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ESP32 microcontroller from Espressif Systems. The objective is to optimize local processing for high precision and low
latency, thereby validating its viability as an accessible solution in resource-constrained environments.

Methodology: The methodology employed an Atrtificial Neural Network (ANN) to classify liquors based on volatile com- Correspondence
pounds detected by the sensor. A dataset comprising 6,000 measurements was collected, and the ANN model was trained
in MATLAB® R2018a. For performance evaluation, the dataset was split into 70% for training, 15% for validation, and 15%
for testing, with the Mean Squared Error (MSE) used as the primary metric.

Results:The deployed ANN model converged after 375 epochs, achieving a minimal Mean Squared Error (MSE) of
1.05x1000 and a correlation coefficient (R) of 1.0. Synthesized onto the ESP32 microcontroller, the model utilized only
24.8% of Flash memory and 6.3% of RAM. The inference time recorded for execution was 2.43 ms, yielding a classification
accuracy of 84.4%. This cost-efficient solution, priced at 15 USD, outperforms existing commercial options.

Conclusions: It achieves an exceptionally fast inference time of 2.43 ms with a minimal operational energy consumption
ranging from 5 mA to 10 mA. This performance, coupled with the low fabrication cost (15 USD), contrasts sharply with
commercial solutions often exceeding hundreds of dollars. Consequently, the system is highly viable for implementation
in embedded quality control and food industry applications.
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Resumen

Objetivo: Disefiar e implementar un sistema de identificacion de licores mediante TinyML, empleando un sensor MQ-135 y un mi-
crocontrolador ESP32 de Espressif Systems. El objetivo es optimizar el procesamiento local para lograr alta precision y baja latencia,
validando asi su viabilidad como solucién accesible en entornos con recursos limitados.

Metodologia: La metodologia empled una Red Neuronal Artificial (RNA) para clasificar licores seguin los compuestos volatiles
detectados por el sensor. Se recopil6é un conjunto de datos con 6000 mediciones y el modelo de RNA se entrend en MATLAB®
R2018a. Para la evaluacion del rendimiento, el conjunto de datos se dividié en un 70 % para entrenamiento, un 15 % para validacién
y un 15 % para pruebas, utilizando el Error Cuadratico Medio (EMM) como métrica principal.

Resultados: El modelo de ANN implementado convergio tras 375 épocas, alcanzando un Error Cuadratico Medio (EMM) minimo de
1,05 x 1000 y un coeficiente de correlacion (R) de 1,0. Sintetizado en el microcontrolador ESP32, el modelo utilizd solo el 24,8 % de
la memoria Flash y el 6,3 % de la RAM. El tiempo de inferencia registrado para la ejecucion fue de 2,43 ms, lo que arroja una preci-
sion de clasificacion del 84,4 %. Esta solucion rentable, con un precio de 15 USD, supera las opciones comerciales existentes.
Conclusiones: Alcanza un tiempo de inferencia excepcionalmente rapido de 2,43 ms con un consumo energético operativo minimo,
de entre 5 mA 'y 10 mA. Este rendimiento, sumado al bajo coste de fabricacion (15 USD), contrasta marcadamente con las soluciones
comerciales, que a menudo superan los cientos de dolares. En consecuencia, el sistema es muy viable para su implementacién en
aplicaciones integradas de control de calidad y de la industria alimentaria.

Palabras clave: TinyML, Clasificacion de licores, Redes neuronales artificiales, sensor MQ135, Microcontrolador ESP32.
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Why was this work conducted?

This work was conducted to demonstrate the capability of Tiny Machine Learning (TinyML) in liquor classification. TinyML enables the execution of machine
learning models on resource-constrained devices, representing a novel solution compared to conventional approaches. The technology was applied to the
classification of six types of alcoholic beverages: medicinal ethyl alcohol, wine, pisco, cachaca, tequila, and whiskey. The core objective was to develop a
system characterized by its ultra-low cost (approximately 15 USD) and high computational efficiency (inference times of 2.48 ms, making it viable for imple-
mentation in embedded devices.

What were the most relevant results?
The results indicated a classification accuracy of 84%, which is comparable to some more expensive commercial solutions, such as the Gasboard-3210Plus
(800 USD) or the Anton Paar analyzers (1,500 — 2,100 USD). With a latency of 32 ms, the system allows for fast and efficient real-time classification.

What do these results contribute?

The developed classification system, with an estimated cost of only 15 USD, represents an accessible alternative for beverage authentication. These findings
suggest its strong potential for application in quality control, adulteration detection, and monitoring within the alcoholic beverage industry.
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Introduction

Currently, the development of low-cost devices for substance classification and detection has
gained significant relevance, particularly in sectors such as the food and beverage industries. Tiny
Machine Learning (TinyML), which enables the execution of machine learning models on resource-
constrained devices, presents itself as an innovative solution for real-time classification tasks (1,2).

This technology offers considerable potential for implementing efficient and accessible systems that
facilitate product identification, such as in the case of liquors, without the need for expensive or
specialized equipment. The determinant factor for selecting TinyML as the core technology in this
work is its capability, as demonstrated by Schizas et al. (3), to enhance performance and efficiency
by processing data locally with minimal latency and significantly reduced energy consumption. By
minimizing data transmission to the cloud, TinyML strengthens security and decreases operational
costs, thereby consolidating its role as the foundation for intelligent, low-cost, and highly
autonomous embedded systems.

A systematic literature review was conducted following the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) methodology to identify TinyML applications in classification
systems. In the identification phase, the keywords “TinyML,” “Classification Machine Learning,” and
“Arduino” were employed in databases available at the Universidad Pedagogica y Tecnoldgica de
Colombia (UPTC, Tunja): ScienceDirect (25), Web of Science (18), Scopus (30), Elsevier (12), and
Google Scholar (40), yielding 125 records. During the screening stage, pertinent titles and abstracts
were considered, and subsequently, in the eligibility phase, only articles with full text available
were analyzed. Ultimately, 12 studies met the inclusion criteria and were incorporated into the final
analysis.

Diverse applications of TinyML and low-cost instrumentation have been explored in the literature.
Tsoukas et al. (4) developed an autonomous TinyML-based system for ammonia leak and smoke
detection, achieving an F1-Score of 0.77 for smoke and 0.70 for ammonia. Bagheri et al. (5)
evaluated TinyML on microcontrollers and environmental sensors for real-time aquatic pollutant
monitoring, highlighting its low cost and cloud-independent autonomy. Atanane et al. (6)
implemented a water leak detection system in buildings using acoustic sensors, accelerometers,
Convolutional Neural Networks (CNN), and TinyML on an Arduino Nano 33 BLE, achieving a
precision of 97.45%.

Regarding liquor classification, Zhou et al. (7) reported 100% accuracy in classifying eight brands of
Chinese liquor using gas sensors and Discriminant Function Analysis (DFA). Zhang et al. (8) utilized
an electronic nose with doped ZnO sensors and Principal Components Analysis (PCA), Cluster
Analysis (CA), and Learning Vector Quantization (LVQ) techniques, achieving up to 94.1% precision
in characterizing Chinese vinegars. Scorsone et al. (9) developed an electronic nose using conductive
polymer (CP) sensors for early fire detection, reducing false alarms through PCA analysis. Related
research includes Zhang et al. (10) who employed zinc oxide (ZnO) gas sensors doped with MnO,,
TiO,, and CO,0

273

reaching a precision of 89.3% with LVQ.
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Furthermore, Wongchoosuk et al. (11) designed a portable electronic nose with hybrid carbon
nanotube-SnO, sensors to detect methanol contamination in whisky, successfully identifying

1% methanol contamination. Other relevant applications include the wireless carbon monoxide
monitoring system (MQ-9 sensors and LPWAN) by Vega-Luna et al. (12), achieving 11.8 km
coverage, and the system by Nagy et al. (13) for measuring seven pollutant gases using MQ-2 and
MQ-5 sensors on a Raspberry® Pi 3.

Finally, Jiang et al. (14) applied Machine Learning models, specifically Random Forest, achieving
over 90% accuracy in predicting white wine quality. Specifically, within the Colombian context,
Botero-Valencia et al. (15) successfully applied TinyML in an environmental monitoring station,
achieving a 2.67% improvement in precision. This demonstrated a practical success case of utilizing
the specified low-resource microcontrollers for high-impact environmental sensing in local settings,
further justifying the architectural approach taken in the present study.

The relevant results of the literature review, highlighting the year, application, and location, are
shown in Table 1.

Table 1. Literature Review Results

Year Authors Application Microcontroller Measured Variables Sensors Used Country
Tsoukas, V.etal.  Gas leak e .
2023 i Not specified Smoke, ammonia Gas sensors Greece
4) detection
) Environmental .
Bagheri, M. et al. L . Environmental
2023 monitoring in Not specified Water pollutants Iran
(5) sensors
water
Atanane, O.etal.  Water leak Arduino™ Nano 0 , Accelerometers,
2023 : Vibrations, acoustics : Morocco
(6) detection 33 BLE acoustic sensors

Classification of . ) _
2011 Zhou, Q. et al. (7) ) ) Not specified Volatile compounds  MOX sensor China
Chinese liquors

Classification

Doped ZnO
2006 Zhang, Q. et al. (8) of Chinese Not specified Volatile compounds seniors China
vinegars
Scorsone, E. et al.  Early fire . Conducting
2006 . Not specified Smoke Italy
(9) detection polymer sensors
Zhang, Q. et al. Classification of . : Doped ZnO :
2005 9.Q i . Not specified Volatile compounds P China
(10) Chinese liquors sensors
Methanol
Wongchoosuk, C. . . CNT-SnO, ,
2010 detection in Not specified Methanol Thailand
etal. (11) . sensors
whiskey
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Year Authors Application Microcontroller Measured Variables Sensors Used Country
Carbon
Vega-Luna, J. I et . . .
2017 al. (12) monoxide PIC18F8722 Carbon monoxide MQ-9 sensor Mexico
’ monitoring
Nagy, A. S. et al Simultaneous Gases, temperature MQ-2, MQ-5
2020 9y, A > et at gas Raspberry® Pi 3 > emp ' ' ' Cuba
(13) humidity DHT11
measurement
Wine qualit Physicochemical
2023 Jiang, X. et al. (14) ; q. y Not applicable Y ) Not applicable ~ China
prediction properties
. Environmental SPS30, SCD30,
Botero-Valencia, ) . L .
2023 J.s. etal (15) pollution ESP32-CAM Air, noise, light SCD40, BME680, Colombia
.S.etal.
monitoring BH1750, AS7341

Complementary research has explored the application of TinyML across various distinct areas.
Hayajneh et al. (16) proposed a framework based on TinyML and transfer learning to predict soil
moisture in smart agriculture, utilizing drones and IoT sensors. Karras et al. (17) developed TinyML
algorithms for data management in IoT, enhancing data cleaning, compression, and storage, with
implementation on the Raspberry® Pi platforms.

Schizas et al. (3) conducted a systematic review on TinyML in low-power IoT deployments,
highlighting benefits concerning transition, bandwidth, security, privacy, latency, energy efficiency,
and low cost. Dutta and Bharali (18) analyzed the integration of TinyML in IoT, emphasizing
advantages such as cost reduction and cloud independence, alongside associated hardware
challenges. Srinivasagan et al. (19) designed a TinyML sensor to estimate the shelf life of fresh dates
using VisNIR spectrometry.

Capogrosso et al. (20) classified development approaches into three categories: algorithmic,
hardware-centric, and co-design. Banbury et al. (21) proposed benchmarks to evaluate TinyML
platforms. Hymel et al. (22) presented Edge Impulse, a platform simplifying model development and
deployment. Finally, Lé et al. (23) reviewed optimization techniques in neural networks for resource-
limited microcontrollers. The relevant applications using TinyML technology are shown in Table 2.
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Table 2. Literature Review Results on TinyML Applications.

Year Authors Application Country
: Soil moisture prediction in smart Jordan / United

2023 Hayajneh, A. M. et al. (16) ; . . .
agriculture. UAVs, IoT devices TinyML Kingdom
Big Data Management in IoT with TinyML

2024 Karras, A. et al. (17) . Greece
Algorithms

2022 Schizas, N. et al. (3) TinyML in low-power IoT deployments Greece

2021 Dutta, L. y Bharali, S. (18)  TinyML integration in IoT India

2023

2023

2020

2023

2023

Srinivasagan, R. et al. (19)

Capogrosso, L. et al. (20)

Banbury, C. R. et al. (21)

Hymel, S. et al. (22)

Le, M. T. et al. (23)

Shelf life estimation of fresh dates
Review of TinyML Learning Algorithms

Benchmarking TinyML platforms

Edge Impulse platform for TinyML
Deployment

Optimization techniques for neural
networks on microcontrollers for TinyML

Saudi Arabia /
Egypt

Italy

Not Specified

Not Specified

France

With this background, this study aims to propose an ultra-low-cost TinyML based device with the
goal of classifying alcoholic beverages. Alcoholic beverages is a relevant context where speed

and accuracy is critical since the importance around making the right classification within order

of terms. The aim is to create an accurate, portable, and easy to follow path to classify types of
alcoholic beverages based on conventional sensors and algorithms. The present work addresses
the identified gap by proposing an ultra-low-cost device based on TinyML technology for liquor

classification, an application where both precision and speed are critical factors.

The term ultra-low-cost characterizes embedded systems whose total cost of materials (Bill of

Materials — BOM) is minimal, prioritizing economical components without compromising essential

system functionality. The solution is implemented on the ESP32 microcontroller from Espressif
Systems, selected specifically due to its low market cost (approximately 8 USD), wide market

availability, and extensive developer documentation. This microcontroller features a dual-core
Tensilica LX6 processor (up to 240 MHz), 520 KB of SRAM, 4 MB of Flash memory, and UART, SP],
I2C, and 12-bit ADC interfaces.

This architecture allows for the efficient execution of machine learning models despite its limited

computational resources, integrating low-cost sensors to develop an accurate and economically

accessible tool for alcoholic beverage identification. This proposed system is anticipated to

contribute to both industrial operational efficiency and the democratization of advanced
technologies in contexts with budgetary constraints (24,25).
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Methodology

The classification system is based on the MQ-135 gas sensor and an Artificial Neural Network
(ANN). The MQ-135 sensor is a widely adopted metal oxide semiconductor (MOS) device capable
of detecting various gases, including carbon monoxide (CO), alcohol, carbon dioxide (CO,), toluene
(C;Hg), ammonia (NH,), alcohol, carbon dioxide (26). The sensor’s operating principle relies on the
variation in the resistance of the sensitive material R_in response to gas concentration.

Calibration is performed following the manufacturer's recommendations to determine the
coefficient R, which corresponds to the sensor’s baseline resistance in clean air. This R value is
crucial for normalizing the sensor response, as the ratio R_/ R isolates the resistance change
specifically due to the presence of target gas concentrations. This normalization is essential

for validating the model’s robustness against typical ambient fluctuations, such as changes in
temperature and humidity. The relationship between the measured resistance R_and the gas
concentration C is expressed by a logarithmic model derived from the sensor’s characteristic curve,
as presented in Equation 1.

R, s
=4O (1)

where R_is the sensor resistance at a gas concentration C, R is the resistance in clean air, and A
with B are experimentally determined constants specific to the type of gas.

The ANNs were employed to identify liquors based on their distinct volatile organic compound
(VOC) signatures, resulting in robust and high-precision models suitable for quality control

and beverage authentication. Specifically, the system is designed to perform quality control by
verifying the VOC signature against a known standard and beverage authentication by detecting
unauthorized variations, such as dilution or the presence of adulterants like methanol. In general
terms, a Multilayer Perceptron (MLP) network can be represented by the following expressions
shown in Equations 2 and 3.

Z. = w,.x;+ b (2)

Vi = f(2) 3)
where x represents the input variable corresponding to the voltage value obtained from the MQ-

135 sensor, w; are the synaptic weights, bj are the associated biases, and y, is the activation function
(27).

The neural network training was conducted in MATLAB® R2018a utilizing the 'nntraintool’, which
simplifies the configuration and training via algorithms such as backpropagation and provides
graphical tools for evaluating model performance (28). The optimized model was then implemented
on an ESP32 board, a microcontroller with performance adequate for IoT, TinyML, and Edge
Processing applications. Edge processing is understood as the capacity to execute analysis and
decision-making tasks directly on the device without reliance on a continuous cloud connection
(29).
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The ESP32 development board integrates a dual-core Tensilica Xtensa LX6 processor operating at
up to 240 MHz, 520 KB of SRAM, and 4 MB$ of Flash memory, along with communication interfaces
such as Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), Universal Asynchronous
Receiver-Transmitter (UART), and a 12-bit Analog-to-Digital Converter (ADC). This architecture
enables efficient integration with sensors and data acquisition modules (30). Figure 1 shows the
block diagram of the proposed TinyML system for liquor classification.

Figure 1. The development workflow of the TinyML liquor classifier.

The connection with the MQ-135 sensor was managed through the ‘"MQUnifiedsensor.h’ library
in the standard Arduino™ IDE, allowing for value reading and parameter configuration for each
measured gas.

The dataset for training the neural network was constructed from MQ-135 sensor measurements,
capturing the concentration of volatile compounds such as alcohol, hexane, carbon monoxide (CO),
benzene, and Liquefied Petroleum Gas (LPG). The acquisition process involved samples of ambient
air, medicinal ethyl alcohol, wine, pisco, cachaga, tequila, and whisky. Reference voltage values and
the R, coefficient were recorded to monitor sensor stability.

The final classification system was designed with seven output categories: Alcohol, Wine, Pisco,
Cachaca, Tequila, Whisky, and Ambient Air (used as the reference). To ensure robust data
representation, 100 samples were collected for each of the seven categories, with 10 repetitions for
each sample to account for signal capture variation. This generated an initial total of 7 categories x
100 samples x 10 repetitions, resulting in 7,000 records. As noted in preliminary analysis, the first

50 initial readings were discarded due to the settling time and inherent instability of the MQ-135
sensor during warm-up. Consequently, the final usable dataset consisted of 6,950 records. The input
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features captured the concentration of the various volatile compounds, and the output was labeled
using a binary scheme corresponding to the presence of each liquor type or ambient air.

Figure 2 gives an example of a portion of the dataset structure within Excel™, with each capture and
the corresponding classification in rows.

Figure 2. Structure of dataset for training the TinyML liquor classification system.

The neural network training was conducted in MATLAB® R2018a using the 'nntraintool’, facilitating
configuration and training via the Levenberg—Marquardt algorithm (31). This algorithm leverages a
combination of the steepest descent and Gauss—Newton methods to efficiently minimize the Mean
Squared Error (MSE). Mathematically, the weight update is defined as shown in Equation 4.

Aw = —|]T]+ pI| )T e 4)

where J is the Jacobian matrix of the error partial derivatives with respect to the weights, e is the
error vector, Iis the identity matrix, and u is an adjustment factor that regulates the transition
between the steepest descent behavior (when p is large) and the Gauss—Newton method (when y is
small).

The network architecture was configured with 5 input neurons, one hidden layer, and 6 output
neurons, corresponding to the final classification classes. Tests were performed by varying the
number of neurons in the hidden layer to analyze its effect on convergence. The primary loss
function utilized was the Mean Squared Error (MSE), and the data were partitioned into 70\% for
training, 15% for validation, and 15% for testing.
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Results and discussion

Sensor Data Preprocessing and Stability

The data used for training exclude the first 50 readings of the sampling process for each input class,
as it was observed that the sensor values remained unstable during that time interval, as shown in
Figure 3. This initial variability, which stabilizes after the warm-up period, necessitates the exclusion
of early samples to ensure that the model is trained only on reliable data, thereby maximizing the

model’s predictive precision.

Figure 3. Variability of the MQ135 sensor during a new measurement.

With respect to preprocessing, this step was integral in ensuring that the training data was
representative of a sensor behaving at steady state, and did not allow the model to learn

the surrounding patterns of instability, but rather, the composite characteristics of the target
substances. Implementing this form of data conditioning is a common practice in sensor-based
machine learning applications to aid in performance improvements and reliability.

Neural Network Performance and Convergence

The neural network training process demonstrated adequate convergence under conditions
of gradient stability and minimal variation between the training, validation, and testing sets.
This stability is evidenced by the progressive reduction of the Mean Squared Error (MSE) over
375 epochs, reaching a minimum value of 2.8083x107° in the validation phase (See Figure 4).
Furthermore, the final gradient (9.91x107%) and the error (1.05x10-°) remained within optimal
convergence ranges, showing no discernible signs of overfitting during the training process.
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Figure 4. Training performance of the classification model.

Model Regression Analysis

In addition to the reduction of the MSE during training, the regression evaluation between the
predicted outputs and the target values showed an extremely high model fit. As illustrated in Figure
5, the correlation coefficients (R) for the training, validation, testing, and total data sets all achieved
values equal to 1.0. This result suggests a near-perfect linear relationship between the network
outputs and the expected target values.

Figure 5. Regression evaluation of the classification model.

The observation of MSE values approaching zero and R = 1 across all data partitions, despite
the relatively limited size of the dataset, is primarily attributed to two factors: (1) the inherent

separability of the classes and (2) the efficiency of the Levenberg—Marquardt optimization algorithm.

Given that the volatile organic compound (VOC) profiles of the seven categories (six liquors
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and ambient air) are chemically distinct, the neural network was able to learn highly separable
boundaries with minimal error.

The non-linear nature of the sensor response, when mapped through the MLP’s hidden layer, likely
results in a clear projection space, leading to a near-perfect fit on the training and validation sets.
This behavior has also been reported in similar studies, such as that by Aljohani et al. (32), who
obtained R = 1 when applying neural networks trained with the Levenberg—Marquardt algorithm
for analyzing wire coatings in Sisko fluids, using comparable dataset sizes and epochs. Nonetheless,
considering the constrained size of the present dataset, this result is interpreted as a high capacity
for pattern fitting under controlled conditions, rather than a definitive validation of the model’s full
generalization capability to unknown or adulterated samples.

Model Deployment and Resource Utilization

The 'nntraintool’ generated a mathematical representation of the trained model (via the ‘deploy
solution — > Matlab Function’ option, which was subsequently adjusted to C/C++ language for
use in the Arduino™ IDE and final implementation on the ESP32 microcontroller. This adjustment
process included the syntactic definition of the weight vectors and the input/output normalization
functions. Figures 6 and 7 present the most relevant excerpts of the code developed in Arduino™
IDE version 1.8.19, illustrating these adjustments.

Figure 6. Syntactic adjustment of weight vectors from Matlab Function to C/C++.
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Figure 7. Syntactic adjustment of the classification model from Matlab Function to C/C++.

The process of loading the model onto the ESP32 demonstrates efficient use of the embedded
system’s resources. The utilized Flash memory measured 297,525 representing 24.8% of the
available Flash memory (1.2 MB for the application partition APP), which leaves sufficient margin
for future expansions. Regarding RAM usage, it totaled 20,432 bytes, equivalent to 6.3% of the
327,680 bytes of available RAM, indicating a lightweight implementation with low impact on the
microcontroller’s resources. The programming latency was low, with 2.3 seconds required for
writing, indicating a rapid and stable firmware upload, optimizing the model’s execution in an
embedded environment.

The estimated execution time of the algorithm on the ESP32 is approximately 2.48 ms. This
calculation considers that the loaded code occupies 297,525 bytes in Flash memory and that each
instruction, with an average size of 2 bytes, requires 2 clock cycles for execution. Operating at a
frequency of 240 MHz, the microcontroller processes 595,050 cycles, which reflects an extremely
low latency and efficient real-time execution suitable for embedded classification and pattern
recognition applications.

The resources utilized in the deployment of the TinyML model on the ESP32 are summarized in
Table 3. The achievable execution speed and the low resource usage indicate that TinyML does in
fact provide a capability for advanced machine learning on inexpensive, resource-limited hardware;
a major benefit for involving the real-time decisions that are often called for in food and beverage
production.
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Table 3. Summary of resources utilized in the deployment of the TinyML model on the ESP32.

Resource Type Used Value Description

Flash Memory 297525 bytes Space occupied by the code in
(24.8%) Flash memory.
20432 bytes

RAM Memory RAM used to execute the model.
(6.3%)

Programmin Time it takes to load the code into

J ng 2.3 seconds me | I
Latency the ESP32.
Execution Time 2.48 ms Latency (Processing time).

System Validation and Performance

The liquor classification system validation was conducted in an environment ensuring stable
conditions of temperature (22°C) and relative humidity (75%) to minimize external variations. Six
types of liquors were selected for testing: Medicinal Ethyl Alcohol, Wine, Pisco, Cachaga, Tequila,
and Whisky. During the testing phase, the embedded system captured real-time data, executed
the classification model, and displayed the prediction on the Virtual Terminal of the Arduino™ IDE
configured at a baud rate of 9600.

To evaluate system stability, 30 measurements were performed per sample, accumulating a total

of 180 tests, allowing for the analysis of the repeatability and consistency of the predictions. The
predictions were compared with the expected values, yielding an accuracy percentage that reflects
the system'’s capacity to correctly identify each liquor type. The results indicate an average accuracy
of 84.4%, with individual values ranging between 80.0% and 86.7%, depending on the specific
liquor analyzed. In total, out of the 180 samples evaluated, the system correctly classified 152,
demonstrating solid performance in identifying the different beverages. The validation results of
the TinyML classification device are shown in Table 4.

Table 4. Validation Results of the TinyML Classification Device

. Total Correctly Accuracy
Liquor Type e Score
Samples Classified (%)
Ethyl Alcohol 30 26 86.7 0.87
Wine 30 25 83.3 0.83
Pisco 30 26 86.7 0.86
Cachaca 30 25 83.3 0.82
Tequila 30 24 80.0 0.78
Whisky 30 26 86.7 0.88
Overall Average
180 152 84.4 0.84
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Cost-Effectiveness and Comparative Analysis

Finally, a system is considered ultra-low-cost when it prioritizes cost reduction without
compromising functionality or the required precision. Key criteria include the total cost of hardware,
commercial availability of components, low energy consumption, ease of implementation,

and scalability. According to Ciuffoletti (33), low-cost IoT systems achieve a balance between
performance, simplicity, and economic sustainability, making them appropriate for educational,
commercial, or resource-limited environments.

In this context, the developed system meets these criteria by employing accessible hardware—
ESP32 ($5-10 USD) and MQ-135 sensor (~ $5 USD)—reaching a total cost of approximately $15
USD. This cost is significantly lower than that of commercial equipment such as the Gasboard-
3210Plus from Cubic Instruments (34) or the analysis system from Anton Paar (35), which often
exceed $800 USD.

Figure 8 demonstrates the physical application of the developed TinyML based liquor classification
device as both compact and practical. Table 5 outlines a direct comparison of estimated costs
considering the proposed TinyML system and the commercial systems discussed, demonstrating
the vast cost effectiveness of the developed prototype, but still showcasing a reasonable degree of
accuracy for its intended use.

The TinyML device, with this cost-effectiveness and established accuracy of classification, can be
thought of as a realistic, democratizing technology for beverage authentication and quality control
in markets or applications focused on cost restriction. The performance/price balance is appealing
for further adoption in industries that may not have access to elite laboratory equipment.

Figure 8. TinyML-based liquor classification device.
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Table 5. Cost Comparison Between the TinyML-Based Classification System and Some Commercial

Solutions.
L. . . Gasboard- Anton Paar Anton Paar
Characteristic TinyML Classifier .
3210Plus Vine Meter Alcohol Meter
Estimated Cost 15 USD 800 USD 2100 USD 1500 USD
ESP32 Gas i i
) . Electrochemical Electrochemical
Main Hardware Microcontroller +  Spectrometry
Sensors Sensors
MQ135 Sensor Sensors
. Proprietary Proprietary
Required Code in C/C++ Proprietary Software Software
Software (Arduino™ IDE) Software
Conclusions

The TinyML-based liquor classification system developed in this study is demonstrated to be an
efficient and cost-effective solution when benchmarked against commercial devices. With an
estimated hardware cost of approximately $15 USD, the developed prototype significantly exceeds
the accessibility of costly alternatives, such as the Gasboard-3210Plus ($800 USD) or Anton Paar
analyzers ($1500-$2100 USD). Furthermore, the rapid inference time of 2.48 ms and minimal
memory footprint (only 24.8% of available Flash memory utilized) substantiate the system’s viability
for deployment in resource-constrained embedded systems without compromising performance.

In terms of predictive accuracy, the classifier achieved an average classification rate of 84.4%. The
accuracy varied depending on the specific liquor type, reaching up to 86.7% for the identification of
medicinal ethyl alcohol, pisco, and whisky. Although these results are promising for a system relying
on simple hardware, there remains scope for performance enhancement through the employment
of more robust machine learning models or the integration of additional sensors capable of
capturing a wider range of chemical characteristics. Nevertheless, the performance level attained is
competitive considering the simplicity and low cost of the utilized hardware platform.

This investigation establishes a foundation for future research concerning the application of TinyML
for substance detection and classification. Model optimization, the use of advanced preprocessing
techniques, and the adaptation of the system to other types of liquids or gases could substantially
broaden its applicability in industries such as food processing and quality control. The synergistic
combination of low cost, ease of implementation, and fast inference times effectively positions

this technology as a viable and democratizing alternative in environments with strict budgetary or
resource limitations.

Credit authorship contribution statement

Conceptualization — Ideas: Ilber Ruge, Ingrid Ortiz, Fabian Jiménez; Data Curation: Ingrid Ortiz;
Formal Analysis: Ilber Ruge, Fabian Jiménez; Research: Ilber Ruge, Ingrid Ortiz, Fabian Jiménez;

Ingenieria y Competitividad, 2025 vol 28(1) e-20215038/ Ene-Abril

16/19

doi: 10.25100/iyc.v28i1.15038



Ultra-Low-Cost Device for Liquor Classification using TinyML Technology

Methodology: Ilber Ruge; Supervision: Ingrid Ortiz; Validation: Ilber Ruge, Ingrid Ortiz; Writing —
Preparation: Fabian Jiménez; Writing - Revision and Editing: Ilber Ruge; Preparation: Ilber Ruge,
Ingrid Ortiz, Fabian Jiménez.

Ethical implications: The authors have no ethical implications that should be declared in the writing
and publication of this article.

Conflicts of Interest: The authors do not declare.

References

1. Saraan A, Hussain N, Zahara SM. Tiny Machine Learning (TinyML) Systems [Internet]. 2024 [cited
in mar 2025]. Available in: https://www.researchgate.net/publication/386579238 Tiny_Machine
Learning_TinyML_Systems

2. Murshed MGS, Murphy C, Hou D, Khan N, Ananthanarayanan G, Hussain F. Machine learning at
the network edge: A survey. ACM Comput Surv [Internet]. 2021 [cited in mar 2025]; 54(8):Article
170, 1-37. https://doi.org/10.1145/3469029

3. Schizas N, et al. TinyML for ultra-low power Al and large scale IoT deployments: A systematic
review. 2022. https://doi.org/10.3390/fi14120363

4. Tsoukas V, Gkogkidis A, Boumpa E, Papafotikas S, Kakarountas A. A gas leakage detection
device based on the technology of TinyML. En: 2023 12th International Conference on Modern
Circuits and Systems Technologies (MOCAST); 2023. p. 1-4. IEEE. https://doi.org/10.1109/
MOCAST54814.2022.9837510

5. Bagheri M, Farshforoush N, Bagheri K, Shemirani Al Application of TinyML in water environments.

Environ Monit Assess. 2023;195(5):1-14.

6. Atanane O, Mourhir A, Benamar N, Zennaro M. Smart buildings water leakage detection using
TinyML. Sensors. 2023;23(9):4473. https://doi.org/10.3390/s23229210

7. Zhou Q, Zhang S, Li Y, Xie C, Li H, Ding X. A Chinese liquor classification method based on liquid
evaporation and a metal oxide gas sensor. Sens Actuators B Chem. 2011;158(1):241-6. https://doi.
org/10.1016/j.snb.2011.08.015

8. Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, et al. Identification and pattern recognition
analysis of Chinese liquors by doped nano ZnO gas sensor array. Sens Actuators B Chem.
2005;110(2):370-6. https://doi.org/10.1016/j.snb.2005.02.017

9. Scorsone E, Pisanelli AM, Persaud KC. Development of an electronic nose for fire detection. Sens
Actuators B Chem. 2006;116(1-2):55-61. https://doi.org/10.1016/j.snb.2005.12.059

10. Zhang Q, Zhang S, Xie C, Zeng D, Fan C, Li D. Characterization of Chinese vinegars by electronic
nose. Sens Actuators B Chem. 2006;120(2):694-9. https://doi.org/10.1016/j.snb.2006.01.007

11. Wongchoosuk C, Wisitsoraat A, Tuantranont A, Kerdcharoen T. Portable electronic nose based
on carbon nanotube-SnO, gas sensors and its application for detection of methanol contamination
in whiskeys. Sens Actuators B Chem. 2010;147(2):392-9. https://doi.org/10.1016/j.snb.2010.03.072

12. Vega-Luna JI, Lagos-Acosta MA, Salgado-Guzman G. Monitoreo de concentracion de
mondxido de carbono usando tecnologia long-range. In: Congreso Internacional sobre Innovacion
y Desarrollo Tecnoldgico (CIINDET); 2017. p. 1-6. IEEE. https://doi.org/10.17163/ings.n18.2017.09

Ingenieria y Competitividad, 2025 vol 28(1) e-20215038/ Ene-Abril

17/19

doi: 10.25100/iyc.v28i1.15038


https://www.researchgate.net/publication/386579238_Tiny_Machine_Learning_TinyML_Systems
https://www.researchgate.net/publication/386579238_Tiny_Machine_Learning_TinyML_Systems
https://doi.org/10.1145/3469029
https://doi.org/10.3390/fi14120363
https://doi.org/10.1109/MOCAST54814.2022.9837510
https://doi.org/10.1109/MOCAST54814.2022.9837510
https://doi.org/10.3390/s23229210
https://doi.org/10.1016/j.snb.2011.08.015
https://doi.org/10.1016/j.snb.2011.08.015
https://doi.org/10.1016/j.snb.2005.02.017
https://doi.org/10.1016/j.snb.2005.12.059
https://doi.org/10.1016/j.snb.2006.01.007
https://doi.org/10.1016/j.snb.2010.03.072
https://doi.org/10.17163/ings.n18.2017.09

Ultra-Low-Cost Device for Liquor Classification using TinyML Technology

13. Nagy AS, Polanco Risquet A, Martinez de la Cotera OL, Carralero Ibargollen O. Medicién
simultanea de gases con sensores MQ. RIELAC Revista de Ingenieria Electrénica, Automatica y
Comunicaciones. 2020;41(1):34-43. Disponible en: http://scielo.sld.cu/pdf/eac/v41n1/1815-5928-
eac-41-01-34.pdf

14. Jiang X, Liu X, Wu Y, Yang D. White wine quality prediction and analysis with machine learning
techniques. Highlights in Science, Engineering and Technology. 2023;39(1):321-326. doi: https://doi.
org/10.54097/hset.v39i.6548

15. Botero-Valencia JS, Barrantes-Toro C, Marquez-Viloria D, Pearce JM. Low-cost air, noise,
and light pollution measuring station with wireless communication and TinyML. HardwareX.
2023;14:e00422. https://doi.org/10.1016/j.0hx.2023.e00477

16. Hayajneh AM, et al. Tiny Machine Learning on the edge: A framework for transfer learning
empowered UAV-assisted smart farming. 2023. https://doi.org/10.1049/smc2.12072

17. Karras A, et al. TinyML algorithms for big data management in large-scale IoT systems. 2024.

https://doi.org/10.3390/fi16020042

18. Dutta L, Bharali S. TinyML meets IoT: A comprehensive survey. 2021. https://doi.org/10.1016/].
i0t.2021.100461

19. Srinivasagan R, Mohammed M, Alzahrani A. TinyML-Sensor for shelf life estimation of fresh date
fruits. Sensors. 2023;23(16):7081 https://doi.org/10.3390/s23167081

20. Capogrosso L, Cunico F, Cheng DS, Fummi F, Cristani M. A machine learning-oriented
survey on Tiny Machine Learning. IEEE Access. 2024;12:3365349. https://doi.org/10.1109/
ACCESS.2024.3365349

21. Banbury CR, Zhou W, Fedorov I, Matas R, Thakker U, Gope D, et al. Benchmarking TinyML
systems: Challenges and direction. arXiv preprint arXiv:2003.04821. 2020. Available in: https://arxiv.
org/abs/2003.04821

22. Hymel S, Banbury CR, Montemerlo R, Reddi VJ. Edge Impulse: An MLOps platform for
Tiny Machine Learning. arXiv preprint arXiv:2212.03332. 2023. Available in: https://arxiv.org/
abs/2212.03332

23. Lé MT, Bouzid Y, Miloud B, Hajjaji MA, Bensrhair A. Efficient neural networks for Tiny Machine
Learning: A comprehensive review. arXiv preprint arXiv:2311.11883. 2023. Available in: https://arxiv.

org/abs/2311.11883

24. Ray PP. A review on TinyML: State-of-the-art and prospects. J King Saud Univ Comput Inf Sci.
2022;34(4):1595-623. https://doi.org/10.1016/j.iksuci.2021.11.019

25.Sze V, Chen Y, Yang T. Efficient processing of deep neural networks: A tutorial and survey. Proc
IEEE. 2017;105(12):2295-329. https://doi.org/10.1109/JPROC.2017.2761740

26. Henan Hanwei Electronics Co. Ltd. Technical Data MQ-135 Gas Sensor. Hanwei Electronics. 2013.

Available in: https://www.electronicoscaldas.com/datasheet/MQ-135_Hanwei.pdf

27. Biglari A, Tang W. A review of embedded machine learning based on hardware, application, and
sensing scheme. Sensors. 2023;23(4):2131. https://doi.org/10.3390/s23042131

28. MathWorks. nntraintool Neural network training tool - MATLAB. 2025 Feb 19 [cited in Mar
2025]. Available in: https://www.mathworks.com/help/deeplearning/ref/nntraintool.html

29. Bagheri M, Farshforoush N, Bagheri K, Shemirani Al Applications of artificial intelligence
technologies in water environments: From basic techniques to novel tiny machine learning systems.
Process safety and environmental Protection. 2023;180(1):10-22. doi: https://doi.org/10.1016/].

psep.2023.09.072

Ingenieria y Competitividad, 2025 vol 28(1) e-20215038/ Ene-Abril

18/19

doi: 10.25100/iyc.v28i1.15038


http://scielo.sld.cu/pdf/eac/v41n1/1815-5928-eac-41-01-34.pdf
http://scielo.sld.cu/pdf/eac/v41n1/1815-5928-eac-41-01-34.pdf
https://doi.org/10.54097/hset.v39i.6548
https://doi.org/10.54097/hset.v39i.6548
https://doi.org/10.1016/j.ohx.2023.e00477
https://doi.org/10.1049/smc2.12072
https://doi.org/10.3390/fi16020042
https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.3390/s23167081
https://doi.org/10.1109/ACCESS.2024.3365349
https://doi.org/10.1109/ACCESS.2024.3365349
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/2212.03332
https://arxiv.org/abs/2212.03332
https://arxiv.org/abs/2311.11883
https://arxiv.org/abs/2311.11883
https://doi.org/10.1016/j.jksuci.2021.11.019
https://doi.org/10.1109/JPROC.2017.2761740
https://www.electronicoscaldas.com/datasheet/MQ-135_Hanwei.pdf
https://doi.org/10.3390/s23042131
https://www.mathworks.com/help/deeplearning/ref/nntraintool.html
https://doi.org/10.1016/j.psep.2023.09.072
https://doi.org/10.1016/j.psep.2023.09.072

Ultra-Low-Cost Device for Liquor Classification using TinyML Technology

30. Espressif Systems. ESP32 series datasheet. Espressif Systems. 2025 Feb 19 [cited in Mar 2025].
Available in: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

31. Lourakis MIA. A Brief Description of the Levenberg-Marquardt Algorithm Implemented by
levmar. Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH);

Heraklion, Greece; 2005. Disponible en: https://users.ics.forth.gr/lourakis/levmar/levmar.pdf

32. Aljohani JL, Alaidaorous ES, Raja MAZ, Alhothuali MS, Shoaib M. Backpropagation of Levenberg-
Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid. Ain Shams
Engineering Journal. 2021; 12(4): 4133-4143. doi: https://doi.org/10.1016/j.ase}.2021.03.007

33. Ciuffoletti A. Low-Cost IoT: A Holistic Approach. Journal of Sensor and Actuator Networks. 2018;
7:19. https://doi.org/10.3390/jsan7020019

34. Cubic Instruments. Portable Headspace Analyzer (MAP) Gasboard-3210Plus. 2025 Mar 5 [citado
2025 Mar 5]. Available in: https://www.gasanalyzers.com/ProcessGasAnalyzer/info190

35. Anton Paar. Alcohol and Extract Meter for the Beverage Industry. 2025 Mar 5 [cited in Mar 2025].
Available in: https://www.anton-paar.com

Ingenieria y Competitividad, 2025 vol 28(1) e-20215038/ Ene-Abril 19/19

doi: 10.25100/iyc.v28i1.15038


https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://users.ics.forth.gr/lourakis/levmar/levmar.pdf
https://doi.org/10.1016/j.asej.2021.03.007
https://doi.org/10.3390/jsan7020019
https://www.gasanalyzers.com/ProcessGasAnalyzer/info190
https://www.anton-paar.com

	Abstract
	Correspondencia:
	_Hlk216285437
	_Hlk216286688
	_Hlk216289555
	_Hlk216289585
	_Hlk216289657

