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Introduction: the detection of asbestos cement has predominantly been carried out using hyperspectral data. The challenge lies in impro-
ving detection efficiency without compromising accuracy, especially in contexts where only multispectral images are available. 
Objectives: the main objective of this study is to apply machine learning models for the detection of asbestos cement in multispectral 
images. 
Methodology: the research was conducted using a four-phase adaptation of the CRISP-DM methodology, which included the following 
steps: Dataset creation: A dataset was compiled and prepared from a reference multispectral image of the city of Cartagena. Evaluation of 
relevant bands: The most relevant spectral bands for detecting asbestos cement were selected. Model training and evaluation: Four machine 
learning models were trained and evaluated: kNN, decision trees, support vector machines (SVM), and logistic regression. Deployment of 
the best model: Finally, the best-performing model was deployed on the reference image to assess its performance in a real-world scenario.
Results: of the four models evaluated, the decision tree model demonstrated the highest efficiency and consistency on both the training 
and testing sets, achieving a value of 0.93 for both Precision and Recall metrics. In contrast, the logistic regression model performed the 
worst, with values of 0.829 and 0.875 for Precision and Recall, respectively. 
Conclusions: the proposed decision tree model proved to be an effective and consistent tool for detecting asbestos cement in multispec-
tral images, with a good balance between precision and recall. This model provides a viable solution for automatic material detection in 
contexts where only multispectral images are available and can serve as a reference in both academic and industrial settings for integration 
into material detection systems. 

Resumen

Introducción: La detección de asbesto cemento ha sido predominantemente realizada utilizando datos hiperespectrales. El desafío 
radica en mejorar la eficiencia de la detección sin comprometer la precisión, especialmente en contextos donde solo están disponi-
bles imágenes multiespectrales.
Objetivos: El objetivo principal de este estudio es aplicar modelos de aprendizaje automático para la detección de asbesto cemen-
to en imágenes multiespectrales.
Metodología: La investigación se llevó a cabo utilizando una adaptación de cuatro fases de la metodología CRISP-DM, que incluyó 
los siguientes pasos: Creación del dataset: Se recopiló y preparó un conjunto de datos a partir de una imagen multiespectral de 
referencia de la ciudad de Cartagena. Evaluación de las bandas relevantes: Se seleccionaron las bandas espectrales más relevantes 
para la detección de asbesto cemento. Entrenamiento y evaluación de modelos: Se entrenaron y evaluaron cuatro modelos de 
aprendizaje automático: kNN, árboles de decisión, máquinas de soporte vectorial (SVM) y regresión logística. Despliegue del mejor 
modelo: Finalmente, el modelo con mejor rendimiento fue desplegado sobre la imagen de referencia para evaluar su desempeño 
en un escenario real.
Resultados: de los cuatro modelos evaluados, el modelo de árboles de decisión demostró la mayor eficiencia y consistencia en los 
conjuntos de entrenamiento y prueba, logrando un valor de 0.93 tanto en las métricas de Precisión como de Recall. En contraste, el 
modelo de regresión logística fue el que obtuvo el peor rendimiento, con valores de 0.829 y 0.875 en Precisión y Recall, respectiva-
mente.
Conclusiones: el modelo propuesto de árboles de decisión demostró ser una herramienta efectiva y consistente para la detección 
de asbesto cemento en imágenes multiespectrales, con un buen balance entre precisión y recall. Este modelo ofrece una solución 
viable para la detección automática de materiales en contextos donde solo se disponen de imágenes multiespectrales y puede 
servir como referencia tanto en el ámbito académico como industrial para su integración en sistemas de detección de materiales.
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https://orcid.org/0000-0002-0257-1988
https://orcid.org/0000-0003-4510-0753
https://orcid.org/0000-0003-1345-9657
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
https://crossmark.crossref.org/dialog/?domain=revistaingenieria.univalle.edu.co&doi=10.25100/iyc.v27i1.14672


Ingeniería y Competitividad, 2025 vol 27(1) e-21014672/ ene-mar 2 /21

doi:  10.25100/iyc.v27i1.14672

Aplicación de modelos de aprendizaje automático en la detección de asbesto cemento en imágenes multiespectrales

Contribución a la literatura

Considerando la legislación colombiana que prohíbe el uso de asbesto-cemento debido a sus implicaciones para la salud 
pública, resulta relevante realizar investigaciones centradas en la detección automatizada de asbesto-cemento, aprove-
chando las ventajas que ofrecen las técnicas de teledetección y visión artificial. En este sentido, dado el gran volumen de 
información contenida en las imágenes hiperespectrales y la demanda de recursos computacionales asociada, es necesario 
identificar métodos computacionales que permitan la detección de asbesto-cemento en escenarios de menor dimensión, 
como las imágenes multiespectrales.
En esta investigación, se implementó un flujo de trabajo de aprendizaje automático sobre un conjunto de datos de firmas 
espectrales de asbesto-cemento y otros materiales, extraídos de una imagen multiespectral de la ciudad de Cartagena 
de Indias. El flujo de trabajo se implementó utilizando la herramienta de programación visual Orange, lo que permitió la 
evaluación de cuatro modelos de aprendizaje automático (kNN, árboles de decisión, máquinas de vectores de soporte y 
regresión logística). Los resultados indicaron que el modelo de árbol de decisión logró el mejor y más consistente rendi-
miento, con una puntuación de precisión y recuperación de 0,93. Además, se determinó que las bandas más relevantes 
para la identificación del asbesto son las bandas 8 y 5, lo que demuestra que la presencia del material puede detectarse 
utilizando únicamente estas dos bandas de la imagen multiespectral. Estos hallazgos contribuyen significativamente a la 
eficiencia computacional en el procesamiento de imágenes multiespectrales, ya que no es necesario procesar las ocho 
bandas de reflectancia, lo que mejora los sistemas de monitoreo ambiental basados ​​en teledetección.
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Introducción

La teledetección se refiere a la ciencia dedicada a adquirir y procesar información sobre la superficie 

de la Tierra mediante el uso de sensores montados en drones, aviones y satélites. Al analizar la 

interacción de la energía electromagnética con los objetos de la superficie, es posible obtener 

datos relacionados con sus propiedades físicas y químicas sin necesidad de contacto físico  (1–3). 

En el contexto de las imágenes multiespectrales, el aprovechamiento de la información de varios 

espectros, como el visible y el infrarrojo, permite una detección de objetos robusta y fiable en 

entornos abiertos (4,5). En comparación con la detección de objetos mediante imágenes RGB, las 

imágenes multiespectrales han demostrado ser más precisas en diferentes entornos, ofreciendo una 

solución eficaz en condiciones de poca iluminación y condiciones climáticas adversas, donde las 

imágenes RGB a menudo fallan (4,6,7).

Las imágenes multiespectrales se han aplicado ampliamente en varios campos para la detección y 

clasificación de materiales. En la agricultura, han sido fundamentales para identificar especies de 

plantas en función de sus firmas espectrales, facilitando la detección de áreas propensas a plagas y 

evaluando las condiciones de los cultivos, como en las plantaciones de café, a través de imágenes 

convencionales y capturadas por drones (8–10). Los avances recientes en el aprendizaje automático 

han mejorado aún más las aplicaciones de imágenes multiespectrales en el monitoreo agrícola. 

Por ejemplo, las imágenes multiespectrales de alta resolución recopiladas a través de vehículos 

aéreos no tripulados, combinadas con modelos de máquinas de vectores de soporte (SVM), se han 

utilizado para estimar variables agronómicas clave en el cultivo de arroz inundado. Este enfoque 

demostró fuertes correlaciones para predecir el índice de área foliar (LAI), el contenido de nitrógeno 

(Narea) y el rendimiento de grano, logrando un coeficiente de correlación de Pearson de hasta 0.89 

en entrenamiento y 0.87 en pruebas (11).

De manera similar, en el contexto ambiental, se ha demostrado que el procesamiento digital de 

imágenes satelitales monitorea eficazmente fenómenos como la degradación de la tierra mediante 

el análisis de las variaciones de las imágenes a lo largo del tiempo (12). La integración de imágenes 

multiespectrales con métodos de análisis de imágenes basadas en objetos (OBIA) se ha empleado 

con éxito en la clasificación de especies de manglares dentro de los ecosistemas de humedales. 

Un estudio realizado en la comuna de Dong Rui, en el norte de Vietnam, utilizó vehículos aéreos 

no tripulados Phantom 4 para adquirir datos de reflectancia espectral para la clasificación de 

especies de árboles, logrando una precisión general del 91,11% y un coeficiente kappa de 0,87. 

Este método proporcionó una base confiable para la planificación de la conservación de humedales 

y el monitoreo de especies, demostrando el potencial de las imágenes multiespectrales en la 

investigación ecológica (13).

Además, la alta resolución espectral de las imágenes multiespectrales ha permitido un análisis 

detallado de las condiciones de la vegetación, incluida la detección de componentes específicos 

como nutrientes y pigmentos como la clorofila (14–16). La fusión de imágenes multiespectrales con 

técnicas de aprendizaje profundo ha mejorado aún más el monitoreo agrícola, como lo demuestra 

un estudio sobre cultivos de piña MD2 en Colombia. Utilizando datos multiespectrales derivados de 

UAV, datos de sensores ecológicos in situ y técnicas de aprendizaje automático como los regresores 
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Extreme Gradient Boosting (XGBoost) y Multilayer Perceptron (MLP), los investigadores lograron 

la estimación del contenido de nitrógeno con un coeficiente de determinación (R²) de hasta el 

86,98%. Este estudio subraya la importancia de integrar imágenes multiespectrales con modelos 

computacionales avanzados para mejorar el diagnóstico de nutrientes y optimizar la gestión 

agrícola (17).

Más allá de las aplicaciones ambientales, las imágenes multiespectrales han demostrado ser 

efectivas en el control y clasificación de la calidad de los alimentos. La combinación de imágenes 

multiespectrales basadas en reflectancia y autofluorescencia con algoritmos de aprendizaje 

automático se ha empleado con éxito para diferenciar granos de café verde especiales y 

tradicionales. En este contexto, los modelos SVM lograron una precisión impresionante del 96% en 

la clasificación del café verde, y los datos de autofluorescencia desempeñaron un papel crucial en la 

distinción de diferentes tipos de café en función de sus composiciones químicas (18).

Además, la integración de imágenes multiespectrales con datos de radar mejora la capacidad 

de monitorear la distribución de especies y las estructuras de los ecosistemas, lo que es 

particularmente valioso para la conservación de la biodiversidad (19). Las imágenes multiespectrales 

también han demostrado un potencial significativo en la detección de objetos en condiciones de 

visibilidad limitada, como las que se encuentran durante las operaciones de búsqueda y rescate 

cuando se combinan con técnicas de aprendizaje profundo (20). En aplicaciones geológicas, se han 

utilizado imágenes multiespectrales para el mapeo de minerales, lo que permite la identificación 

de compuestos como caolinita, illita, alunita, calcita, dolomita, hematita, goethita y cuarzo. Además, 

estas imágenes facilitan el mapeo simultáneo de zonas de alteración, como las zonas propilíticas y 

argílicas, que son cruciales para la exploración minera y la industria minera (21,22).

Por lo tanto, las imágenes multiespectrales, particularmente cuando se integran con modelos de 

aprendizaje automático, han avanzado significativamente la precisión y la eficiencia de las tareas 

de clasificación y detección en varios dominios. Desde la agricultura de precisión y la conservación 

de humedales hasta el control de la calidad de los alimentos y la exploración de minerales, la 

combinación de datos espectrales de alta resolución con técnicas computacionales continúa 

mejorando las capacidades analíticas, ofreciendo nuevos conocimientos y soluciones prácticas en 

diversos campos.

En cuanto a la detección de fibrocemento, que es el foco principal de esta investigación, es 

importante destacar que las imágenes hiperespectrales se han utilizado principalmente para la 

detección y clasificación efectiva de amianto en productos de cemento. Estos métodos permiten 

la identificación de diferentes tipos de minerales de asbesto, como amosita, crocidolita y crisotilo, 

aprovechando sus firmas espectrales únicas en el rango infrarrojo de onda corta (SWIR: 1000-2500 

nm) (23). Del mismo modo, se han empleado imágenes hiperespectrales para evaluar el estado de 

deterioro de los techos de fibrocemento, contribuyendo al mapeo y priorización de la eliminación 

de estos materiales peligrosos que presentan importantes riesgos para la salud (24,25).

Además, las redes neuronales convolucionales y otras técnicas de clasificación se han aplicado 

de manera efectiva para identificar techos de fibrocemento utilizando datos derivados de 

imágenes hiperespectrales, lo que demuestra que una alta resolución espectral es crucial para 
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una clasificación y discriminación precisas del asbesto (26). Estas investigaciones previas son 

particularmente relevantes para la salud pública, ya que el asbesto es un carcinógeno conocido 

asociado con el mesotelioma y los cánceres de pulmón, laringe y ovario, e incluso la exposición a 

niveles bajos aumenta significativamente el riesgo de desarrollar estas enfermedades (27–29).

Teniendo en cuenta que las imágenes hiperespectrales se han utilizado de manera amplia y efectiva 

en la detección de asbesto a través de técnicas de teledetección, es importante resaltar que la alta 

dimensionalidad de estas imágenes requiere un uso eficiente de la memoria y la implementación de 

arquitecturas de alto rendimiento basadas en computación paralela (30–32). Además, dado que las 

imágenes hiperespectrales contienen un gran número de bandas, algunas de las cuales pueden ser 

redundantes, se requieren técnicas de reducción de dimensionalidad para facilitar su interpretación 

y clasificación (33–35).

Esta alta dimensionalidad puede aumentar los tiempos de procesamiento, por lo que es 

esencial emplear algoritmos o métodos más eficientes capaces de gestionar la complejidad 

sin comprometer la precisión (32,36). La complejidad inherente al procesamiento de imágenes 

hiperespectrales se reduce significativamente cuando se procesan imágenes multiespectrales 

satelitales, que requieren una menor demanda computacional y consumen menos energía (37–39). 

Por lo tanto, se hace necesario evaluar y seleccionar los modelos más adecuados para el contexto 

de las imágenes satelitales para permitir la detección eficiente de fibrocemento sin sacrificar la 

precisión.

Este artículo propone la aplicación de modelos de aprendizaje automático para la detección de 

fibrocemento en imágenes multiespectrales satelitales como una contribución, con el objetivo 

de identificar el modelo con la mayor precisión de clasificación para el amianto basado en la 

caracterización adecuada de su firma espectral. Para lograr esto, inicialmente se construyó un 

conjunto de datos, que comprende 100 observaciones de 8 atributos correspondientes a la 

información espectral de 8 bandas de 50 píxeles de fibrocemento y 50 píxeles de otros materiales. 

Vale la pena señalar que las observaciones del conjunto de datos se muestrearon a partir de una 

imagen multiespectral VNIR (Visible e Infrarrojo Cercano) de referencia obtenida de la ciudad de 

Cartagena, Colombia, con 8 bandas espectrales que cubren tanto el espectro visible (425,0 nm a 

660,0 nm) como el espectro del infrarrojo cercano (725,0 nm a 950,0 nm).

Este conjunto de datos se utilizó para entrenar y validar cuatro modelos de aprendizaje automático 

utilizando la herramienta de programación visual Orange. De manera similar, para implementar el 

modelo con el mejor rendimiento y consistencia tanto en los conjuntos de entrenamiento como 

en los de prueba, se aprovecharon las ventajas proporcionadas por bibliotecas como Spectral, 

NumPy, pandas y Scikit-learn para implementar y evaluar el modelo en la imagen de referencia 

completa, que tiene dimensiones de 1500x1500 píxeles, cada una con ocho bandas espectrales. Se 

seleccionó la herramienta Visual Orange, considerando que proporciona una interfaz gráfica que 

facilita la construcción visual de los flujos de trabajo de aprendizaje automático, permitiendo tanto 

a principiantes como a expertos realizar análisis complejos, como la clasificación de imágenes y la 

agrupación, sin necesidad de programación (40).
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Los resultados de esta investigación pretenden servir de referencia para aplicaciones académicas 

e industriales en la integración de sistemas ambientales para la detección de materiales en 

imágenes multiespectrales. El resto del artículo está organizado de la siguiente manera: la Sección 

2 describe el enfoque metodológico, la Sección 3 presenta los resultados y la Sección 4 describe las 

conclusiones y las direcciones futuras de la investigación.

Metodología

Para el desarrollo de esta investigación, la metodología CRISP-DM se adaptó en cuatro fases: P1. 

Negocios y comprensión de datos, P2. Preparación de datos, P3. Modelado y evaluación, y P4. 

Implementación del modelo (consulte la Figura 1). Aunque la Figura 1 presenta la metodología 

de manera secuencial, es importante tener en cuenta que CRISP-DM es un proceso iterativo. En la 

práctica, si el rendimiento del modelo no es óptimo, puede ser necesario revisar fases anteriores, 

como la preparación de datos o la selección de características, para refinar los resultados. Esta 

naturaleza cíclica garantiza la mejora continua y la adaptación a lo largo del proceso de modelado. 

Esta metodología se adaptó considerando que es un modelo de proceso estándar ampliamente 

utilizado para el desarrollo de proyectos de minería de datos y aprendizaje automático, con la 

ventaja de ser independiente del sector industrial y del tipo de tecnología empleada, lo que la hace 

aplicable a diversos contextos (41–44).

Figura 1. Metodología considerada. Fuente: elaboración propia.

En la Fase 1 de la metodología, se exploraron inicialmente herramientas para acceder a la 

información de banda espectral de imágenes satelitales, identificando que las bibliotecas de 

Python Spectral y NumPy permiten el procesamiento de datos de banda espectral de dichas 

imágenes. Utilizando estas librerías seleccionadas y basándose en una imagen multiespectral 

VNIR de 8 bandas preprocesada de 1500x1500 píxeles de la ciudad de Cartagena, que se sometió 

a corrección atmosférica, se extrajeron datos correspondientes a 50 píxeles de fibrocemento y 

50 píxeles de otros materiales. Cabe mencionar que los píxeles de la muestra se seleccionaron 

mediante inspección visual de una representación RGB de la imagen multiespectral, eligiendo 

techos ubicados en áreas donde previamente se habían realizado visitas de campo y pruebas de 

verificación por parte de los profesionales involucrados en el proyecto dentro del cual se enmarca 
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esta investigación. En consecuencia, la Figura 2 presenta la representación RGB de la imagen 

satelital de referencia, donde los 50 píxeles muestreados de asbesto están resaltados en azul y los 

50 píxeles de otros materiales están marcados en rojo. 

Figura 2. Píxeles de muestra seleccionados de fibrocemento y otros materiales. Fuente: elaboración 

propia.

En la Fase 2 de la metodología, los datos de las 8 bandas de los 50 píxeles de asbesto se 

normalizaron y etiquetaron con un valor de 1, mientras que los datos correspondientes a las 

8 bandas de los 50 píxeles de otros materiales se etiquetaron con un valor de 0, utilizando las 

bibliotecas Pandas y NumPy. La normalización se realizó identificando los valores de reflectancia 

máxima y mínima para escalar los datos en consecuencia. Estos datos se integraron y organizaron 

en una estructura de marco de datos para crear el conjunto de datos de trabajo. 

El conjunto de datos contiene un número igual de instancias etiquetadas como asbesto y otros 

materiales, lo que indica una distribución de clases equilibrada, lo cual es esencial para evitar que 

los modelos desarrollen sesgos o favorezcan inherentemente una de las dos etiquetas definidas, lo 

que garantiza un proceso de entrenamiento más equitativo y representativo.

Para facilitar el procesamiento posterior, este conjunto de datos se exportó a un archivo de Excel 

para su posterior carga en el flujo de trabajo de aprendizaje automático de la herramienta Orange. 

En consecuencia, la Figura 3 presenta tanto las 50 firmas espectrales de los píxeles de asbesto 

como las firmas espectrales de los 50 píxeles que no son de asbesto incluidos en el conjunto de 

datos. Es evidente que para cada material, las firmas espectrales informan los valores de reflectancia 

normalizados en las 8 bandas espectrales.



Ingeniería y Competitividad, 2025 vol 27(1) e-21014672/ ene-mar 8 /21

doi:  10.25100/iyc.v27i1.14672

Aplicación de modelos de aprendizaje automático en la detección de asbesto cemento en imágenes multiespectrales

Figura 3. Píxeles de muestra seleccionados de fibrocemento y otros materiales. Fuente: elaboración 

propia.

De manera similar, la Tabla 1 muestra el conjunto de datos construido a partir de las firmas 

espectrales presentadas en la Figura 3, donde cada firma espectral se etiquetó con un 1 o un 0, 

dependiendo de si corresponde a fibrocemento u otro material. El conjunto de datos consta de 100 

instancias, cada una de las cuales contiene 9 columnas: las primeras 8 columnas representan los 

valores de reflectancia para las respectivas bandas espectrales, y la 9ª columna contiene la etiqueta 

asignada según el tipo de material.

Tabla 1. Píxeles de muestra seleccionados de fibrocemento y otros materiales

Instancia Banda 1 Banda 2 Banda 3 Banda 4 Banda 5 Banda 6 Banda 7 Banda 8 Píxel
0 0.05979 0.06693 0.07807 0.08426 0.08514 0.10567 0.14085 0.16016 1
1 0.06298 0.07184 0.08747 0.09453 0.09542 0.11713 0.15215 0.16987 1
2 0.06296 0.07049 0.08320 0.08989 0.09066 0.11107 0.14334 0.15987 1
3 0.06235 0.06959 0.07991 0.08633 0.08715 0.10551 0.13862 0.15846 1
4 0.05951 0.06591 0.07627 0.08221 0.08296 0.10309 0.13552 0.15231 1
… … … … … … … … … …
95 0.13716 0.14646 0.12032 0.10737 0.09584 0.10583 0.19554 0.28928 0
96 0.03956 0.03842 0.04956 0.04873 0.04787 0.10939 0.17577 0.18053 0
97 0.04169 0.04147 0.04678 0.05234 0.05395 0.07482 0.09049 0.08792 0
98 0.04176 0.04333 0.05508 0.05436 0.05339 0.10384 0.16483 0.17557 0
99 0.04113 0.04058 0.05251 0.05329 0.05305 0.11339 0.17822 0.18324 0

100 filas x 9 columnas

En la Fase 3 de la metodología, los atributos del conjunto de datos se analizaron inicialmente 

utilizando métodos de ganancia de información (Gain Ratio y Chi-Square), que son bien conocidos 

por su efectividad para identificar la relevancia de los atributos en relación con la variable objetivo, 

y gráficos de violina, que permiten la visualización simultánea de la distribución y densidad de 

datos dentro de cada categoría del atributo predictor. Esto facilitó una estimación precisa de los 

atributos con mayor impacto en el atributo predictor, que en este caso corresponde al tipo de 

material (columna de píxeles).
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Dentro de esta fase, los datos se dividieron en conjuntos de entrenamiento y prueba utilizando el 

componente Data Sampler en Orange. A continuación, se entrenaron y ajustaron cuatro modelos 

convencionales de aprendizaje automático: KNN, máquinas de vectores de soporte, regresión 

logística y árbol de decisión, utilizando el conjunto de entrenamiento. Cabe mencionar que se 

eligieron modelos convencionales de aprendizaje automático, considerando que aunque los 

modelos basados en aprendizaje profundo exhiben una alta efectividad, a menudo requieren 

estructuras de red complejas y grandes volúmenes de datos, que pueden ser intensivos en términos 

de tiempo de procesamiento y recursos computacionales, lo que los hace inadecuados para 

aplicaciones de monitoreo ambiental (45). Finalmente, los componentes de evaluación se integraron 

en el flujo de trabajo de Orange para evaluar los modelos tanto en el conjunto de entrenamiento 

como en el de prueba, obteniendo métricas de evaluación clave (exactitud, precisión, recuperación 

y puntuación F1), así como la matriz de confusión para el conjunto de prueba. Con base en los 

resultados de estas métricas, se seleccionó el modelo con la mejor consistencia y rendimiento 

en el entrenamiento y las pruebas para su aplicación a la imagen de referencia completa. Cabe 

mencionar que no se consideró la métrica AUC-ROC, ya que es más útil y proporciona información 

significativa en el contexto de conjuntos de datos desequilibrados (46). 

En la Fase 4 de la metodología, se implementó el modelo con el mejor rendimiento y consistencia 

y se aplicó a toda la imagen multiespectral, aprovechando las ventajas proporcionadas por las 

bibliotecas de Python Spectral, Pandas, Scikit-learn y NumPy. Además, en base a la detección 

realizada por el método en toda la imagen, se determinó el porcentaje de píxeles correspondientes 

al asbesto. El porcentaje resultante es de particular interés para las autoridades ambientales para 

identificar techos de asbesto en los barrios de Cartagena.

De acuerdo con lo anterior, el presente estudio tiene como objetivo abordar las siguientes 

preguntas: ¿Cuál es el rendimiento de los métodos de aprendizaje automático para la detección 

de amianto en imágenes multiespectrales? ¿Cuál es la eficacia y eficiencia del modelo de mejor 

rendimiento en comparación con los métodos convencionales? ¿En qué campos de aplicación se 

puede extrapolar el enfoque propuesto?

Resultados 

En cuanto a los resultados, el conjunto de datos de la Tabla 1 se cargó primero en la herramienta de 

programación visual Orange, y se aplicó el módulo “Rank” para determinar los atributos con mayor 

impacto en el atributo predictor. Esto se logró utilizando los métodos Gain Ratio y Chi-Square, con 

los resultados presentados en la Figura 4.

De acuerdo con los resultados presentados en la Figura 4, los métodos Gain Ratio y Chi-Square 

identificaron que las bandas que proporcionan la contribución más significativa al atributo predictor 

(columna de píxeles del conjunto de datos) son las bandas 8, 2 y 5, cada una con un porcentaje de 

ganancia de información superior al 20,9%. La banda 8 fue la más relevante, con un valor de Gain 

Ratio de 0,264 y una contribución de Chi-cuadrado de 27,307.

Es posible observar cómo las bandas 2 (480 nm, azul), 5 (660 nm, rojo) y 8 (950 nm, infrarrojo 

cercano) pueden ser clave para la detección de amianto-cemento debido a su interacción con la 
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composición espectral del material. La Banda 2 destaca su reflectancia en el rango visible, la Banda 

5 captura la absorción de minerales característicos y la Banda 8 permite la diferenciación a través 

de su respuesta en el infrarrojo. Estas bandas, colectivamente, parecen optimizar la identificación 

del asbesto-cemento al capturar sus propiedades espectrales distintivas en diferentes rangos del 

espectro electromagnético.

Figura 4. Aplicación de métodos de obtención de información

De igual forma, se observó que la banda 6 proporciona la menor información, con un valor de 

Razón de Ganancia de 0,176 y una contribución porcentual de 15,360% en Chi-Cuadrado. Para 

explorar más a fondo la posible relación entre la distribución de los valores de reflectancia en las 

8 bandas de la imagen multiespectral y las categorías de la variable predictora (0 o 1), se utilizaron 

gráficos de violín a través del módulo “Gráfico de violín” en naranja (ver Figura 5).

Figura 5. Gráficos de violín de las bandas de reflectancia en la imagen multiespectral

A partir de los gráficos de violín presentados en la Figura 5, es evidente que la distribución de los 

valores de reflectancia en las bandas 8, 2 y 5 permite una diferenciación más clara entre los tipos 

de píxeles 0 (sin asbesto) y 1 (asbesto), ya que no se observa una superposición significativa en sus 

densidades. Esto se alinea con los resultados obtenidos a través del método Chi-Cuadrado, donde 

se destacan estas tres bandas con un porcentaje de ganancia de información superior al 20,9%.
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En comparación, las bandas restantes exhiben una mayor similitud en sus distribuciones, lo que 

las hace menos útiles para clasificar los tipos de píxeles. Además, se observa que, en general, 

los valores de reflectancia para el tipo de píxel 0 muestran una mayor dispersión y variabilidad, 

mientras que los del tipo de píxel 1 exhiben distribuciones más compactas concentradas dentro 

de rangos más estrechos. Estos hallazgos sugieren que las bandas 8, 2 y 5 son particularmente 

efectivas para distinguir entre asbesto y otros materiales, de acuerdo con los resultados obtenidos 

utilizando métodos de obtención de información.

Una vez analizadas las bandas de reflectancia más relevantes, se desplegó el flujo de trabajo 

completo para los cuatro modelos de aprendizaje automático utilizando la herramienta de 

programación visual Orange, como se ilustra en la Figura 6.

Figura 6. Flujo de trabajo de los modelos de aprendizaje automático en Orange

La Figura 6 ilustra claramente los diversos procesos llevados a cabo en el flujo de trabajo 

desarrollado, que incluyen: cargar el conjunto de datos en formato Excel utilizando el módulo 

“Archivo”; seleccionando los 8 atributos (bandas de reflectancia) y el atributo predictor (tipo de 

píxel) de las 9 columnas del conjunto de datos utilizando el módulo “Seleccionar columnas”.

Posteriormente, se aplicaron métodos de ganancia de información y gráficos de violín a través 

de los módulos “Rango” y “Gráfico de violín”. Luego, el conjunto de datos se dividió en conjuntos 

de entrenamiento (70%) y prueba (30%) utilizando el módulo “Muestreador de datos”. Los cuatro 

modelos de aprendizaje automático considerados (KNN, árboles de decisión, máquinas de vectores 

de soporte y regresión logística) se entrenaron a través de los módulos “kNN”, “Tree”, “SVM” y 

“Logistic Regression”. 

A continuación, se visualizó el diagrama de árbol de decisión con el módulo “Visor de árboles”. Los 

modelos se validaron en el conjunto de entrenamiento utilizando el módulo “Test and Score” y en 
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el conjunto de pruebas utilizando los módulos “Predictions” y “Confusion Matrix”. Una vez que se 

implementó el flujo de trabajo en la herramienta Orange, se realizó el análisis de las métricas del 

modelo para los conjuntos de entrenamiento y prueba, como se presenta en las Tablas 2 y 3.

Tabla 2. Resultados de los modelos sobre el rendimiento del conjunto de trenes

Modelo AUC CA F1 Precisión Recordar
kNN 0.986 0.971 0.971 0.973 0.971

Árbol 0.906 0.929 0.928 0.932 0.929

SVM 1.000 0.943 0.943 0.949 0.943

Regresión logística 0.860 0.771 0.759 0.843 0.771

Tabla 3. Resultados de los modelos Rendimiento del conjunto de pruebas

Modelo AUC CA F1 Precisión Recordar
kNN 1.000 1.000 1.000 1.000 1.000
Árbol 0.933 0.933 0.933 0.933 0.933
SVM 1.000 1.000 1.000 1.000 1.000

Regresión logística 0.800 0.833 0.829 0.875 0.833

Teniendo en cuenta los resultados obtenidos por los modelos en las métricas de Precisión y Retiro, 

cabe destacar que el modelo kNN con tres vecinos, árboles de decisión y el modelo de máquina 

de vectores de soporte (SVM) con un kernel RBF alcanzaron los valores más altos en el conjunto de 

entrenamiento. Entre estos, el modelo kNN mostró el mejor desempeño, con métricas de Precisión 

y Recuperación de 0.973 y 0.971, respectivamente, seguido por el modelo SVM con valores de 

0.949 y 0.943, y el modelo de árbol de decisión con valores de 0.932 y 0.939, todos demostrando 

un desempeño adecuado.

Por el contrario, el modelo de regresión logística alcanzó valores de precisión y recuperación de 

0,843 y 0,771, respectivamente, lo que indica un rendimiento más limitado en comparación con los 

otros tres modelos. En el conjunto de pruebas, tanto el modelo kNN como el SVM mantuvieron un 

rendimiento perfecto (1.0) en ambas métricas, mientras que el modelo de árbol de decisión registró 

valores ligeramente más bajos de 0.933 tanto en Precisión como en Recuperación.

Esta ligera disminución en el rendimiento del modelo de árbol de decisión es un resultado positivo, 

ya que indica una mejor capacidad de generalización y un menor riesgo de sobreajuste, lo que 

enfatiza la importancia de lograr resultados más equilibrados entre los conjuntos de entrenamiento 

y prueba para garantizar la solidez del modelo. Por lo tanto, aunque se pudieron utilizar los tres 

modelos con el mejor rendimiento, el modelo de árbol de decisión demostró la mayor consistencia 

y se seleccionó para su despliegue en toda la imagen multiespectral de referencia. En consecuencia, 

la Figura 7 presenta la matriz de confusión obtenida para el modelo seleccionado.
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Figura 7. Matriz de confusión obtenida para el modelo de árbol de decisión seleccionado

La Figura 7 muestra que, de un total de 30 casos en el conjunto de prueba (15 de fibrocemento 

y 15 de otros materiales), el modelo de árbol de decisión clasificó correctamente 14 casos como 

pertenecientes a otros materiales y clasificó erróneamente 1 como fibrocemento. Para los casos de 

fibrocemento, el modelo identificó correctamente 14 de los 15, con uno clasificado erróneamente 

como perteneciente a otros materiales. Esto corresponde a una tasa de precisión del 93,3% en la 

clasificación de muestras de fibrocemento, lo que demuestra un rendimiento adecuado con una 

ligera tasa de error en esta categoría.

Además, la Figura 8 ilustra el árbol de decisión generado por el modelo, destacando los atributos 

identificados como más relevantes, siendo las bandas 8 y 5 las más significativas en el conjunto de 

datos. Esto se alinea con los resultados obtenidos a través de métodos de obtención de información 

y gráficos de violín, donde estas bandas se encuentran entre los tres atributos más relevantes.

En concreto, la regla que habilita la clasificación de los píxeles de fibrocemento (etiqueta 1) 

establece que si el valor de reflectancia de la banda 8 supera 0,146159 y el de la banda 5 es superior 

a 0,0815123, el modelo clasifica estos píxeles como pertenecientes a esta categoría, consiguiendo 

una precisión del 97,2% (35/36). Este resultado subraya la capacidad del modelo para discriminar 

eficazmente entre clases, particularmente en el caso de píxeles de fibrocemento.

Figura 8. Árbol de decisión obtenido por el modelo

En consonancia con lo anterior, en la tabla 4 se presentan las tres reglas de inferencia derivadas del 

árbol de decisión, que se refieren a las bandas 8 y 5. Estas tres reglas son muy útiles para clasificar 
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los píxeles de asbesto en toda la imagen, particularmente la Regla 3, que se refiere a la detección 

de píxeles de fibrocemento.

Tabla 4. Reglas de inferencia obtenidas del modelo de árbol de decisión

Identificación Regla de inferencia

1
Si la banda 8 ≤ 0.146159, entonces la clase es 0 (otros materiales), con una 

precisión del 100% (28/28).

2
Si la banda 8 > 0.146159 y la banda 5 ≤ 0.0815123, entonces la clase es 0 

(otros materiales), con una precisión del 100% (6/6).

3
Si la banda 8 > 0,146159 y la banda 5 > 0,0815123, entonces la clase es 1 

(fibrocemento), con una precisión del 97,2% (35/36).

Con base en las reglas de inferencia obtenidas y presentadas en la Tabla 4, se aplicó la Regla 3 

para la identificación de píxeles de fibrocemento en el total de píxeles de la imagen multiespectral 

de referencia que se muestra en la Figura 2, utilizando las bibliotecas Spectral, NumPy, Pandas y 

Matplotlib. La Figura 9 ilustra la implementación del método de detección de asbesto en Python, 

donde el algoritmo itera a través de cada píxel de la imagen, extrayendo sus 8 bandas espectrales 

y aplicando la Regla de Inferencia 3, que involucra las bandas 8 y 5. Como resultado de este 

método, la Figura 9 resalta en azul las áreas detectadas que contienen fibrocemento en la imagen 

presentada en la Figura 2, revelando que el 32,4% de la imagen corresponde a fibrocemento.

Figura 9. Despliegue del método en toda la imagen

Discusión

A nivel de discusión de resultados y con el fin de abordar la primera pregunta orientadora 

sobre el desempeño de los modelos de aprendizaje automático evaluados para la detección de 

fibrocemento, cabe mencionar que este estudio implementó un flujo de trabajo de aprendizaje 

automático utilizando la herramienta Orange, empleando cuatro modelos: k-Vecinos más cercanos 

(kNN), árboles de decisión, máquinas de vectores de soporte y regresión logística,  para la 
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detección de fibrocemento en imágenes multiespectrales. En este sentido, es importante destacar 

que, en el conjunto de pruebas, los modelos de máquina kNN, árbol de decisión y vector de 

soporte lograron un rendimiento superior a 0,933 en las métricas Precision, Recall y F1-Score, 

mientras que el modelo de regresión logística exhibió el menor rendimiento en estas métricas, 

con valores que oscilaron entre 0,829 y 0,875. Este hallazgo lleva a la conclusión de que los tres 

modelos de mejor rendimiento demuestran una alta efectividad en la detección de fibrocemento 

en imágenes multiespectrales; sin embargo, el modelo de árbol de decisión muestra la mayor 

consistencia en los resultados en los conjuntos de entrenamiento y prueba.

Ahora, con respecto a la segunda pregunta orientadora relacionada con la comparación del 

modelo de mejor rendimiento con los métodos convencionales en términos de eficacia y 

eficiencia, es importante resaltar que el modelo que logró el mejor equilibrio entre rendimiento 

y consistencia en los conjuntos de entrenamiento y prueba fue el modelo de árbol de decisión. 

Este modelo obtuvo valores respectivos de 0,932 y 0,929 para Precisión y Recuperación en el 

conjunto de entrenamiento, mientras que en el conjunto de prueba, logró un valor de 0,933 para 

ambas métricas. Además, este modelo identificó que las bandas relevantes para la detección de 

fibrocemento son las bandas de reflectancia 8 y 5. La identificación de estas bandas es crucial, ya 

que sugiere que la eficiencia computacional se optimiza a través de este método al considerar 

solo dos bandas en la regla de inferencia para la detección. Por el contrario, los métodos 

convencionales, como el enfoque basado en la correlación, utilizan el número total de bandas 

espectrales de la imagen para sus cálculos, como se presenta en (47), donde se calcula la similitud 

entre el píxel medio o característico y los píxeles restantes de la imagen.

Del mismo modo, en cuanto a la tercera pregunta orientadora relacionada con los campos en 

los que se puede extrapolar el enfoque propuesto, cabe mencionar que, dado que el método 

desarrollado reduce la complejidad de la identificación del amianto-cemento al utilizar solo un 

par de bandas para la detección, puede aplicarse en investigaciones centradas en el monitoreo 

ambiental (14–16), donde el área cubierta por las imágenes es extensa y la eficiencia es un requisito 

fundamental.

En este mismo sentido, se trata de investigaciones centradas en la detección del amianto mediante 

imágenes hiperespectrales (48), este estudio proporciona un hallazgo relevante, ya que demuestra 

que con solo unas pocas bandas de reflectancia, los métodos de aprendizaje automático, como 

los árboles de decisión, permiten la detección eficiente y efectiva de este material. Esto no solo 

optimiza los costes computacionales, sino que también reduce los gastos en el proceso de recogida 

de muestras, dado que la infraestructura necesaria para la captura y procesamiento de imágenes 

hiperespectrales conlleva un mayor coste económico.

Conclusiones 

Teniendo en cuenta que la mayoría de las investigaciones de vanguardia sobre la detección de 

fibrocemento en imágenes espectrales se han centrado en el uso de imágenes hiperespectrales 

debido a su precisión y la amplia información espectral que proporcionan, este artículo propone 

un método basado en el aprendizaje automático para la detección de fibrocemento dentro del 

dominio de las imágenes satelitales multiespectrales. Este método demostró no solo resultados 
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efectivos sino también eficiencia computacional, lograda utilizando un número menor de bandas 

y centrándose en un conjunto reducido de bandas relevantes para clasificar píxeles como 

fibrocemento. Con base en la eficiencia alcanzada por el modelo de árbol de decisión, el enfoque 

propuesto se puede extrapolar a dominios donde la eficiencia es primordial, como el monitoreo 

ambiental mediante imágenes espectrales, donde las imágenes cubren grandes áreas y la 

optimización de los tiempos de procesamiento es esencial.

En este estudio se evaluaron cuatro modelos de aprendizaje supervisado: kNN con 3 vecinos, 

árboles de decisión, máquinas de vectores de soporte con kernel RBF y regresión logística. Los 

modelos de máquina kNN, árbol de decisión y vector de soporte lograron métricas de precisión y 

recuperación superiores a 0,93, y el modelo de árbol de decisión demostró la mejor consistencia 

entre los conjuntos de entrenamiento y prueba. Además de su excelente efectividad en ambos 

conjuntos, el modelo de árbol de decisión demostró ser eficiente al utilizar una regla de inferencia 

que involucra solo la banda 8 y la banda 5 para la detección de fibrocemento, lo que lo hace 

competitivo con métodos como los enfoques basados en correlación. En este contexto, los 

resultados obtenidos representan una contribución significativa en comparación con los estudios 

de última generación, que se centran predominantemente en el uso de diversos métodos para la 

detección de amianto en imágenes hiperespectrales. El enfoque propuesto permite la detección de 

amianto a través de una regla de inferencia basada en la evaluación de dos bandas de reflectancia, 

lo que no solo optimiza los costes computacionales sino que también reduce los gastos asociados 

a la adquisición y muestreo de imágenes hiperespectrales.

Para el desarrollo de esta investigación, se utilizó una adaptación de la metodología de minería 

de datos CRISP-DM. Para implementar las diferentes fases de la metodología, se empleó tanto 

la herramienta de programación visual Orange como las bibliotecas de Python Spectral, NumPy, 

Pandas, Scikit-learn y Matplotlib. Las bibliotecas de Python mencionadas se utilizaron para 

construir el conjunto de datos a partir de una imagen multiespectral de referencia, así como para 

implementar el modelo de aprendizaje automático en la imagen de referencia completa. Por 

su parte, se utilizó la herramienta Orange para aplicar métodos de ganancia de información y 

gráficos de violín, así como para entrenar y evaluar los cuatro modelos de aprendizaje automático 

considerados, siguiendo la división del conjunto de datos en conjuntos de entrenamiento y prueba. 

Las herramientas de código abierto consideradas para la implementación del flujo de trabajo 

proporcionan una alternativa competitiva al software propietario para la detección de materiales 

en imágenes espectrales, lo que permite a las universidades y centros de investigación replicar y 

extrapolar estos métodos en diversas aplicaciones.

Como resultado de desplegar el modelo de mejor ajuste sobre la imagen de referencia completa 

correspondiente a un área de la ciudad de Cartagena, se determinó que el 32,4% del total de 

píxeles de la imagen se identificaron como fibrocemento. Este resultado tiene importancia no 

solo en términos computacionales sino también en el contexto de la salud pública, dadas las 

implicaciones negativas de la exposición humana a las fibras de este material. Por lo tanto, los 

hallazgos presentados en este artículo tienen como objetivo contribuir a la toma de decisiones 

estratégicas con respecto a los esfuerzos de mitigación del asbesto en Cartagena por parte de las 

autoridades gubernamentales.
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Por otro lado, cabe mencionar que, aunque en el caso específico de este estudio, se obtuvieron 

excelentes resultados en la detección de asbesto-cemento sobre una imagen multiespectral que fue 

preprocesada aplicando las correcciones atmosféricas necesarias, este aspecto debe ser considerado 

cuidadosamente, ya que omitir correcciones atmosféricas puede afectar el rendimiento de los 

modelos de aprendizaje automático al introducir ruido y comprometer la discriminación de la firma 

espectral del asbesto-cemento.  Del mismo modo, es importante aclarar que el muestreo de píxeles 

es una fase crítica del proceso, por lo que se recomienda recolectar muestras de firmas espectrales 

de áreas donde no solo se asegura la confirmación visual, sino que también se han realizado visitas 

de campo y pruebas de verificación para confirmar la presencia del material.

Como trabajo futuro, se debe considerar la aplicación del modelo a otras áreas de Cartagena y 

diferentes ciudades de Colombia y del mundo. Esto permitiría validar su efectividad en diversos 

contextos, fortalecer los hallazgos y ampliar el alcance de este estudio. Además, la evaluación de los 

métodos de conjunto podría mejorar la precisión al aprovechar múltiples modelos para mejorar la 

capacidad predictiva y la robustez.
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También se planea una comparación de la eficiencia del método propuesto con enfoques que 

no son de aprendizaje automático. Esto ayudaría a evaluar el costo computacional y el tiempo de 

procesamiento, asegurando que el modelo siga siendo práctico para implementaciones a gran 

escala.
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