connection 

(29).

https://www.electronicoscaldas.com/datasheet/MQ-135_Hanwei.pdf 
https://doi.org/10.3390/s23042131 
https://www.mathworks.com/help/deeplearning/ref/nntraintool.html 
https://doi.org/10.1016/j.psep.2023.09.072 
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The ESP32 development board integrates a dual-core Tensilica Xtensa LX6 processor operating at 

up to 240 MHz, 520 KB of SRAM, and 4 MB$ of Flash memory, along with communication interfaces 

such as Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), Universal Asynchronous 

Receiver-Transmitter (UART), and a 12–bit Analog-to-Digital Converter (ADC). This architecture 

enables efficient integration with sensors and data acquisition modules (30). Figure 1 shows the 

block diagram of the proposed TinyML system for liquor classification.

Figure 1. The development workflow of the TinyML liquor classifier.

The connection with the MQ-135 sensor was managed through the ‘MQUnifiedsensor.h’ library 

in the standard Arduino™ IDE, allowing for value reading and parameter configuration for each 

measured gas.

The dataset for training the neural network was constructed from MQ-135 sensor measurements, 

capturing the concentration of volatile compounds such as alcohol, hexane, carbon monoxide (CO), 

benzene, and Liquefied Petroleum Gas (LPG). The acquisition process involved samples of ambient 

air, medicinal ethyl alcohol, wine, pisco, cachaça, tequila, and whisky. Reference voltage values and 

the R0 coefficient were recorded to monitor sensor stability.

The final classification system was designed with seven output categories: Alcohol, Wine, Pisco, 

Cachaça, Tequila, Whisky, and Ambient Air (used as the reference). To ensure robust data 

representation, 100 samples were collected for each of the seven categories, with 10 repetitions for 

each sample to account for signal capture variation. This generated an initial total of 7 categories  × 

100 samples × 10 repetitions, resulting in 7,000 records. As noted in preliminary analysis, the first 

50 initial readings were discarded due to the settling time and inherent instability of the MQ-135 

sensor during warm-up. Consequently, the final usable dataset consisted of 6,950 records. The input 

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf 
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features captured the concentration of the various volatile compounds, and the output was labeled 

using a binary scheme corresponding to the presence of each liquor type or ambient air.

Figure 2 gives an example of a portion of the dataset structure within Excel™, with each capture and 

the corresponding classification in rows. 

Figure 2. Structure of dataset for training the TinyML liquor classification system.

The neural network training was conducted in MATLAB® R2018a using the ‘nntraintool’, facilitating 

configuration and training via the Levenberg–Marquardt algorithm (31). This algorithm leverages a 

combination of the steepest descent and Gauss–Newton methods to efficiently minimize the Mean 

Squared Error (MSE). Mathematically, the weight update is defined as shown in Equation 4.

(4)

where J is the Jacobian matrix of the error partial derivatives with respect to the weights, e is the 

error vector, I is the identity matrix, and μ is an adjustment factor that regulates the transition 

between the steepest descent behavior (when μ is large) and the Gauss–Newton method (when μ is 

small).

The network architecture was configured with 5 input neurons, one hidden layer, and 6 output 

neurons, corresponding to the final classification classes. Tests were performed by varying the 

number of neurons in the hidden layer to analyze its effect on convergence. The primary loss 

function utilized was the Mean Squared Error (MSE), and the data were partitioned into 70\% for 

training, 15% for validation, and 15% for testing.

https://users.ics.forth.gr/lourakis/levmar/levmar.pdf 
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Results and discussion
Sensor Data Preprocessing and Stability

The data used for training exclude the first 50 readings of the sampling process for each input class, 

as it was observed that the sensor values remained unstable during that time interval, as shown in 

Figure 3.  This initial variability, which stabilizes after the warm-up period, necessitates the exclusion 

of early samples to ensure that the model is trained only on reliable data, thereby maximizing the 

model’s predictive precision.

Figure 3. Variability of the MQ135 sensor during a new measurement.

With respect to preprocessing, this step was integral in ensuring that the training data was 

representative of a sensor behaving at steady state, and did not allow the model to learn 

the surrounding patterns of instability, but rather, the composite characteristics of the target 

substances. Implementing this form of data conditioning is a common practice in sensor-based 

machine learning applications to aid in performance improvements and reliability.

Neural Network Performance and Convergence

The neural network training process demonstrated adequate convergence under conditions 

of gradient stability and minimal variation between the training, validation, and testing sets. 

This stability is evidenced by the progressive reduction of the Mean Squared Error (MSE) over 

375 epochs, reaching a minimum value of 2.8083×10−9 in the validation phase (See Figure 4). 

Furthermore, the final gradient (9.91×10−8) and the error (1.05×10−9) remained within optimal 

convergence ranges, showing no discernible signs of overfitting during the training process. 



Ingeniería y Competitividad, 2025 vol 28(1) e-20215038/ Ene-Abril 11/19

doi:  10.25100/iyc.v28i1.15038

Ultra-Low-Cost Device for Liquor Classification using TinyML Technology

Figure 4. Training performance of the classification model.

Model Regression Analysis

In addition to the reduction of the MSE during training, the regression evaluation between the 

predicted outputs and the target values showed an extremely high model fit. As illustrated in Figure 

5, the correlation coefficients (R) for the training, validation, testing, and total data sets all achieved 

values equal to 1.0.  This result suggests a near-perfect linear relationship between the network 

outputs and the expected target values.

Figure 5. Regression evaluation of the classification model.

The observation of MSE values approaching zero and R = 1 across all data partitions, despite 

the relatively limited size of the dataset, is primarily attributed to two factors: (1) the inherent 

separability of the classes and (2) the efficiency of the Levenberg–Marquardt optimization algorithm. 

Given that the volatile organic compound (VOC) profiles of the seven categories (six liquors 
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and ambient air) are chemically distinct, the neural network was able to learn highly separable 

boundaries with minimal error. 

The non-linear nature of the sensor response, when mapped through the MLP’s hidden layer, likely 

results in a clear projection space, leading to a near-perfect fit on the training and validation sets. 

This behavior has also been reported in similar studies, such as that by Aljohani et al. (32), who 

obtained R = 1 when applying neural networks trained with the Levenberg–Marquardt algorithm 

for analyzing wire coatings in Sisko fluids, using comparable dataset sizes and epochs. Nonetheless, 

considering the constrained size of the present dataset, this result is interpreted as a high capacity 

for pattern fitting under controlled conditions, rather than a definitive validation of the model’s full 

generalization capability to unknown or adulterated samples.

Model Deployment and Resource Utilization

The ‘nntraintool’ generated a mathematical representation of the trained model (via the ‘deploy 

solution – > Matlab Function’ option, which was subsequently adjusted to C/C++ language for 

use in the Arduino™ IDE and final implementation on the ESP32 microcontroller. This adjustment 

process included the syntactic definition of the weight vectors and the input/output normalization 

functions. Figures 6 and 7 present the most relevant excerpts of the code developed in Arduino™ 

IDE version 1.8.19, illustrating these adjustments.

Figure 6. Syntactic adjustment of weight vectors from Matlab Function to C/C++.

https://doi.org/10.1016/j.asej.2021.03.007 
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Figure 7. Syntactic adjustment of the classification model from Matlab Function to C/C++.

The process of loading the model onto the ESP32 demonstrates efficient use of the embedded 

system’s resources. The utilized Flash memory measured 297,525 representing 24.8% of the 

available Flash memory (1.2 MB for the application partition APP), which leaves sufficient margin 

for future expansions.  Regarding RAM usage, it totaled 20,432 bytes, equivalent to 6.3% of the 

327,680 bytes of available RAM, indicating a lightweight implementation with low impact on the 

microcontroller’s resources. The programming latency was low, with 2.3 seconds required for 

writing, indicating a rapid and stable firmware upload, optimizing the model’s execution in an 

embedded environment. 

The estimated execution time of the algorithm on the ESP32 is approximately 2.48 ms. This 

calculation considers that the loaded code occupies 297,525 bytes in Flash memory and that each 

instruction, with an average size of 2 bytes, requires 2 clock cycles for execution. Operating at a 

frequency of 240 MHz, the microcontroller processes 595,050 cycles, which reflects an extremely 

low latency and efficient real-time execution suitable for embedded classification and pattern 

recognition applications. 

The resources utilized in the deployment of the TinyML model on the ESP32 are summarized in 

Table 3. The achievable execution speed and the low resource usage indicate that TinyML does in 

fact provide a capability for advanced machine learning on inexpensive, resource-limited hardware; 

a major benefit for involving the real-time decisions that are often called for in food and beverage 

production.
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Table 3. Summary of resources utilized in the deployment of the TinyML model on the ESP32.

Resource Type Used Value Description

Flash Memory
297525 bytes 

(24.8%)

Space occupied by the code in 

Flash memory.

RAM Memory
20432 bytes 

(6.3%)
RAM used to execute the model.

Programming 

Latency
2.3 seconds

Time it takes to load the code into 

the ESP32.

Execution Time 2.48 ms Latency (Processing time).

System Validation and Performance

The liquor classification system validation was conducted in an environment ensuring stable 

conditions of temperature (22°C) and relative humidity (75%) to minimize external variations. Six 

types of liquors were selected for testing: Medicinal Ethyl Alcohol, Wine, Pisco, Cachaça, Tequila, 

and Whisky. During the testing phase, the embedded system captured real-time data, executed 

the classification model, and displayed the prediction on the Virtual Terminal of the Arduino™ IDE 

configured at a baud rate of 9600. 

To evaluate system stability, 30 measurements were performed per sample, accumulating a total 

of 180 tests, allowing for the analysis of the repeatability and consistency of the predictions. The 

predictions were compared with the expected values, yielding an accuracy percentage that reflects 

the system’s capacity to correctly identify each liquor type. The results indicate an average accuracy 

of 84.4%, with individual values ranging between 80.0% and 86.7%, depending on the specific 

liquor analyzed. In total, out of the 180 samples evaluated, the system correctly classified 152, 

demonstrating solid performance in identifying the different beverages. The validation results of 

the TinyML classification device are shown in Table 4.

Table 4. Validation Results of the TinyML Classification Device

Liquor Type
Total 

Samples

Correctly 

Classified

Accuracy 

(%)
Score 

Ethyl Alcohol 30 26 86.7 0.87

Wine 30 25 83.3 0.83

Pisco 30 26 86.7 0.86

Cachaça 30 25 83.3 0.82

Tequila 30 24 80.0 0.78

Whisky 30 26 86.7 0.88

Overall Average
180 152 84.4 0.84
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Cost-Effectiveness and Comparative Analysis

Finally, a system is considered ultra-low-cost when it prioritizes cost reduction without 

compromising functionality or the required precision. Key criteria include the total cost of hardware, 

commercial availability of components, low energy consumption, ease of implementation, 

and scalability. According to Ciuffoletti (33), low-cost IoT systems achieve a balance between 

performance, simplicity, and economic sustainability, making them appropriate for educational, 

commercial, or resource-limited environments. 

In this context, the developed system meets these criteria by employing accessible hardware—

ESP32 ($5–10 USD) and MQ-135 sensor (≈ $5 USD)—reaching a total cost of approximately $15 

USD. This cost is significantly lower than that of commercial equipment such as the Gasboard-

3210Plus from Cubic Instruments (34) or the analysis system from Anton Paar (35), which often 

exceed $800 USD. 

Figure 8 demonstrates the physical application of the developed TinyML based liquor classification 

device as both compact and practical. Table 5 outlines a direct comparison of estimated costs 

considering the proposed TinyML system and the commercial systems discussed, demonstrating 

the vast cost effectiveness of the developed prototype, but still showcasing a reasonable degree of 

accuracy for its intended use. 

The TinyML device, with this cost-effectiveness and established accuracy of classification, can be 

thought of as a realistic, democratizing technology for beverage authentication and quality control 

in markets or applications focused on cost restriction. The performance/price balance is appealing 

for further adoption in industries that may not have access to elite laboratory equipment.

Figure 8. TinyML-based liquor classification device.

https://doi.org/10.3390/jsan7020019 
https://www.gasanalyzers.com/ProcessGasAnalyzer/info190
https://www.anton-paar.com 
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Table 5. Cost Comparison Between the TinyML-Based Classification System and Some Commercial 

Solutions.

Characteristic TinyML Classifier
Gasboard-

3210Plus

Anton Paar 

Vine Meter

Anton Paar 

Alcohol Meter

Estimated Cost 15 USD 800 USD 2100 USD 1500 USD

Main Hardware

ESP32 

Microcontroller + 

MQ135 Sensor

Gas 

Spectrometry 

Sensors 

Electrochemical 

Sensors

Electrochemical 

Sensors

Required

Software

Code in C/C++ 

(Arduino™ IDE) 

Proprietary 

Software 

Proprietary 

Software 

Proprietary 

Software

Conclusions
The TinyML-based liquor classification system developed in this study is demonstrated to be an 

efficient and cost-effective solution when benchmarked against commercial devices. With an 

estimated hardware cost of approximately $15 USD, the developed prototype significantly exceeds 

the accessibility of costly alternatives, such as the Gasboard-3210Plus ($800 USD) or Anton Paar 

analyzers ($1500–$2100 USD). Furthermore, the rapid inference time of 2.48 ms and minimal 

memory footprint (only 24.8% of available Flash memory utilized) substantiate the system’s viability 

for deployment in resource-constrained embedded systems without compromising performance.

In terms of predictive accuracy, the classifier achieved an average classification rate of 84.4%. The 

accuracy varied depending on the specific liquor type, reaching up to 86.7% for the identification of 

medicinal ethyl alcohol, pisco, and whisky. Although these results are promising for a system relying 

on simple hardware, there remains scope for performance enhancement through the employment 

of more robust machine learning models or the integration of additional sensors capable of 

capturing a wider range of chemical characteristics. Nevertheless, the performance level attained is 

competitive considering the simplicity and low cost of the utilized hardware platform.

This investigation establishes a foundation for future research concerning the application of TinyML 

for substance detection and classification. Model optimization, the use of advanced preprocessing 

techniques, and the adaptation of the system to other types of liquids or gases could substantially 

broaden its applicability in industries such as food processing and quality control. The synergistic 

combination of low cost, ease of implementation, and fast inference times effectively positions 

this technology as a viable and democratizing alternative in environments with strict budgetary or 

resource limitations.
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