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The Growing concern about environmental problems and the depletion of fossil fuels has generated 
interest in the development of technologies that allow us to produce electricity without having to 
pollute the environment. Hydrogen has become the main candidate to replace fossil fuels in the last 
decades, having the possibility to be used as a primary fuel to be burned in combustion engines, or 
as an energy vector for the production of energy by means of fuel cells, becoming an attractive fuel 
due to its high energy density and that does not emit any type of pollution. Currently, hydrogen is not 
produced for energy purposes, but for industrial purposes, so the objective of this article is to learn 
about the predominant forms of hydrogen production, which use fossil fuels as raw materials, and 
to study the new technologies developed to obtain decarbonised hydrogen intended for the energy 
sector, investigating known technologies such as electrolysis, getting to compare the functioning of 
the existing types of electrolysis and describing other novel forms such as those that make up the 
production of biological hydrogen or bio-hydrogen, getting to analyse different research with the aim 
of presenting the results in fermentative methods, the use of microalgae and the microbial electrolysis 
cell, explaining the main challenges and analysing the characteristics and the research status into these 
forms of production.

La creciente preocupación por los problemas ambientales y el agotamiento de los combustibles fósiles ha 
generado un interés hacia el desarrollo de tecnologías que nos permitan producir electricidad sin necesi-
dad de contaminar el medio ambiente. El hidrógeno en las últimas décadas se ha convertido en el principal 
candidato para reemplazar a los combustibles fósiles, teniendo la posibilidad de poder utilizarse como com-
bustible primario para quemarse en motores de combustión, o como vector energético para la producción 
de energía por medio de las pilas de combustible, convirtiéndose en un combustible atractivo por su alta 
densidad energética y que no emite ningún tipo de contaminación. En la actualidad, el hidrógeno no se 
produce con fines energéticos, sino industriales, por ello, el propósito de este artículo es conocer las formas 
predominantes de producción de hidrógeno, que usan combustibles fósiles como materia prima y estudiar 
las nuevas tecnologías desarrolladas para obtener hidrógeno descarbonizado destinado al sector energéti-
co, investigando tecnologías conocidas como la electrólisis llegando a comparar el funcionamiento de los 
tipos de electrólisis existentes y describir otras formas novedosas como las que componen la producción de 
hidrógeno biológico o bio-hidrógeno, llegando a analizar diversas investigaciones con el objetivo de expo-
ner los resultados en los métodos fermentativos, el uso de microalgas y la celda de electrólisis microbiana, 
exponiendo los principales desafíos y analizando las características y el estado de investigación de estas 
formas de producción.

1Laboratorio de Energía, sistemas térmicos e nanotecnologia LEST-NANO. Universidad Francisco de Paula Santan-
der. Cúcuta, Colombia.   
2 Universidad Francisco de Paula Santander. Cúcuta, Colombia. 
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Why was it conducted?: 
 The manuscript is intended to address and explore the various hydrogen generation routes and technologies that have evol-
ved up to the present day. Its central objective is to provide a comprehensive overview of the current status and trends in the 
development of efficient and clean hydrogen production technologies, especially in the context of the energy transition
towards more sustainable sources. This approach is justified by the need to find energy alternatives that reduce greenhouse 
gas emissions, given that current energy production, based on fossil fuels, is a major contributor to greenhouse gas emissions. 
Furthermore, the manuscript seeks to examine both established and emerging technologies, with a special emphasis on green 
hydrogen production, to help mitigate climate change and move towards a cleaner and more sustainable energy matrix.

What were the most relevant results?
The most relevant results indicate that hydrogen is positioned as an energy matrix with great potential to replace fossil 
fuels. Current research focuses on electrolysis and biohydrogen production as the main mechanisms for obtaining hydrogen 
without environmental pollution. Different methods have been identified in the biohydrogen field, adapted to different mi-
croorganisms and feedstocks. Specific challenges include the design of suitable reactors, the need for glucose-rich substrates 
and the control of bacterial growth for fermentative processes, as well as the exploration of genetic engineering solutions for 
biophotolysis.

What do these results contribute?
These results provide a clear direction for energy research by identifying electrolysis and biohydrogen production as key 
technologies for clean hydrogen generation, underlining the importance of further developing these solutions to reduce 
dependence on fossil fuels. Furthermore, by analysing the technical challenges in biohydrogen production, such as reac-
tor design and limitations in biophotolysis, they provide a basis for focusing research on improving the efficiency of these 
processes. They also highlight the need to develop adequate infrastructure for hydrogen storage, transport and distribution, 
which is crucial for its integration into existing energy systems. Taken together, these findings not only drive the development 
of more sustainable technologies, but also guide the formulation of energy policies that promote the transition to a hydrogen 
economy.
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Introduction
The current energy demand is mostly satisfied through the use of resources such as natural 
gas, coal and oil. This form of energy production is responsible for a considerable amount 
of greenhouse gas (GHG) propagation, representing 66,667% of global emissions, as 
reported by the United States Environmental Protection Agency (EPA) (1). Just during 2021, 
the release of carbon dioxide (CO2) linked to power generation showed an increase by 6%, 
reaching a record of 36.3 billion tonnes (2,3). This increase is largely due to population 
growth and the constant exploitation of fossil fuels, which has resulted in a 68% increase in 
CO2 and anthropogenic carbon concentrations in the atmosphere (4). 

For these reasons, efforts have been made to find other ways to generate energy with 
zero carbon emissions, an energy resource that has had some relevance in recent decades 
has been hydrogen, its importance is given by the ability of the element to store energy 
in relation to its mass, which is estimated to be around the 143MJ/Kg (5–7), this energy 
density is the highest among known fuels. Another important factor is the versatility of this 
element to generate clean energy, either by burning it directly (8) or by using it as a fuel 
or producing energy using fuel cells to produce electricity (9), this element is considered 
environmentally friendly when generating energy, however, its carbon neutrality is based 
on the way in which the hydrogen is produced (10).

For many years, hydrogen has played a crucial role in the industrial sector, especially for 
synthesising ammonia and in the manufacture of fertilisers (11), driving the development 
of specialised technologies for its separation from fossil resources, the development of 
these technologies being due to the fact that hydrogen is not isolated in nature (12). Over 
the years, different procedures have been explored to obtain hydrogen isolated from these 
compounds, based on the type of raw material used: fossil resources such as oil, coal and 
natural gas, or renewable resources such as water and biomass (13,14).

In Latin America, there has been a growing interest in hydrogen production and storage 
at the global level. This is partly due to the fact that several countries in the region have 
a low cost of clean energy as a result of the energy transition towards a cleaner energy 
matrix, such as Brazil and Colombia, which generate a significant proportion of their energy 
through hydroelectric sources. (15–17). In addition, there has been interest in building 
green hydrogen production plants in the region, an industry that could generate multiple 
benefits, including job creation, increased affordability of energy services for sectors that 
do not yet have them, climate change mitigation and poverty reduction (18). Among the 
countries in the region, Chile has developed a greater emphasis with two projects under 
development, countries like Colombia are in a state of analysis for the development of a 
roadmap and in Costa Rica an alliance between public and private companies has been 
consolidated with the aim of generating supply and demand for this resource (18–20).

The main objective of this research is to address the different hydrogen generation routes 
that have evolved up to the present day. On the one hand, the consolidated technologies 
for hydrogen production at industrial level will be reviewed. On the other hand, emerging 
technologies that allow hydrogen to be generated in a sustainable way, without producing 
environmental pollution, will be explored, with the main emphasis on understanding the 
operation of technologies to produce green hydrogen. In order to develop this objective, 
different research articles will be examined that present experimental results of the various 
technological alternatives for hydrogen production. In this way, the study wants to provide 
a comprehensive overview of the current status and trends in the development of efficient 
and clean technologies for hydrogen generation, in order to contribute to the energy 
transition towards more sustainable sources.

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer
https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021
https://linkinghub.elsevier.com/retrieve/pii/S2352484722020625
https://linkinghub.elsevier.com/retrieve/pii/S2666821121000880
https://linkinghub.elsevier.com/retrieve/pii/S0360319922033961
https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/13211
https://linkinghub.elsevier.com/retrieve/pii/S0360319922053368
https://linkinghub.elsevier.com/retrieve/pii/S2211339822000375
https://linkinghub.elsevier.com/retrieve/pii/S1364032119308275
https://linkinghub.elsevier.com/retrieve/pii/S0360319918304002
https://linkinghub.elsevier.com/retrieve/pii/S0360319920339276
https://linkinghub.elsevier.com/retrieve/pii/S1364032112001220
https://ikels-dspace.azurewebsites.net/bitstream/handle/123456789/838/Innovación 
http://hdl.handle.net/11371/6059
https://dialnet.unirioja.es/servlet/articulo?codigo=8823170
https://dialnet.unirioja.es/servlet/articulo?codigo=8823170
https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/86773/Informe de Vigilancia Tecnológica_Producción de hidrógeno verde para descarbonizar las actividades económicas en Costa Rica.pdf?sequence=1
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Methodology
In this section we will detail the process we carried out to perform the bibliographical 
tracking, which was crucial on identifying relevant studies for our state-of-the-art article. 
The bibliographic sources selected for data collection are the following: Scopus, Science 
Direct, Google Scholar, Web of Science, Springer Link,Taylor & Francis.

These platforms greatly facilitate the filtering of research articles, allowing us to limit the 
search to review and research articles, as well as by year. We developed search equations 
employing Boolean operators (AND, OR, NOT), using the following keywords: “Hydrogen 
production” “Fuel cells” “Green hydrogen” “Technologies for hydrogen production” 
“Electrolyzers” “Electrolytic cells” “Biohydrogen” “Pyrolysis” “Natural gas” “Gasification” 
“Autothermal reforming” Thermochemical.

The use of these equations allowed us to significantly reduce the number of documents 
retrieved, limiting it to less than 50 per search equation. This strategy streamlines the 
review process and ensures a more accurate selection of relevant documents. Regarding 
the inclusion criteria, we prioritized documents from the last 10 years and in English 
language. Initially, we included a large number of review articles to obtain an overview 
of all production technologies. Subsequently, we focused our attention on individual 
investigations of each technology, with the objective of going deeper operational aspects, 
efficiency, advantages and disadvantages of each one, this approach allowed us to obtain 
a detailed and complete knowledge of each technology considered. Thus, the research 
structure was organized according to the different hydrogen production technologies, such 
as electrolysis, gasification and biological production, among others, allowing a systematic 
analysis of the various approaches and focus used in each area, as well as the identification 
of emerging trends and promising areas of research.

Hydrogen generation technologies 

Over the years, global demand for hydrogen has experienced a remarkable increase, 
driving a significant increase in hydrogen production. According to recent data, global 
hydrogen production will amount to 90 million tonnes (Mt) in 2020 (21), while by 2021, this 
figure rise to 94 million tonnes (22). In addition, over the course of 2022, total hydrogen 
production will increase by a further 11.1 million tonnes per year. (23). It’s important to 
highlight that, most of this growing hydrogen production continues to rely exclusively on 
fossil resources resulting in the release of approximately 900 Mt CO2 (22,24). 

In general, these technologies are classified using a colour coding system, in order to 
facilitate the distinction and description of the various production processes (25,26). Figure 
1 shows the colour coding of hydrogen, with their respective production processes and 
the raw materials most commonly used in the generation of hydrogen, these are classified 
into different categories according to the production processes used, which results in a 
wide range of colours that reflect their origin and environmental impact, which are, grey 
hydrogen, blue hydrogen and green hydrogen are the main variants, each with their 
particularities (27,28).

https://www.obsbusiness.school/actualidad/informes-de-investigacion/informe-obs-mercado-del-hidrogeno-2022
https://www.iea.org/reports/global-hydrogen-review-2022/executive-summary
https://www.nationalgeographic.es/medio-ambiente/2022/04/hacia-la-transicion-energetica-el-nuevo-metodo-para-producir-hidrogeno-de-forma-industrial
https://www.iea.org/reports/global-hydrogen-review-2022/executive-summary
https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary
https://www.mdpi.com/2673-5628/3/1/2/htm
https://linkinghub.elsevier.com/retrieve/pii/S0196890423006404
https://www.mdpi.com/1996-1073/16/3/1141/htm
https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11155
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Figure 1. Categorisation of hydrogen according to production methods. Source: Authors.

Firstly, grey hydrogen is obtained by reforming hydrocarbons, especially methane, through 
thermochemical processes (29), being the cheapest method, but with high CO2 emissions 
(9,5 KgCO2/KgH2). Blue hydrogen incorporates carbon capture and storage technologies 
to mitigate emissions, reducing them to between KgCO2/KgH2, although it still relies on 
non-renewable resources (30). In contrast, green hydrogen is produced by electrochemical 
processes, such as the electrolytic dissociation of water, using electricity from sustainable 
sources such as wind, solar or hydroelectric power, with low emissions (31,32) (8,2 KgCO2/
KgH2 in Colombia) (33). This colour classification allows the identification of the origin and 
environmental footprint of each type of hydrogen, encouraging informed decisions and a 
more sustainable approach to energy management (34,35).

Production from fossil fuels

So far, hydrogen production has been mostly linked to the use of fossil fuels as the 
main raw material, which are mainly composed of hydrocarbons characterised by large 
amounts of hydrogen and carbon in their molecular structure, the physical state at room 
temperature of these fuels (coal, oil and natural gas) varies depending on the amount of 
carbon present (36). The procedures for obtaining hydrogen focus on the decomposition 
of the bonds between hydrogen and carbon in these hydrocarbons, representing one of 
the most widely used methods for the production of hydrogen from fossil fuels today (37).

Hydrocarbon reforming

Currently, the predominant technological route for hydrogen generation on a global scale 
is hydrocarbon reforming, mainly methane, accounting for about 48% of total production 
(38). In this field, three different approaches have been established: steam reforming (39), 
partial oxidation and autothermal reforming (40),(41). 

https://linkinghub.elsevier.com/retrieve/pii/S0959652622048697
https://linkinghub.elsevier.com/retrieve/pii/S1385894721037712
https://linkinghub.elsevier.com/retrieve/pii/S0360319922028051
https://dialnet.unirioja.es/servlet/articulo?codigo=8380347&info=resumen&idioma=ENG
https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/2700
https://www.mdpi.com/2077-1312/10/12/1995/htm
https://cicenergigune.com/es/blog/metodos-produccion-hidrogeno-colores
https://doi.org/10.1016/j.apcata.2009.02.038
https://linkinghub.elsevier.com/retrieve/pii/S0360319923032718
https://doi.org/10.1016/j.rser.2012.11.033
https://onlinelibrary.wiley.com/doi/full/10.1002/aesr.202100097
https://linkinghub.elsevier.com/retrieve/pii/S0360319919343988
https://doi.org/10.1016/j.jpowsour.2005.02.092
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Firstly, steam methane reforming (SMR) involves reacting methane with steam at 
temperatures in the range of 700 and 1000°C and moderate pressures between 3 and 25 
bar (40–42), where this reaction takes place in the presence of a metal catalyst composed 
mainly of nickel. The endothermic reaction is presented in Equation 1, separating and 
recombining the methane molecules (CH4) and water (H2O), to generate carbon monoxide 
and hydrogen (43).

CH4 + H2O  CO + 3H2
Ec. (1)

Subsequently, using the gas-water shifting technique, convert CO to CO2 and release more 
hydrogen, as shown in Equation 2 (44), this reaction is considered exothermic because it 
has a standard enthalpy reaction of -41,17 kJ/mol, but this heat release is not adequate to 
maintain the temperature required in the reforming reaction, and some of the natural gas 
is used as fuel to meet the temperature demand.

CO + H2O  CO2 + H2
Ec. (2)

Subsequently, the aim is to purify the hydrogen by separating the CO2 and other pollutant 
gases, finally obtaining high purity hydrogen (44). Although this process is considered the 
cheapest option, the hydrogen produced is categorised as “grey hydrogen” because of its 
high direct CO2 emissions, producing 9,5 KgCO2/KgH2 (37,39), it is feasible to implement 
carbon capture and storage (CCS) systems that enable the cost-effective and low-emission 
production of short-term hydrogen called “blue hydrogen” (45).

Another process used in hydrocarbon reforming is partial oxidation, this process consists 
of the incomplete oxidation of the hydrocarbon by oxidising the carbon and leaving the 
hydrogen free, as can be seen in equation 3, the process consists of injecting a stream of 
air or oxygen into a reactor containing the hydrocarbon (37), where only carbon is oxidised 
leaving CO and releasing H2.

CH4 + ½ O2  CO2 + 2H2+ (calor) Ec. (3)

The CO produced is subjected to water and gas displacement to obtain additional 
hydrogen, as in equation 2 (46); in addition, the reaction rate exceeds that of steam 
reforming, and this makes it possible to use a reactor of smaller dimensions (47), a 
remarkable aspect is its ability to handle the presence of sulphur in the feedstock without 
the need for catalysts, although in cases of low sulphur concentration in the feedstock, 
catalysts can be used to reduce the reaction temperature and facilitate thermal control of 
the process (44).

Finally, autothermal reforming is presented, this process combines partial oxidation and 
SMR in a single reactor to optimise the thermal equilibrium, taking advantage of the 
energy generated by the partial oxidation to drive the SMR reactions (48). In this process, 
oxygen and water vapour are introduced into the reactor simultaneously, allowing precise 
temperature control by adjusting the air to fuel ratio, the energy efficiency of this process 
is relatively high as it demands less energy than steam reforming, but with a lower 
efficiency than SMR, although higher than partial oxidation (42,49,50).

Pyrolysis of hydrocarbons

The pyrolysis process is a thermochemical reaction involving the thermal decomposition 
of hydrocarbon molecules by the application of heat in an oxygen-depleted environment, 
getting hydrogen and carbon as expressed in equation 4 (45,51). The products derived 

https://linkinghub.elsevier.com/retrieve/pii/S0360319919343988
https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.1c02501
https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming
https://www.mdpi.com/2071-1050/14/23/15975
https://www.mdpi.com/2071-1050/14/23/15975
https://linkinghub.elsevier.com/retrieve/pii/S0360319923032718
https://onlinelibrary.wiley.com/doi/full/10.1002/aesr.202100097
https://doi.org/10.1016/j.apenergy.2020.115958
https://linkinghub.elsevier.com/retrieve/pii/S0360319923032718
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315153292-4/hydrogen-natural-gas-mumtaj-shah-prasenjit-mondal-ameeya-kumar-nayak-ankur-bordoloi
https://www.mdpi.com/2673-5628/3/1/2/htm
https://www.mdpi.com/2071-1050/14/23/15975
https://www.scipublications.com/journal/index.php/ojc/article/view/106
https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.1c02501
https://aaltodoc.aalto.fi:443/handle/123456789/121669
https://linkinghub.elsevier.com/retrieve/pii/B9780323995146000042
https://doi.org/10.1016/j.apenergy.2020.115958
http://www.osti.gov/servlets/purl/1411934/
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from this transformation are affected by various elements, such as the type of fuel used, 
the pressure and temperature conditions during operation, as well as the time the material 
spends in the processing unit (42).

CnHm  nC + ½ mH2 
Ec. (4)

During this procedure, hydrocarbon molecules, such as methane (CH4), ethane (C2H6), 
propane (C3H8), among others, which are found in fossil fuels, are subjected to high 
temperatures, generally in the range of 700 to 900°C (52), as thermochemical separation 
occurs from heavy residual fractions with boiling points above 350 °C, it makes sense 
that hydrogen production is carried out in two steps, hydro-gasification as described in 
equation 5, where methane is subjected to hydrogen-rich gas and water vapour to convert 
it into syngas (53). 
CnHm + (2n – m/2) H2  nCH4

Ec. (5)

This leads to the breaking of the chemical bonds connecting carbon and hydrogen atoms, 
resulting in hydrogen and solid carbon in the form of coke as in equation 6 (50).
CH4  C + 2H2

Ec. (6)

The hydrogen produced can be separated and purified much like the last two phases of 
the SMR, on the other hand, the solid carbon or coke that is formed can be gasify with 
steam to produce more hydrogen, making use of the displacement reaction as in equation 
7.
C + 2H2O  CO + H2

Ec. (7)

The pyrolysis process is notable for its ability to prevent the generation of carbon dioxide 
(CO2), making it a low-emission technology for the production of hydrogen from fossil 
fuels (49). Although this process requires higher temperatures in contrast to SMR, it has the 
advantage of dispensing with expensive catalysts (52).

Coal gasification

Gasification consists of converting a solid material into combustible gas by means of a 
thermochemical process that makes it possible to obtain synthesis gas from materials such 
as biomass or coal (54). Synthesis gas consists of carbon monoxide (CO), hydrogen (H2), 
carbon dioxide (CO2), methane (CH4), these gases can be used as fuel on their own, or can 
be separated to produce different chemical products (51). 

Gasification is carried out in a special reactor, known as a gasifier, in which feed materials 
are heated to high temperatures ranging from 700 to 1500°C, usually in an oxygen 
deficient environment limited to 10 to 50% of stoichiometric (55). This process allows the 
feedstock to be thermally decomposed and converted into gas, instead of being burnt 
completely as in conventional combustion (56,57).

Gasification is presented as an alternative to conventional coal combustion, offering 
notable advantages such as higher efficiency for power generation and a significant 
reduction of GHGs (58). However, it should be noted that this process still involves 
considerable costs and requires specialised equipment, which restricts its application on a 
large scale (50).

https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.1c02501
https://doi.org/10.1016/j.rser.2020.110365
https://www.mdpi.com/2073-4344/13/2/417/htm
https://linkinghub.elsevier.com/retrieve/pii/B9780323995146000042
https://aaltodoc.aalto.fi:443/handle/123456789/121669
https://doi.org/10.1016/j.rser.2020.110365
https://doi.org/10.1016/j.jaecs.2022.100059
http://www.osti.gov/servlets/purl/1411934/
https://doi.org/10.1016/j.ijhydene.2023.06.135
https://revistas.unal.edu.co/index.php/gestion/article/view/86466
https://linkinghub.elsevier.com/retrieve/pii/S0016236123015600
https://link-springer-com.bd.univalle.edu.co/referenceworkentry/10.1007/978-1-4419-7991-9_29
https://linkinghub.elsevier.com/retrieve/pii/B9780323995146000042
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Production from renewable resources

Conventional hydrogen production from fossil fuels, although efficient, generates high 
CO2 emissions. (59). However, cleaner technologies have been developed that make use 
of renewable energy resources such as sunlight, electricity and biochemical processes (60). 
These production routes, which include electrolysis of water, photolysis with direct solar 
energy and biomass conversion through biological and thermochemical processes, allow 
clean hydrogen to be obtained using raw materials such as water and biomass. (61,62). 
This approach not only reduces pollutant emissions, but also contributes to the transition 
towards a more sustainable and environmentally friendly energy matrix (63).

Water division

Water splitting emerges as an extremely important production route, since it has been 
consolidated in the production of hydrogen, based on breaking down water molecules 
through specialised water splitting processes such as electrolysis, thermolysis and 
photolysis (62,63). 

Thermolysis

Linares and Moratilla define thermolysis as “the extraction of hydrogen from the molecule 
that contains it through the application of heat; we speak of thermolysis when the heat 
comes from an external source”.(64), these authors call thermolysis, “when the heat comes 
from an external source”. For water splitting to occur, it is necessary to bring the Gibbs 
free energy (∆G) to zero, which is necessary for the decomposition of water to take place. 
However, the main limitation of this way of producing hydrogen lies in reaching the 
required level of Gibbs free energy, for which temperatures around 2500 K are necessary 
(65). The thermodynamic properties of water decomposition reactions under standard 
conditions hinder the efficient realization of direct thermal synthesis at lower temperatures 
(66).

Electrolysis

Electrolysis is based on the splitting of a chemical compound into its most basic 
components by the use of electric current, the basic reaction of electrolysis is found in 
equation 7. Lladó & Jubbert. (67), explain how the combination of Gibbs free energy 
and thermal energy satisfies the theoretical energy demand, which is responsible for the 
dissociation of the water molecule. Also, the theoretical voltage that must be applied for 
water splitting to occur is 1.23V as explained by Fabregas & Huertas. (65), this value is 
obtained by linking the free energy to the concept of useful work, applying the first law of 
thermodynamics (65,67,68) .

H2O + Electricidad (237,2 kJ  mol-1) + Calor (48,6 kJ  mol-1)  H2 + ½ O2

Ec. 8

It should be noted that this technology has been developed and used on a commercial 
scale (10,69), its constant development has allowed the introduction of four types of 
electrolysis, which are differentiated by their operating parameters and materials of 
construction, where (i) alkaline water electrolysis, (ii) anion exchange membrane (AEM) 
water electrolysis, (iii) proton exchange membrane (PEM) water electrolysis and (iv) sodium 
oxide water electrolysis, where the operating principles are the same for each of the cases 
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(62), table 1 shows the different existing technologies, their operating conditions and the 
advantages and disadvantages they present.

Table 1. Performance of different electrolysis technologies.

Type of 
electrolysis Electrolyte Temperature 

(°C) Voltage (V) Current density 
(A/m2) Catalyst Efficiency Ref.

Alkaline 
(AWE) KOH, NaOH 60 - 80 1,4 - 3 0,2 – 0,8 Nickel, iron and 

cobalt 50% – 71% (69–71)

Anion 
Exchange 

(AEM)

DVB polymeric support 
with KOH/NaOH 1 M 20 - 80 1,4 – 2 0,2 – 2 Noble metals such 

as platinum 57% - 59% (62)

Proton 
Exchange 

(PEM)

Polymer solid electrolyte 
(PFSA) 60 – 80 1,4 – 2,5 1,4 – 2,5 Noble metals such 

as platinum 50% - 83% (72–74)

Solid Oxide 
(SOE)

Yttria-stabilised zirconia 
(YSZ) 800 - 1000 1 – 1,5 1 – 1,5 Noble metals 89% (Laboratory) (75,76)

Current research on water electrolysis has focused on increasing the efficiency of the 
process, which is hampered by poor kinetics due to the transfer of four electrons in the 
oxygen evolution reaction (OER), which is slower than the hydrogen evolution reaction 
(HER), which needs only two electrons (77). Song et al., provides a comprehensive review 
of advances in the synthesis, catalytic mechanisms and applications of oxygen evolution 
catalysts (OER), highlighting the need for efficient and low-cost catalysts. Several types 
of promising catalysts are explored, including transition metal hydroxides and oxides, 
transition metal phosphates, complex metal composites and metal-organic materials 
(MOFs), while highlighting the importance of understanding and optimising the reactivity, 
stability and scalability of these catalysts through various characterisation techniques, 
continued research into the development of economical and efficient electrocatalysts is 
essential to achieve an affordable and sustainable water electrolysis process, as well as for 
the large-scale production of hydrogen and the efficient conversion of solar energy into 
chemical fuels (78).

For these reasons, the field of electrolysis has remained focused on the development of 
low-cost electrocatalytic materials, which allow for increased energy efficiency, safety, 
durability, operability, portability and high installation and operating costs (68). Angeles-
Olvera et al. (79), carried out a review of nickel-based electrocatalysts as an abundant 
metal on earth, where they point out that it is key to elucidate the reaction mechanisms 
and the role of heteroatoms, defects, dopants and nanostructures, and it is also important 
to design synthesis and characterisation techniques that are accessible at an industrial 
level.

Chen et al., (80) extends this perspective by examining various renewable energy sources, 
such as urea, hydrazine and biomass, for the sustainable production of hydrogen through 
water electrolysis. The advantages of urea oxidation reactions in alkaline media, the 
advantageous use of hydrazine as an environmentally friendly and economical fuel, and 
the possibility of harnessing biomass with pre-treatment strategies are explored. Overall, 
the article highlights the importance of diversifying renewable energy sources, offering 
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opportunities for more efficient and economical technologies that reduce dependence on 
fossil fuels and mitigate environmental impact.

On the other hand, the article written by Liu (78),  addresses the need to develop 
affordable electrocatalysts for hydrogen production through proton exchange water 
electrolysis (PEMWE), presenting alternatives not based on platinum group metals (PGMs), 
platinum, palladium, rhodium, rhodium, ruthenium, iridium and gold, looking for to replace 
them with carbon and boron nitride-based compounds. This research highlights the 
importance of addressing challenges in the design of non-PGM based catalysts, proposing 
solutions such as atomic layer deposition and the injection moulding technique. Finally, 
the economic analysis suggests cost efficiency in the medium and long term with the 
implementation of these catalysts.

In the same way, Angeles-Olvera et al., (79) provide a detailed review on the use of nickel 
catalysts for water electrolysis, highlighting the importance of developing sustainable 
and affordable electrocatalysts. Specific types of nickel catalysts are discussed, such as 
nanotubes, aerosols, alloys and nanoparticles, which have demonstrated efficiency and 
stability. The article emphasises the need to determine the catalytic activity under standard 
conditions to compare and evaluate the efficiency of these materials.

Biomass production

Biomass has attracted a lot of attention in hydrogen production because it is a feedstock 
that can be obtained from biological resources and generating itself naturally, in that 
way, biomass becomes a renewable resource that can be produced in a sustainable way 
(81). A crucial aspect is the possibility of using thermochemical processes to extract 
hydrogen from fossil fuels; however, using biomass has the advantage of significantly 
lower environmental impact (61). Likewise, hydrogen production can also be carried out by 
biological processes, which offer a number of benefits. However, it is essential to optimise 
these processes and improve energy efficiency to maximise their potential (82).

In contrast to the previously described methods, biological approaches allow the 
use of various types of organic waste, thanks to the activity of different groups of 
microorganisms. Figure 2 shows all the production processes for producing hydrogen 
by means of microorganisms, this form of production makes it possible to reduce CO2 
emissions, in addition to the efficient elimination of a large amount of waste and residual 
biomass.

https://pubs.rsc.org/en/content/articlehtml/2020/cs/c9cs00607a
https://linkinghub.elsevier.com/retrieve/pii/S2211339821000757
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Figure 2. Various biological hydrogen production processes. Source (6)

Fermentation

In general, fermentation processes use microorganisms to produce alcohols, acetone, H2 
and CO2 from organic substrates, depending on the type of microorganism, the type of 
fermentation, as there are groups of bacteria that carry out fermentation in the absence 
of light, this variety of bacteria gives rise to two types of fermentation, dark fermentation 
(DF) and photofermentation. table 2 shows experimental research on the production of 
hydrogen by means of these fermentation processes (83).

Table 2. Experimental investigations on hydrogen production by fermentative processes 
with respect to different substrates, pH and microorganism.

Microorganism Process Substrate Substrate pH Production Ref.

Mixed saccharolytic 
crops Dark Fermentation Distillery waste 

water (DWW) 40g/L 6,5 0,8-1,6 L H2/L

(84)
Rhodobacter 
sphaeroides B-3059 Photofermentation Distillery waste 

water (DWW) 40g/L 7 17,6 L H2/L

Rhodospirillum rubrum, 
Rhodobacter capsulatus 
and Rhodopseudomonas 
palustris

Photofermentation Potato starch Not 
specified 6 - 7 - 8 45mL/L*h (85)

Photosynthetic bacteria 
HAU-M1 Photofermentation Alfalfa 31,23g/L 6,95 12,5mL/h (86)

Rhodobacter 
sphaeroides 158 DSM Photofermentation

Brewery 
wastewater 
pretreated with 
banana peel

50% 
treated 

Not 
specified 408,33 ml/h (87)

Mixed bacterial cultures Dark Fermentation Food waste 10g/L 7 ± 3 74,91ml/g (88)

https://www.mdpi.com/2073-4344/11/5/547/htm
https://doi.org/10.1016/j.enzmictec.2017.11.009
https://doi.org/10.1016/j.biortech.2020.122900
https://doi.org/10.1016/j.biortech.2020.123007
https://doi.org/10.1016/j.ijhydene.2018.11.223
https://doi.org/10.1016/j.envres.2023.117946
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Mixed crops Dark Fermentation Hydrolysed sugar 
beet pulp

Not 
specified 5,5 36dm3/Kg (89)

Bacterial strain TERI S7 Dark Fermentation

▪ Xylose 

▪ Glucose 

▪ Sucrose 

▪ Sucrose 

▪ Maize syrup 
solution 

▪ Soluble starch

10g/L 7

▪ 1899 ± 15 ml/L 
▪1725 ± 37 ml/L 
▪ 1651 ± 43 ml/L 
▪ 1581 ± 63 ml/L 
▪ 1416 ± 41 ml/L

(90)

Mixed crop obtained 
from a water treatment 
plant

Dark Fermentation Hydrolysed wheat 
residue 15g/L 5,0 - 6,0 Not specified (91)

 Firstly, dark fractionation (DF) decomposes biomass-based substrates or wastewater 
from industrial processes using groups of anaerobic bacteria in a light-free environment, 
which use sugars as an energy source, however, this form of production presents several 
challenges, Ren et al. (92), explains that the main challenges are in the construction of the 
bioreactor, the selection of the glucose-rich substrate and the inhibition of the substrate, it 
is also necessary to control the growth rate of the bacteria, as Wheelock Gutiérrez explains 
(49), since low production is related to a high proportion of acids and short-chain alcohols, 
causing pH reduction affecting the activity of the hydrogen-synthesising microorganism.

Photofermentation, on the other hand, employs photosynthetic bacteria that use light 
energy as a source of electrons under conditions of nitrogen and oxygen deficiency. In this 
process, these bacteria take the necessary carbon and electrons from the organic matter 
present in the substrate (49); an anaerobic medium is necessary, because H2 formation 
is due to the enzyme nitrogenase, fixing nitrogen and releasing hydrogen in the process, 
however, nitrogenase is inhibited in the presence of oxygen (93). Photofermentation 
presents a number of challenges, including bioreactor design, light availability, controlling 
variables such as substrate concentration, bioreactor pH, temperature and light 
penetration, all of them make photofermentation a complex process to operate with high 
hydrogen production costs (6,61,81,94). 

Biophotolysis

Biophotolysis is a biological process that involves the use of light and organisms such as 
photosynthetic bacteria, microalgae and cyanobacteria, using the natural photosynthesis of 
these plants to break down the water molecule into hydrogen and oxygen by the action of 
two enzymes that are key to biophotolysis, hydrogenase and nitrogenase.(82,93,95). On the 
one hand, hydrogenase is responsible for the production of hydrogen from water, while 
nitrogenase is responsible for facilitating the fixation of atmospheric nitrogen, which can 
improve the yield of the process by providing essential nutrients for the micro-organisms, 
but these enzymes act differently for direct and indirect biophotolysis (81,96,97).
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Regarding the function of enzymes in each of the following, Nagarajan et al., (98), in his 
article explains, “direct biophotolysis occurs when photosynthetic electrons derived from 
water splitting are transferred via PS II, PS I and ferredoxin to hydrogenase under anaerobic 
conditions”. As for indirect biophotolysis, Nagarajan et al. state that an external source of 
electrons required for hydrogenase action is obtained from “fermentative metabolism of 
stored carbohydrate reserves occurring under dark conditions” (98). 

On the other hand, Kosourov et al., (99) explains that hydrogenase is involved in the 
reduction of electrons to hydrogen, harnessing the energy generated by photosynthesis 
and electron flow, making use of hydrogenase production to convert protons to hydrogen; 
for indirect biophotolysis, Kosourov et al. explain that the enzyme nitrogenase plays a 
crucial role in providing reducing agents derived from nitrogen fixation, which can be used 
as substrates in hydrogen generation.

In spite of the research that has been developed to understand the functioning of 
this process, there have also been several studies focused on the optimisation of the 
biophotolysis process, in table 3, some of them concentrate their efforts on the design of 
photobioreactors, also in the area of cellular genetics and experimentation with different 
types of microorganisms.

Table 3. Research in different areas of biophotolysis

Authors Outline of the document Reference

Schumann et al.

They focus on the use of hydrogenases to catalyse 
hydrogen production, emphasising hydrogenases as 
superior catalysts due to their higher catalytic rates and 
more efficient energy utilisation.

(95)

Kosourov er al.

It presents advances in the understanding of hydrogen 
metabolism and its impact on cellular bioenergetics, 
opening up possibilities for the development of 
hydrogen-producing cell factories with improved 
performance, as well as exploring the use of synthesised 
hydrogenase.

(99)

Kamshybayeva et al.

It studies the sensitivity of enzymes to oxygen and 
electron competition in different metabolic pathways, 
focusing on the limitations of hydrogen production 
at the industrial level, also using advances in genetic 
engineering and biotechnology, it explores solutions to 
enhance hydrogen production in cyanobacteria.

(100)

Kossalbayev et al.
Describes in detail the design features of 
photobioreactors and the conditions necessary to grow 
cyanobacteria optimally.

(101)

Bozieva et al.

Research on the possibility of hydrogen production 
by means of biophotolysis in different species of 
cyanobacteria. The strains Cyanobacterium sp., 
Dolichospermum sp. and Sodalinema gerasimenkoae 
IPPAS B-353 are studied, showing that the most efficient 
strains are Dolichospermum sp. under light anaerobic 
conditions and Sodalinema gerasimenkoae IPPAS B-353 
in the dark.

(102)
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Microbial electrolysis cell

The microbial electrolysis cell (MEC) is related to the traditional electrolysis already 
described in previous sections, with the difference that it combines electrochemistry with 
bacterial metabolism (103), the organic material present in the anode chamber is degraded 
by the action of microorganisms, particularly an exoelectrogenic species, with the help of a 
small amount of electrostatic charge, the organic material is degraded producing electrons, 
CO2 and protons.(+H) (103), where protons pass through the proton exchange membrane 
(PEM) into the cathodic chamber by the action of “hydrogenotrophic methanogenic micro-
organisms and a small potential difference” (104) the reduction reaction takes place by 
pairing protons (+H) with electrons resulting in the production of hydrogen.

Interest in this form of hydrogen production has led to various designs for the 
configuration of MCE reactors. Murugaiyan et al,(105),  conducted research focused 
on the study of different reactor configurations, together with the materials required 
for their construction. Jensen et al.,  (106) conducted a complete review focused on 
hydrogen production using (MEC), where an important point of this document is also the 
configurations and design of the reactors, giving importance to the anode and cathode 
materials; in table 4 there are different investigations making use of microbial electrolysis, 
testing different types of configurations, substrates, membranes, etc. 

Table 4. Hydrogen production rate with respect to various substrates, materials and 
reactor type.

Reactor 
type Anode Cathode Membrane Substrate Inoculum Production 

rate Ref.

Dual 
chamber

Metal oxide 
and graphene nickel foam (NF) Nafion Waste water from the 

sugar industry (SWW) Not specified
 
4,38 ± 0,11 
mmol/L/D

(107)

Single 
chamber Carbon fabric molybdenum phosphide 

(MoP)
MEC without 
membrane Acetate and glucose Not specified 39,8 ± 1,9 

L/L/D (108)

Double 
chamber

graphite felt 5 
mm thick

stainless steel mesh 
electrodes

Cation 
exchange 
membrane

Pig slurry

digestate 
from a local 
sewage 
treatment 
plant

0,2 LH2/L-day (109)

Double 
chamber Biochar Grafito

Cation 
exchange 
membrane 
(CMI-7000)

synthetic water
Hoeflea 
sp. and 
Aquiflexum sp

0,89 ± 0,10 
m^3 /day*m3 (110)

Single 
chamber carbon felt Carbon paper cathode 

Nano-Mg(OH)2/Gr Non-specific phosphate buffer bacteria 
solution MFC

0,63 ± 
0,11 m3/
day*m3

(111)
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Conclusions
The development and utilisation of hydrogen energy has become a relevant direction 
in the field of modern energy research, positioning itself as an energy matrix with great 
potential to replace fossil fuels in the future. Current research is focused on advancing 
various mechanisms for the production of hydrogen without environmental pollution.

On the one hand, electrolysis is at the forefront, a form of production that appears to be 
the main source of clean hydrogen when implemented with renewable energy sources. 
On the other hand, there are the various processes that include biohydrogen production. 
The last one is characterised by the use of renewable resources such as water and biomass, 
paving a way towards cleaner and more sustainable hydrogen production. Within the 
field of biohydrogen, different methods have been found to suit the microorganisms and 
the type of feedstock used. With the development of this research, we can analyse each 
of these different methods and what are the main challenges to be overcome in order to 
achieve competitive efficiency compared to traditional industrial production processes. 
Regarding fermentation processes, the challenges to be overcome focus on the design and 
construction of suitable reactors, the need for a substrate rich in glucose and the control of 
the bacterial growth rate. In biophotolysis, solutions must be explored in conjunction with 
genetic engineering to overcome the limitations of industrial production.

In addition, it is crucial to continue researching and developing more efficient and 
scalable technologies for hydrogen production from renewable sources in order to reduce 
dependence on fossil fuels and mitigate environmental impact. Furthermore, challenges 
such as hydrogen storage, transport and distribution, as well as the integration of these 
technologies into existing energy systems must be addressed for a sustainable energy 
transition.
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