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Objective: To design and implement a liquor identification system using TinyML, employing an MQ-135 sensor and an ESP32 micro-
controller from Espressif Systems. The objective is to optimize local processing for high precision and low latency, thereby validating 
its viability as an accessible solution in resource-constrained environments.
Methodology: The methodology employed an Artificial Neural Network (ANN) to classify liquors based on volatile compounds 
detected by the sensor. A dataset comprising 6,000 measurements was collected, and the ANN model was trained in MATLAB® 
R2018a. For performance evaluation, the dataset was split into 70% for training, 15% for validation, and 15% for testing, with the 
Mean Squared Error (MSE) used as the primary metric.
Results:The deployed ANN model converged after 375 epochs, achieving a minimal Mean Squared Error (MSE) of 1.05×10⁻⁹ and 
a correlation coefficient (R) of 1.0. Synthesized onto the ESP32 microcontroller, the model utilized only 24.8% of Flash memory and 
6.3% of RAM. The inference time recorded for execution was 2.43 ms, yielding a classification accuracy of 84.4%. This cost-efficient 
solution, priced at 15 USD, outperforms existing commercial options.
Conclusions: It achieves an exceptionally fast inference time of 2.43 ms with a minimal operational energy consumption ranging 
from 5 mA to 10 mA. This performance, coupled with the low fabrication cost (15 USD), contrasts sharply with commercial solutions 
often exceeding hundreds of dollars. Consequently, the system is highly viable for implementation in embedded quality control and 
food industry applications.

Resumen

Objetivo: Diseñar e implementar un sistema de identificación de licores mediante TinyML, empleando un sensor MQ-
135 y un microcontrolador ESP32 de Espressif Systems. El objetivo es optimizar el procesamiento local para lograr alta 
precisión y baja latencia, validando así su viabilidad como solución accesible en entornos con recursos limitados.
Metodología: La metodología empleó una Red Neuronal Artificial (RNA) para clasificar licores según los compuestos vo-
látiles detectados por el sensor. Se recopiló un conjunto de datos con 6000 mediciones y el modelo de RNA se entrenó 
en MATLAB® R2018a. Para la evaluación del rendimiento, el conjunto de datos se dividió en un 70 % para entrenamien-
to, un 15 % para validación y un 15 % para pruebas, utilizando el Error Cuadrático Medio (EMM) como métrica principal. 
Resultados: El modelo de ANN implementado convergió tras 375 épocas, alcanzando un Error Cuadrático Medio (EMM) 
mínimo de 1,05 × 10⁻⁹ y un coeficiente de correlación (R) de 1,0. Sintetizado en el microcontrolador ESP32, el modelo 
utilizó solo el 24,8 % de la memoria Flash y el 6,3 % de la RAM. El tiempo de inferencia registrado para la ejecución fue 
de 2,43 ms, lo que arroja una precisión de clasificación del 84,4 %. Esta solución rentable, con un precio de 15 USD, supe-
ra las opciones comerciales existentes.
Conclusiones: Alcanza un tiempo de inferencia excepcionalmente rápido de 2,43 ms con un consumo energético opera-
tivo mínimo, de entre 5 mA y 10 mA. Este rendimiento, sumado al bajo coste de fabricación (15 USD), contrasta marca-
damente con las soluciones comerciales, que a menudo superan los cientos de dólares. En consecuencia, el sistema es 
muy viable para su implementación en aplicaciones integradas de control de calidad y de la industria alimentaria.

Palabras clave: TinyML, Clasificación de licores, Redes neuronales artificiales, sensor MQ135, Microcontrolador ESP32.
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¿Por qué se realizó este trabajo?
Este trabajo se realizó para demostrar la capacidad de Tiny Machine Learning (TinyML) para la clasificación de bebidas alcohólicas. TinyML 
permite la ejecución de modelos de aprendizaje automático en dispositivos con recursos limitados, lo que representa una solución inno-
vadora en comparación con los enfoques convencionales. La tecnología se aplicó a la clasificación de seis tipos de bebidas alcohólicas: 
alcohol etílico medicinal, vino, pisco, cachaza, tequila y whisky. El objetivo principal fue desarrollar un sistema caracterizado por su bajo 
costo (aproximadamente 15 USD) y alta eficiencia computacional (tiempos de inferencia de 2,48 ms), lo que lo hace viable para su imple-
mentación en dispositivos embebidos.

¿Cuáles fueron los resultados más relevantes?
Los resultados indicaron una precisión de clasificación del 84 %, comparable a la de algunas soluciones comerciales más costosas, como 
el Gasboard-3210Plus (800 USD) o los analizadores Anton Paar (1500-2100 USD). Con una latencia de 32 ms, el sistema permite una clasi-
ficación rápida y eficiente en tiempo real.

¿Qué aportan estos resultados?
El sistema de clasificación desarrollado, con un costo estimado de tan solo 15 USD, representa una alternativa accesible para la autenti-
cación de bebidas. Estos hallazgos sugieren su gran potencial de aplicación en el control de calidad, la detección de adulteraciones y la 
monitorización en la industria de bebidas alcohólicas.
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Introducción

Actualmente, el desarrollo de dispositivos de bajo coste para la clasificación y detección de 

sustancias ha cobrado una relevancia significativa, especialmente en sectores como la industria 

alimentaria y de bebidas. Tiny Machine Learning (TinyML), que permite la ejecución de modelos 

de aprendizaje automático en dispositivos con recursos limitados, se presenta como una solución 

innovadora para tareas de clasificación en tiempo real (1,2).

Esta tecnología ofrece un potencial considerable para implementar sistemas eficientes y accesibles 

que faciliten la identificación de productos, como en el caso de los licores, sin necesidad de equipos 

caros o especializados. El factor determinante para seleccionar TinyML como tecnología central 

en este trabajo es su capacidad, como demuestran Schizas et al. (3), para mejorar el rendimiento 

y la eficiencia procesando datos localmente con latencia mínima y un consumo energético 

significativamente reducido. Al minimizar la transmisión de datos a la nube, TinyML refuerza la 

seguridad y reduce los costes operativos, consolidando así su papel como base para sistemas 

embebidos inteligentes, de bajo coste y altamente autónomos.

Se realizó una revisión sistemática de la literatura siguiendo la metodología PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) para identificar aplicaciones de TinyML 

en sistemas de clasificación. En la fase de identificación, las palabras clave “TinyML”, “Classification 
Machine Learning” y “Arduino” se emplearon en bases de datos disponibles en la Universidad 

Pedagógica y Tecnológica de Colombia (UPTC, Tunja): ScienceDirect (25), Web of Science (18), 

Scopus (30), Elsevier (12) y Google Scholar (40), dando 125 registros. Durante la fase de selección, 

se consideraron los títulos y resúmenes pertinentes y, posteriormente, en la fase de elegibilidad, 

solo se analizaron los artículos con texto completo disponible. En total, 12 estudios cumplieron los 

criterios de inclusión e incorporaron al análisis final.

En la literatura se han explorado diversas aplicaciones de TinyML e instrumentación de bajo coste. 

Tsoukas et al. (4) desarrollaron un sistema autónomo basado en TinyML para la detección de 

fugas de amoníaco y humo, logrando una puntuación F1 de 0,77 para humo y 0,70 para amoníaco. 

Bagheri et al. (5) evaluaron TinyML sobre microcontroladores y sensores ambientales para el 

monitoreo en tiempo real de contaminantes acuáticos, destacando su bajo coste y autonomía 

independiente de la nube. Atanane et al. (6) implementaron un sistema de detección de fugas de 

agua en edificios utilizando sensores acústicos, acelerómetros, Redes Neuronales Convolucionales 

(CNN) y TinyML en un Arduino Nano 33 BLE, logrando una precisión del 97,45%. 

En cuanto a la clasificación de licores, Zhou et al. (7) informaron de una precisión del 100% en 

la clasificación de ocho marcas de licor chino utilizando sensores de gas y Análisis de Función 

Discriminante (DFA). Zhang et al. (8) utilizaron una nariz electrónica con sensores de ZnO dopados 

y técnicas de Análisis de Componentes Principales (PCA), Análisis de Clústeres (CA) y Cuantización 

de Vectores de Aprendizaje (LVQ), logrando hasta un 94,1% de precisión en la caracterización 

de vinagres chinos. Scorsone et al. (9) desarrollaron un morro electrónico utilizando sensores de 

polímero conductor (CP) para la detección temprana de incendios, reduciendo falsas alarmas 

mediante análisis PCA. Investigaciones relacionadas incluyen a Zhang et al. (10), que emplearon 
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sensores de gas de óxido de zinc (ZnO) dopados con MnO2, TiO2 y CO2O3, alcanzando una 

precisión del 89,3% con LVQ. 

Además, Wongchoosuk et al. (11) diseñaron una nariz electrónica portátil con sensores híbridos de 

nanotubos de carbono–SnO2 para detectar contaminación por metanol en whisky, identificando 

con éxito la contaminación por metanol al 1%. Otras aplicaciones relevantes incluyen el sistema 

inalámbrico de monitorización de monóxido de carbono (sensores MQ-9 y LPWAN) de Vega-Luna 

et al. (12), que alcanzó una cobertura de 11,8 km, y el sistema de Nagy et al. (13) para medir siete 

gases contaminantes usando sensores MQ-2 y MQ-5 en una Raspberry® Pi 3. 

Finalmente, Jiang et al. (14) aplicaron modelos de Aprendizaje Automático, específicamente el 

Bosque Aleatorio, logrando una precisión superior al 90% en la predicción de la calidad del vino 

blanco. Específicamente, en el contexto colombiano, Botero-Valencia et al. (15) aplicaron con éxito 

TinyML en una estación de monitoreo ambiental, logrando una mejora del 2,67% en la precisión. 

Esto demostró un caso práctico de éxito de utilizar los microcontroladores de bajo recurso 

especificados para la detección ambiental de alto impacto en entornos locales, justificando aún más 

el enfoque arquitectónico adoptado en el presente estudio.

Los resultados relevantes de la revisión bibliográfica, que destacan el año, la solicitud y la ubicación, 

se muestran en la Tabla 1.

Tabla 1. Resultados de la revisión bibliográfica

Año Autores Aplicación Microcontrolador
Variables 

medidas

Sensores 

utilizados
País

2023
Tsoukas, V. y 

otros. (4)

Detección de 

fugas de gas
No especificado

Humo, 

amoníaco

Sensores de 

gas
Grecia

2023
Bagheri, M. y 

otros. (5)

Monitorización 

ambiental en el 

agua

No especificado
Contaminantes 

del agua

Sensores 

ambientales
Irán

2023
Atanane, O. et al. 

Evaluaciones (6)

Detección de 

fugas de agua

Arduino™ Nano 33 

BLE

Vibraciones, 

acústica

Acelerómetros, 

sensores 

acústicos

Marruecos

2011 Zhou, Q. et al. (7)
Clasificación de 

licores chinos
No especificado

Compuestos 

volátiles
Sensor MOX China

2006
Zhang, Q. y otros. 

Evaluaciones (8)

Clasificación de 

vinagres chinos
No especificado

Compuestos 

volátiles

Sensores de 

ZnO dopados
China

2006
Scorsone, E. et al. 

Evaluaciones (9)

Detección 

temprana de 

incendios

No especificado Humo

Sensores de 

polímero 

conductores

Italia

2005
Zhang, Q. y otros. 

Evaluaciones (10)

Clasificación de 

licores chinos
No especificado

Compuestos 

volátiles

Sensores de 

ZnO dopados
China

2010
Wongchoosuk, C. 

et al. (11)

Detección de 

metanol en 

whisky

No especificado Metanol
Sensores CNT-

SnO2
Tailandia
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Año Autores Aplicación Microcontrolador
Variables 

medidas

Sensores 

utilizados
País

2017
Vega-Luna, J. I. et 

al. (12)

Monitorización 

de monóxido de 

carbono

PIC18F8722
Monóxido de 

carbono
Sensor MQ-9 México

2020
Nagy, A. S. et al. 

(13)

Medición 

simultánea de 

gases

Raspberry® Pi 3

Gases, 

temperatura, 

humedad

MQ-2, MQ-5, 

DHT11
Cuba

2023
Jiang, X. y otros. 

(14)

Predicción de la 

calidad del vino
No aplicable

Propiedades 

fisicoquímicas
No aplicable China

2023
Botero-Valencia, 

J. S. et al. (15)

Monitorización de 

la contaminación 

ambiental

ESP32-CAM Aire, ruido, luz

SPS30, SCD30, 

SCD40, 

BME680, 

BH1750, 

AS7341

Colombia

 

La investigación complementaria ha explorado la aplicación de TinyML en diversas áreas distintas. 

Hayajneh et al. (16) propusieron un marco basado en TinyML y aprendizaje por transferencia para 

predecir la humedad del suelo en la agricultura inteligente, utilizando drones y sensores IoT. Karras 

et al. (17) desarrollaron algoritmos TinyML para la gestión de datos en IoT, mejorando la limpieza, 

compresión y almacenamiento de datos, con implementación en las plataformas Raspberry® Pi. 

Schizas et al. (3) realizaron una revisión sistemática sobre TinyML en despliegues de IoT de bajo 

consumo, destacando beneficios en cuanto a transición, ancho de banda, seguridad, privacidad, 

latencia, eficiencia energética y bajo coste. Dutta y Bharali (18) analizaron la integración de TinyML 

en IoT, destacando ventajas como la reducción de costes y la independencia de la nube, junto con 

los retos de hardware asociados. Srinivasagan et al. (19) diseñaron un sensor TinyML para estimar 

la vida útil de los dátiles frescos utilizando espectrometría VisNIR. 

Capogrosso et al. (20) clasificaron los enfoques de desarrollo en tres categorías: algorítmicos, 

centrados en hardware y co-diseño. Banbury et al. (21) propusieron referencias para evaluar las 

plataformas TinyML. Hymel et al. (22) presentaron Edge Impulse, una plataforma que simplifica el 

desarrollo y despliegue de modelos. Finalmente, Lê et al. (23) revisaron técnicas de optimización en 

redes neuronales para microcontroladores con recursos limitados. Las aplicaciones relevantes que 

utilizan la tecnología TinyML se muestran en la Tabla 2.
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Tabla 2. Resultados de la revisión bibliográfica sobre aplicaciones de TinyML.

Año Autores Aplicación País

2023 Hayajneh, A. M. et al. (16)

Predicción de la humedad del suelo en la 

agricultura inteligente. UAVs, dispositivos IoT 

TinyML

Jordania / Reino 

Unido

2024 Karras, A. et al. (17) Gestión de Big Data en IoT con algoritmos TinyML Grecia

2022 Schizas, N. et al. (3) TinyML en despliegues de IoT de bajo consumo Grecia

2021 Dutta, L. y Bharali, S. (18) Integración de TinyML en IoT India

2023 Srinivasagan, R. et al. (19) Estimación de la vida útil de los dátiles frescos
Arabia Saudí / 

Egipto

2023 Capogrosso, L. et al. (20)
Revisión de los algoritmos de aprendizaje de 

TinyML
Italia

2020 Banbury, C. R. et al. (21) Benchmarking de plataformas TinyML No especificado

2023 Hymel, S. et al. (22)
Plataforma Edge Impulse para el despliegue de 

TinyML
No especificado

2023 Lê, M. T. et al. (23)
Técnicas de optimización para redes neuronales en 

microcontroladores para TinyML
Francia

Con este contexto, este estudio pretende proponer un dispositivo basado en TinyML de ultra 

bajo costo con el objetivo de clasificar las bebidas alcohólicas. Las bebidas alcohólicas son un 

contexto relevante donde la rapidez y la precisión son fundamentales, ya que es importante hacer 

la clasificación correcta dentro del orden de los términos. El objetivo es crear un camino preciso, 

portátil y fácil de seguir para clasificar los tipos de bebidas alcohólicas basándose en sensores 

y algoritmos convencionales. El presente trabajo aborda la brecha identificada proponiendo un 

dispositivo de ultra bajo coste basado en la tecnología TinyML para la clasificación de licores, una 

aplicación donde tanto la precisión como la rapidez son factores críticos. 

El término ultra-bajo coste caracteriza sistemas embebidos cuyo coste total de materiales (Lista 

de Materiales – BOM) es mínimo, priorizando componentes económicos sin comprometer 

la funcionalidad esencial del sistema. La solución está implementada en el microcontrolador 

ESP32 de Espressif Systems, seleccionado específicamente debido a su bajo coste de mercado 

(aproximadamente 8 USD), la amplia disponibilidad en el mercado y la extensa documentación para 

desarrolladores. Este microcontrolador cuenta con un procesador Tensilica LX6 de doble núcleo 

(hasta 240 MHz), 520 KB de SRAM, 4 MB de memoria Flash e interfaces UART, SPI, I2C y ADC de 12 

bits. 

Esta arquitectura permite la ejecución eficiente de modelos de aprendizaje automático a pesar de 

sus limitados recursos computacionales, integrando sensores de bajo coste para desarrollar una 



Ingeniería y Competitividad, 2025 vol 28(1) e-20215038/ Ene-Abril 7 /19

doi:  10.25100/iyc.v28i1.15038

Dispositivo de ultra-bajo costo para la clasificación de licores usando tecnología TinyML

herramienta precisa y económicamente accesible para la identificación de bebidas alcohólicas. Se 

prevé que este sistema propuesto contribuya tanto a la eficiencia operativa industrial como a la 

democratización de tecnologías avanzadas en contextos con restricciones presupuestarias (24,25).

Metodología
El sistema de clasificación se basa en el sensor de gas MQ-135 y en una Red Neuronal Artificial 

(ANN). El sensor MQ-135 es un dispositivo semiconductor de óxido metálico (MOS) ampliamente 

adoptado capaz de detectar diversos gases, incluyendo monóxido de carbono (CO), alcohol, 

dióxido de carbono (CO₂), tolueno (C₇H₈), amoníaco (NH₄), alcohol y dióxido de carbono (26). El 

principio de funcionamiento del sensor se basa en la variación de la resistencia del material sensible 

Rs en respuesta a la concentración de gas.

La calibración se realiza siguiendo las recomendaciones del fabricante para determinar el 

coeficiente R0, que corresponde a la resistencia base del sensor en aire limpio. Este  valor R0 

es crucial para normalizar la respuesta del sensor, ya que la relación Rs / R0 aísla el cambio 

de resistencia específicamente debido a la presencia de concentraciones de gas objetivo. Esta 

normalización es esencial para validar la robustez del modelo frente a fluctuaciones ambientales 

típicas, como cambios de temperatura y humedad. La relación entre la resistencia medida Rs 

y la concentración de gas C se expresa mediante un modelo logarítmico derivado de la curva 

característica del sensor, tal como se presenta en la Ecuación 1.

(1)

donde Rs es la resistencia del sensor a una concentración de gas C, R0 es la resistencia en aire 

limpio y A con B son constantes determinadas experimentalmente específicas para el tipo de gas.

Los RNA se emplearon para identificar licores basándose en sus firmas distintivas de compuestos 

orgánicos volátiles (COV), lo que resultó en modelos robustos y de alta precisión adecuados para 

el control de calidad y la autenticación de bebidas. Específicamente, el sistema está diseñado 

para realizar control de calidad verificando la firma de COV frente a un estándar conocido y la 

autenticación de la bebida detectando variaciones no autorizadas, como dilución o la presencia 

de adulterantes como el metanol. En términos generales, una red de perceptrón multicapa (MLP) 

puede representarse mediante las siguientes expresiones mostradas en las Ecuaciones 2 y 3.

(2)

(3)

donde xi representa la variable de entrada correspondiente al valor de voltaje obtenido del sensor 

MQ–135, wij son los pesos sinápticos, bj son los sesgos asociados y yk es la función de activación 

(27).

El entrenamiento en redes neuronales se llevó a cabo en MATLAB® R2018a utilizando el 

‘nntraintool’, que simplifica la configuración y el entrenamiento mediante algoritmos como la 

retropropagación y proporciona herramientas gráficas para evaluar el rendimiento del modelo 
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(28). El modelo optimizado se implementó entonces en una placa ESP32, un microcontrolador 

con un rendimiento adecuado para aplicaciones de IoT, TinyML y procesamiento de bordes. El 

procesamiento en el borde se entiende como la capacidad de ejecutar tareas de análisis y toma de 

decisiones directamente en el dispositivo sin depender de una conexión continua en la nube (29).

La placa de desarrollo ESP32 integra un procesador Tensilica Xtensa LX6 de doble núcleo que opera 

hasta 240 MHz, 520 KB de SRAM y 4 MB$ de memoria Flash, junto con interfaces de comunicación 

como Interfaz Periférica Serial (SPI), Circuito Interintegrado (I2C), Receptor-Transmisor Universal 

Asíncrono (UART) y un Convertidor Analógico-Digital (ADC) de 12 bits. Esta arquitectura permite 

una integración eficiente con sensores y módulos de adquisición de datos (30). La Figura 1 muestra 

el diagrama de bloques del sistema TinyML propuesto para la clasificación de licores.

Figura 1. El flujo de trabajo de desarrollo del clasificador de licor TinyML.

La conexión con el sensor MQ-135 se gestionaba a través de la biblioteca ‘MQUnifiedsensor.h’ en el 

IDE estándar de Arduino™, permitiendo la lectura de valores y la configuración de parámetros para 

cada gas medido.

El conjunto de datos para entrenar la red neuronal se construyó a partir de mediciones del sensor 

MQ-135, capturando la concentración de compuestos volátiles como alcohol, hexano, monóxido de 

carbono (CO), benceno y gas licuado de petróleo (GLP). El proceso de adquisición implicó muestras 

de aire ambiente, alcohol etílico medicinal, vino, pisco, cachaça, tequila y whisky. Se registraban los 

valores de voltaje de referencia y el  coeficiente R0 para monitorizar la estabilidad del sensor.

El sistema final de clasificación se diseñó con siete categorías de salida: Alcohol, Vino, Pisco, 

Cachaça, Tequila, Whisky y Aire Ambiente (usado como referencia). Para asegurar una 

representación robusta de los datos, se recogieron 100 muestras para cada una de las siete 
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categorías, con 10 repeticiones para cada muestra para tener en cuenta la variación de captura de 

señales. Esto generó un total inicial de 7 categorías ×:  100 muestras × , 10 repeticiones, resultando 

en 7.000 registros. Como se señaló en el análisis preliminar, las primeras 50 lecturas iniciales fueron 

descartadas debido al tiempo de sedimentación y a la inestabilidad inherente del sensor MQ-135 

durante el calentamiento. En consecuencia, el conjunto de datos utilizable final consistió en 6.950 

registros. Las características de entrada capturaban la concentración de los distintos compuestos 

volátiles, y la salida se etiquetaba usando un esquema binario correspondiente a la presencia de 

cada tipo de licor o aire ambiente.

La Figura 2 muestra un ejemplo de una parte de la estructura del conjunto de datos dentro de 

Excel™, con cada captura y la clasificación correspondiente en filas. 

Figura 2. Estructura del conjunto de datos para entrenar el sistema de clasificación de licor TinyML.

El entrenamiento de redes neuronales se llevó a cabo en MATLAB® R2018a utilizando el 

‘nntraintool’, facilitando la configuración y el entrenamiento mediante el algoritmo Levenberg–

Marquardt (31). Este algoritmo aprovecha una combinación del descenso más pronunciado y 

los métodos de Gauss–Newton para minimizar eficientemente el Error Cuadrático Medio (MSE). 

Matemáticamente, la actualización de peso se define como se muestra en la Ecuación 4.

(4)

donde J es la matriz jacobiana de las derivadas parciales de error respecto a los pesos, e es el 

vector de error, I es la matriz identidad y μ es un factor de ajuste que regula la transición entre 

el comportamiento de descenso más pronunciado (cuando μ es grande) y el método de Gauss–

Newton (cuando μ es pequeño).

La arquitectura de la red estaba configurada con 5 neuronas de entrada, una capa oculta y 6 

neuronas de salida, correspondientes a las clases de clasificación finales. Se realizaron pruebas 

variando el número de neuronas en la capa oculta para analizar su efecto sobre la convergencia. La 
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función principal de pérdida utilizada fue el Error Cuadrático Medio (MSE), y los datos se dividieron 

en 70% para entrenamiento, 15% para validación y 15% para pruebas.

Resultados y discusión
Preprocesamiento y estabilidad de datos de sensores

Los datos utilizados para el entrenamiento excluyen las primeras 50 lecturas del proceso de 

muestreo para cada clase de entrada, ya que se observó que los valores del sensor permanecían 

inestables durante ese intervalo de tiempo, como se muestra en la Figura 3.  Esta variabilidad 

inicial, que se estabiliza tras el periodo de calentamiento, obliga a excluir muestras tempranas para 

asegurar que el modelo se entrene únicamente con datos fiables, maximizando así la precisión 

predictiva del modelo.

Figura 3. Variabilidad del sensor MQ135 durante una nueva medición.

En cuanto al preprocesamiento, este paso fue fundamental para asegurar que los datos de 

entrenamiento representaran a un sensor comportándose en estado estacionario, y no permitía al 

modelo aprender los patrones de inestabilidad circundantes, sino las características compuestas 

de las sustancias objetivo. Implementar esta forma de condicionamiento de datos es una práctica 

común en aplicaciones de aprendizaje automático basadas en sensores para ayudar en mejoras de 

rendimiento y fiabilidad.

Rendimiento y convergencia de redes neuronales

El proceso de entrenamiento de redes neuronales demostró una convergencia adecuada 

bajo condiciones de estabilidad del gradiente y una variación mínima entre los conjuntos de 

entrenamiento, validación y prueba. Esta estabilidad se evidencia con la reducción progresiva del 

Error Cuadrático Medio (MSE) durante 375 épocas, alcanzando un valor mínimo de 2,8083×10−9 en la 

fase de validación (véase la Figura 4). Además, el gradiente final (9,91×10−8) y el error (1,05×10−9) 

se mantuvieron dentro de rangos óptimos de convergencia, sin mostrar signos discernibles de 

sobreajuste durante el proceso de entrenamiento. 
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Figura 4. Rendimiento de entrenamiento según el modelo de clasificación.

Análisis de regresión de modelos

Además de la reducción del MSE durante el entrenamiento, la evaluación de regresión entre 

los resultados predichos y los valores objetivo mostró un ajuste del modelo extremadamente 

alto. Como se ilustra en la Figura 5, los coeficientes de correlación (R) para los conjuntos de 

entrenamiento, validación, prueba y datos totales alcanzaron valores iguales a 1,0.  Este resultado 

sugiere una relación lineal casi perfecta entre las salidas de la red y los valores objetivo esperados

Figura 5. Evaluación regresiva del modelo de clasificación.
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La observación de valores MSE que se acercan a cero y R = 1 en todas las particiones de datos, a 

pesar del tamaño relativamente limitado del conjunto de datos, se atribuye principalmente a dos 

factores: (1) la separabilidad inherente de las clases y (2) la eficiencia del algoritmo de optimización 

de Levenberg–Marquardt. Dado que los perfiles de compuestos orgánicos volátiles (COV) de las 

siete categorías (seis licores y aire ambiente) son químicamente distintos, la red neuronal pudo 

aprender límites altamente separables con un error mínimo. 

La naturaleza no lineal de la respuesta del sensor, cuando se mapea a través de la capa oculta 

del MLP, probablemente da lugar a un espacio de proyección claro, lo que lleva a un ajuste 

casi perfecto en los conjuntos de entrenamiento y validación. Este comportamiento también ha 

sido reportado en estudios similares, como el de Aljohani et al. (32), quienes obtuvieron R = 1 

al aplicar redes neuronales entrenadas con el algoritmo de Levenberg–Marquardt para analizar 

recubrimientos de alambre en fluidos de Sisko, utilizando tamaños y épocas de conjuntos de datos 

comparables. No obstante, considerando el tamaño limitado del presente conjunto de datos, 

este resultado se interpreta como una alta capacidad de ajuste de patrones bajo condiciones 

controladas, más que como una validación definitiva de la capacidad total de generalización del 

modelo a muestras desconocidas o adulteradas.

Despliegue de modelos y utilización de recursos

El ‘nntraintool’ generó una representación matemática del modelo entrenado (a través de la opción 

‘desplegar solución – > Función Matlab’), que posteriormente se ajustó al lenguaje C/C++ para su 

uso en el IDE Arduino™ y la implementación final en el microcontrolador ESP32. Este proceso de 

ajuste incluía la definición sintáctica de los vectores de pesos y las funciones de normalización de 

entrada/salida. Las Figuras 6 y 7 presentan los extractos más relevantes del código desarrollado en 

la versión 1.8.19 del IDE de Arduino™, ilustrando estos ajustes.

Figura 6. Ajuste sintáctico de vectores de peso desde Matlab Function a C/C++.
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Figura 7. Ajuste sintáctico del modelo de clasificación de Matlab Function a C/C++.

El proceso de cargar el modelo en el ESP32 demuestra un uso eficiente de los recursos del sistema 

embebido. La memoria Flash utilizada medía 297.525, representando el 24,8% de la memoria Flash 

disponible (1,2 MB para la aplicación de partición de aplicaciones), lo que deja margen suficiente 

para futuras expansiones.  En cuanto al uso de RAM, sumaba 20.432 bytes, equivalente al 6,3% de 

los 327.680 bytes de RAM disponibles, lo que indica una implementación ligera con bajo impacto 

en los recursos del microcontrolador. La latencia de programación era baja, con 2,3 segundos 

necesarios para escribir, lo que indicaba una subida rápida y estable del firmware, optimizando la 

ejecución del modelo en un entorno embebido. 

El tiempo estimado de ejecución del algoritmo en el ESP32 es de aproximadamente 2,48 ms. 

Este cálculo considera que el código cargado ocupa 297.525 bytes en memoria Flash y que cada 

instrucción, con un tamaño medio de 2 bytes, requiere 2 ciclos de reloj para su ejecución. Operando 

a una frecuencia de 240 MHz, el microcontrolador procesa 595.050 ciclos, lo que refleja una latencia 

extremadamente baja y una ejecución en tiempo real eficiente, adecuada para aplicaciones de 

clasificación embebida y reconocimiento de patrones. 

Los recursos utilizados en el despliegue del modelo TinyML en el ESP32 se resumen en la Tabla 3. 

La velocidad de ejecución alcanzable y el bajo uso de recursos indican que TinyML realmente ofrece 

una capacidad para aprendizaje automático avanzado en hardware económico y con recursos 

limitados; un gran beneficio por implicar las decisiones en tiempo real que a menudo se requieren 

en la producción de alimentos y bebidas.
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Tabla 3. Resumen de los recursos utilizados en el despliegue del modelo TinyML en el ESP32.

Tipo de recurso Valor usado Descripción

Memoria Flash
297525 bytes 

(24,8%)

El espacio ocupado por el código 

en la memoria Flash.

Memoria RAM
20432 bytes 

(6,3%)

RAM utilizada para ejecutar el 

modelo.

Latencia de 

programación
2,3 segundos

Tiempo que tarda en cargar el 

código en el ESP32.

Tiempo de ejecución 2,48 ms
Latencia (tiempo de 

procesamiento).

Validación y rendimiento del sistema

La validación del sistema de clasificación de licor se realizó en un entorno que garantizaba 

condiciones estables de temperatura (22°°C) y humedad relativa (75%) para minimizar variaciones 

externas. Se seleccionaron seis tipos de licores para su prueba: alcohol etílico medicinal, vino, 

pisco, cachaça, tequila y whisky. Durante la fase de pruebas, el sistema embebido capturó datos en 

tiempo real, ejecutó el modelo de clasificación y mostró la predicción en el Terminal Virtual del IDE 

Arduino™ configurado a una velocidad de 9600. 

Para evaluar la estabilidad del sistema, se realizaron 30 mediciones por muestra, acumulando un 

total de 180 pruebas, lo que permitió analizar la repetibilidad y consistencia de las predicciones. 

Las predicciones se compararon con los valores esperados, lo que proporcionó un porcentaje de 

precisión que refleja la capacidad del sistema para identificar correctamente cada tipo de licor. 

Los resultados indican una precisión media del 84,4%, con valores individuales que oscilan entre 

el 80,0% y el 86,7%, dependiendo del licor específico analizado. En total, de las 180 muestras 

evaluadas, el sistema clasificó correctamente 152, demostrando un rendimiento sólido en la 

identificación de las diferentes bebidas. Los resultados de validación del dispositivo de clasificación 

TinyML se muestran en la Tabla 4.
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Tabla 4. Resultados de validación del dispositivo de clasificación TinyML.

Tipo de licor Muestras totales
Correctamente 

clasificado
Precisión (%) Partitura 

Alcohol etílico 30 26 86.7 0.87

Vino 30 25 83.3 0.83

Pisco 30 26 86.7 0.86

Cachaça 30 25 83.3 0.82

Tequila 30 24 80.0 0.78

Whisky 30 26 86.7 0.88

Promedio general 180 152 84.4 0.84

Coste-efectividad y análisis comparativo

Por último, un sistema se considera de ultra bajo coste cuando prioriza la reducción de costes sin 

comprometer la funcionalidad ni la precisión requerida. Los criterios clave incluyen el coste total 

del hardware, la disponibilidad comercial de componentes, el bajo consumo energético, la facilidad 

de implementación y la escalabilidad. Según Ciuffoletti (33), los sistemas IoT de bajo coste logran 

un equilibrio entre rendimiento, simplicidad y sostenibilidad económica, lo que los hace adecuados 

para entornos educativos, comerciales o con recursos limitados. 

En este contexto, el sistema desarrollado cumple estos criterios empleando hardware accesible—

ESP32 (5–10 USD) y sensor MQ-135 (≈ 5 USD)—alcanzando un coste total de aproximadamente 

15 USD. Este coste es significativamente menor que el de equipos comerciales como el Gasboard-

3210Plus de Cubic Instruments (34) o el sistema de análisis de Anton Paar (35), que a menudo 

superan los 800 dólares estadounidenses. 

La Figura 8 demuestra la aplicación física del dispositivo de clasificación de licor desarrollado 

basado en TinyML como compacto y práctico. La Tabla 5 describe una comparación directa de los 

costes estimados considerando el sistema TinyML propuesto y los sistemas comerciales discutidos, 

demostrando la gran rentabilidad del prototipo desarrollado, pero mostrando aún así un grado 

razonable de precisión para su uso previsto. 

El dispositivo TinyML, gracias a esta rentabilidad y precisión establecida en la clasificación, puede 

considerarse una tecnología realista y democratizadora para la autenticación y control de calidad de 

bebidas en mercados o aplicaciones centradas en la restricción de costes. El equilibrio rendimiento/

precio resulta atractivo para una adopción futura en industrias que quizá no tengan acceso a 

equipos de laboratorio de élite.
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Figura 8. Dispositivo de clasificación de licor basado en TinyML.

Tabla 5. Comparación de costes entre el sistema de clasificación basado en TinyML y algunas 

soluciones comerciales.

Característica Clasificador TinyML Gasboard-3210Plus
Medidor de vides 

Anton Paar

Medidor de alcohol 

Anton Paar

Coste 

estimado 
15 USD 800 USD 2100 USD 1500 USD

Hardware 

principal

Microcontrolador 

ESP32 + Sensor 

MQ135

Sensores de 

espectrometría de 

gases 

Sensores 

electroquímicos
Sensores electroquímicos

Obligatorio

Software

Código en C/C++ 

(IDE Arduino™) 
Software propietario Software propietario Software propietario

Conclusiones
El sistema de clasificación de licores, basado en TinyML, desarrollado en este estudio, ha 

demostrado ser una solución eficiente y rentable cuando se compara con dispositivos comerciales. 

Con un coste estimado de hardware de aproximadamente 15 dólares estadounidenses, el prototipo 

desarrollado supera significativamente el acceso a alternativas costosas, como los analizadores 

Gasboard-3210Plus (800 dólares estadounidenses) o Anton Paar (1500–2100 dólares). Además, 
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el rápido tiempo de inferencia de 2,48 ms y la huella mínima de memoria (solo el 24,8% de la 

memoria Flash disponible utilizada) respaldan la viabilidad del sistema para su despliegue en 

sistemas embebidos con recursos limitados sin comprometer el rendimiento.

En términos de precisión predictiva, el clasificador alcanzó una tasa media de clasificación 

del 84,4%. La precisión varió según el tipo específico de licor, llegando hasta el 86,7% para 

la identificación de alcohol etílico medicinal, pisco y whisky. Aunque estos resultados son 

prometedores para un sistema que depende de hardware sencillo, aún existe margen para mejorar 

el rendimiento mediante el empleo de modelos de aprendizaje automático más robustos o la 

integración de sensores adicionales capaces de captar una gama más amplia de características 

químicas. No obstante, el nivel de rendimiento alcanzado es competitivo debido a la sencillez y el 

bajo coste de la plataforma de hardware utilizada.

Esta investigación sienta una base para futuras investigaciones sobre la aplicación de TinyML en la 

detección y clasificación de sustancias. La optimización de modelos, el uso de técnicas avanzadas 

de preprocesamiento y la adaptación del sistema a otros tipos de líquidos o gases podrían 

ampliar sustancialmente su aplicabilidad en industrias como el procesamiento de alimentos y 

el control de calidad. La combinación sinérgica de bajo coste, facilidad de implementación y 

tiempos de inferencia rápidos posiciona eficazmente esta tecnología como una alternativa viable y 

democratizadora en entornos con estrictas limitaciones presupuestarias o de recursos.
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