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Introduction: Cancer is one of the leading causes of mortality worldwide, and its early detection improves survival rates. Conven-
tional methods are costly, invasive, and time-consuming. Electrochemical biosensors have emerged as an efficient alternative for 
rapidly and accurately detecting cancer biomarkers.
Objective: To review the use of carbon nanomaterials in electrochemical biosensors for early cancer detection, highlighting their 
properties, advantages, and challenges in biomedical applications.
Methodology: A search was conducted in Scopus and Web of Science for articles published in English since 2018. Search 
equations with key terms were used, and inclusion and exclusion filters were applied. The selected studies were systematically 
organized and analyzed according to the type of carbon nanomaterial used.
Results: Carbon nanomaterials enhance the sensitivity and selectivity of electrochemical biosensors, enabling biomarker detec-
tion at very low concentrations. Graphene and reduced graphene oxide stand out for their high conductivity and ease of functio-
nalization.
Conclusions: The incorporation of carbon nanomaterials in electrochemical biosensors contributes to early cancer detection. 
However, further research is needed to improve the technology and facilitate its transition to clinical settings.

Resumen
Introducción: El cáncer es una de las principales causas de mortalidad a nivel mundial, y su detección temprana mejora las tasas de supervi-
vencia. Los métodos convencionales son costosos, invasivos y de largo tiempo de análisis. Los biosensores electroquímicos surgen como una 
alternativa eficiente para detectar biomarcadores de cáncer de forma rápida y precisa.
Objetivo: Revisar el uso de nanomateriales de carbono en biosensores electroquímicos para la detección temprana del cáncer, destacando 
sus propiedades, ventajas y desafíos en aplicaciones biomédicas.
Metodología: Se realizó una búsqueda en Scopus y Web of Science de artículos publicados desde 2018 en inglés. Se usaron ecuaciones 
de búsqueda con términos clave y se aplicaron filtros de inclusión y exclusión. Los estudios seleccionados fueron organizados y analizados 
sistemáticamente según el tipo de nanomaterial de carbono utilizado.
Resultados: Los nanomateriales de carbono mejoran la sensibilidad y selectividad de los biosensores electroquímicos, permitiendo la 
detección de biomarcadores a muy bajas concentraciones. El grafeno y el óxido de grafeno reducido destacan por su alta conductividad y 
facilidad de funcionalización.
Conclusiones: La incorporación de nanomateriales de carbono en biosensores electroquímicos contribuye en la detección temprana del 
cáncer. Sin embargo, se requiere más investigación al respecto para mejorar la tecnología y lograr su traslado a entornos clínicos.
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Contribution to the literature

Why was it done?
The review was carried out to address the need to detect cancer in its least invasive stages, and for these to be more sensitive 
and selective than current methods, which are often intrusive and carry side effects. Since early diagnosis is crucial to impro-
ving cancer survival rates, the review focuses on recent advances in the development of electrochemical biosensors. These 
biosensors, enhanced with carbon-derived nanomaterials such as graphene, carbon quantum dots, carbon nanotubes, gra-
phene oxide, and reduced graphene oxide, offer an alternative for early cancer detection. The objective is to consolidate the 
existing information on these materials and their application in biosensors to provide a comprehensive and updated vision of 
the state of the art in this emerging field.

What were the most relevant results?
The identification of graphene oxide and reduced graphene oxide as the most studied nanomaterials due to their ability to 
significantly improve the sensitivity and selectivity of electrochemical biosensors.
The confirmation that the types of cancer most investigated with these biosensors were breast cancer, alterations related to 
the presence of tumors, and prostate cancer.
The exploration of various functionalization strategies, such as the use of gold and silver nanoparticles, organic components 
(amines and amides), and nanopolymers, which have been shown to improve the effectiveness of biosensors.

What do these results provide?
These results provide a greater understanding of the potential of carbon-derived nanomaterials in the development of elec-
trochemical biosensors for early cancer detection. They provide a solid foundation for future research, highlighting the most 
promising materials and methods and pointing out areas that require further attention, such as the study of less investigated 
cancers (oral, colorectal, stomach, and bone cancers). Furthermore, they underline the importance of optimizing the detection 
limit and exploring new functionalization strategies to improve the sensitivity and specificity of biosensors, which is crucial for 
their practical application in cancer detection and monitoring in clinical settings.
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Introduction
According to the World Health Organization (WHO), cancer is the leading cause of death worldwide 

(1). In this context, the American Cancer Society (ACS) estimated that by 2023, the number of 

new cancer cases will rise to 1,958,310 in the United States alone (2) and global cancer deaths are 

expected to exceed 13 million by 2030 (3). 

An early diagnosis of this disease is directly related to an increased 5-year survival rate of 27.4% for 

patients diagnosed at the metastatic stage and 70% for non-metastatic patients (4). For this reason, 

early detection becomes essential in minimizing the deadly consequences for those who suffer 

from it. The means used include mammography, X-rays, CT scans, biopsies, ultrasound, and blood 

tests. However, these methods have disadvantages such as high cost, long reaction times, harmful 

effects of radiation, the need to process large numbers of samples, and the use of expensive 

chemicals. This is evidence of the lack of an effective non-invasive tool for the early diagnosis of 

diseases (5). Because of this, the health system requires the development of new technologies 

that guarantee accurate and reliable results with low-cost methods compared to the traditional 

methods mentioned above due to their simplicity of operation that does not require specialized 

personnel, robust or highly complex equipment, and ease of sampling such as electrochemical 

biosensors (6–8).

Current research in accurate, efficient, cost-effective, and user-friendly diagnostics has focused on 

the development of biosensors, defined by the International Union of Pure and Applied Chemistry 

(IUPAC) as ‘A device that uses specific biochemical reactions mediated by isolated enzymes, 

immune systems, tissues, organelles or whole cells to detect chemical compounds usually using 

electrical, thermal or optical signals’ (9). Among their most notable features are the detection of 

deficient concentrations of target analytes, allowing the detection of diseases such as cancer in 

early stages, and their portability, as they are small devices that do not require extensive equipment 

for their operation (10).

All these advantages are achieved through research into novel nanomaterials, which, in conjunction 

with an appropriate detection technique, improve clinical diagnosis (11). The main types of 

biosensors studied for cancer detection are electrochemical, which measure the voltage change 

resulting from the chemical reaction between analyte and biomarker (12,13), amperometric, which 

measures the faradaic current generated by the oxidation-reduction reaction of the biological 

system under study, and amperometric, which measures the voltage change resulting from the 

chemical reaction between analyte and biomarker (14,15) and optical biosensors, which generate 

a fluorescence, colorimetric, or surface plasmon resonance signal, depending on the type of 

biomarker used (15,16). Among the various classes, electrochemical biosensors have proven to be 

highly effective (17,18) due to their accuracy, selectivity, fast response, low detection limit, and low 

cost (13).

The principle of detection in electrochemical biosensors is shown in Figure 1. It is based on the 

conversion of biological and chemical interactions into measurable electrical signals using redox 

https://www.who.int/es/news-room/fact-sheets/detail/cancer 
https://doi.org/10.1002/ijc.33588
https://doi.org/10.1093/oxfmat/itac013
https://doi.org/10.3892/ol.2019.9905
https://doi.org/10.1016/j.microc.2021.106980
http://www.nib.fmed.edu.uy/seminario_ib/2019/Uso%20de%20biosensores%20en%20la%20pr%C3%A1ctica%20m%C3%A9dica%20(2019)%20Monograf%C3%ADa%20Hern%C3%A1n%20Castillo.pdf
https://doi.org/10.1002/celc.201600758
https://doi.org/10.3390/s90705423
https://doi.org/10.1016/j.sintl.2020.100040
https://doi.org/10.1016/j.mtbio.2022.100218
https://doi.org/10.1039/b714449k
https://doi.org/10.1016/j.biosx.2021.100075
https://doi.org/10.1007/978-3-030-82381-8_12
https://doi.org/10.3390/molecules26154525
https://doi.org/10.3390/molecules26154525
https://doi.org/10.1016/j.bios.2021.113805
https://doi.org/10.1016/j.talanta.2023.124399
https://doi.org/10.1016/B978-0-12-804301-1.00005-9
https://doi.org/10.1016/j.biosx.2021.100075
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reactions on the surface of an electrode, where specific biomolecules (bioreactors) are immobilized 

and selectively interact with the biomarker (analyte) of interest, which is associated with cancer. 

The resulting changes in electrical current or electrochemical potential are directly related to the 

concentration of the biomarker, allowing detection and quantification with high sensitivity and 

selectivity (19).

Figure 1. Diagram of the elements and functioning of biosensors

Among the biomaterials investigated for the improvement of cancer detection in electrochemical 

biosensors, carbon-derived nanomaterials have been the subject of numerous studies due to 

their remarkable mechanical properties, biocompatibility, ease of functionalization, and excellent 

electrical conductivity (20,21)This review shows the most recent advances in using carbon-based 

nanomaterials in electrochemical biosensors to detect different types of cancer. It provides 

a comprehensive and up-to-date overview of a constantly evolving field of research with the 

potential to impact cancer detection and treatment positively. 

To achieve this goal, a review of carbon-based nanomaterials is carried out, including carbon 

quantum dots (CQDs), structures with dimensions smaller than 10 nm; two-dimensional carbon 

nanosheets arranged in a honeycomb structure, such as graphene; graphene functionalized with 

hydroxy, carboxy and peroxy groups, known as graphene oxide; reduced graphene oxide, which 

contains fewer functional groups than graphene oxide; single-layer carbon nanotubes, consisting 

of rolled-up graphene sheets; and multilayer carbon nanotubes, consisting of concentrically rolled-

up graphene sheets. These nanomaterials provide different properties such as high surface area, 

chemical stability, ease of synthesis, and optical activity (22–25) which will be further developed 

and specified in each section.

https://doi.org/10.1016/j.biosx.2022.100235
https://doi.org/10.1016/j.cej.2022.136183
https://doi.org/10.1016/B978-0-12-817456-2.00001-2
ttps://doi.org/10.1002/bab.2340
https://doi.org/10.1016/j.bioelechem.2024.108806
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Methodology

This section describes the process followed for the search, selection, and analysis of the scientific 

literature used in this bibliographic review. Scopus and Web of Science were used as databases due 

to their broad scope and high impact on scientific literature. A search equation was designed based 

on the use of Boolean operators (AND, OR, NOT), combining the following keywords: “carbon 

nanomaterials,” “electrochemical biosensor,” cancer, “carbon quantum dot,” “carbon nanotubes,” 

Graphene, “Graphene oxide,” and “reduced graphene oxide.” Additionally, filters were applied to 

restrict results to research papers published from 2018 onwards in English, aiming to include only 

recent and relevant studies in this field.

In selecting documents, inclusion and exclusion criteria were established. Only papers addressing 

the use of carbon nanomaterials in electrochemical biosensors for cancer detection were 

considered. Reviews and papers in which carbon nanomaterials were not specifically used in 

electrochemical biosensors for cancer applications were excluded.

The selection process was carried out in four phases. First, the titles and abstracts of the retrieved 

articles were reviewed, eliminating those that did not align with the study’s objectives or were 

duplicates. Next, the carbon-derived materials used in electrochemical biosensors for early cancer 

diagnosis were identified, grouping the documents by nanomaterial type (carbon quantum dots, 

carbon nanotubes, graphene, graphene oxide, and reduced graphene oxide). Subsequently, the 

search was expanded by focusing on each type of nanomaterial identified in the previous phase 

to increase the number of relevant documents for each category. Finally, a full-text reading of the 

selected studies was conducted, extracting methodological information, reported results, relevance, 

and key findings from each study.

To ensure a clear synthesis of the information, the extracted data were organized into comparative 

tables by nanomaterial type, allowing for a systematic analysis of trends in the development of 

electrochemical biosensors based on carbon-derived nanomaterials. This approach facilitated the 

identification of patterns in the evolution of these technologies, their advantages and limitations, 

as well as opportunities for improvement in detecting different types of cancer. In this way, 

an updated overview of the state of the art in using carbon nanomaterials in electrochemical 

biosensors for early cancer diagnosis was obtained.

Biosensor specificity 

Electrochemical biosensors require a biosensing platform with nanomaterials that ensure efficient 

conduction of the electrochemical signal. They also need receptors to ensure that the biosensor 

only detects the specific biomarker associated with the target disease, in this case, cancer. A proper 

choice of functionalization and assay performed on the bioreceptor avoids false results that could 

lead to misdiagnosis and unnecessary or inappropriate treatment.
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A commonly used functionalization is through aptamers, single-stranded nucleic acid (DNA or 

RNA) sequences that can fold into specific three-dimensional structures and selectively bind to the 

biomarker under study. Choosing an appropriate sequence is critical in these cases. In a particular 

case, Park et al. (26) used the aptamer sequence 5′-NH2-AUG CAG UUU GAG AAG UCG CGC AU-3′ 
to detect vascular endothelial growth factor (VEGF165), an indicator of tumor cells. Immobilization 

of the aptamer on the carbon nanotube-polyaniline-based biosensor used the deposition of a 

mixture of anti-VEGF165 RNA aptamer (10 nM) and 4-(4,6-dimethoxy-1,3,5-triazin-2- Se incubated in 

-4-methyl-morpholinium chloride (DMT-MM) solution (1% wt; 40 μl) with the SPCE surface for 12 h. 

Devices have also been developed for the detection of prostate cancer using the sequence (5‘-Thiol 

- (CH2)6-TTTTTA ATT AAA GCT CGC CAT CAA ATA GCT TT-3’)(27), the detection of circulating 

tumor DNA (28), (29).

Other common bioreceptors, such as antibody-based bioreceptors, called immunobiosensors, 

are based on proteins the immune system produces in response to specific antigens, such as 

cancer-associated proteins. To use these antibodies, first, the conductive probe of the biosensor 

is prepared based on nanomaterials, and then a solution containing the antibody is prepared, 

as in the specific case of the research conducted by Purohit et al. (30) in which they designed a 

biosensor based on graphene oxide, chitosan, and 3D gold dendrites where, after preparing the 

conductive layer, they prepared a 5 µl solution of carcinoembryonic antigen-antibody (anti-CEA) 

with (10 µl) N-(3-dimethyl aminopropyl)-N’-ethyl carbodiimide hydrochloride solution (50 mM) 

and N-hydroxysuccinimide (50 mM) for 15 minutes at room temperature to activate the primary 

carboxylic groups of the protein. This solution was deposited on the modified electrode at ambient 

conditions for 60 minutes to establish a covalent interaction with the primary amino group of 

chitosan. Finally, a 10 µl (1 mg/ml) bovine serum albumin (BSA) solution was additionally treated 

for 15 minutes to block unspecified sites and avoid non-specific interactions. 

This method is commonly used for functionalization with antibodies, as is the case of Ren et al. 

(31) for identifying cancer antigen 125 by their antibody. Although these chemical bonds are very 

stable, conduction layer/antibody binding can also be done by physical adsorption, which allows 

direct binding of antibodies to a surface without requiring complex chemical reactions or additional 

reagents thanks to Van der Waals-type interactions, hydrophobic effects, electrostatic forces, 

solvation, and hydrogen bonding (31). An example of such a case is the biosensor developed 

by Echeverry et al. (32). They fabricated a biosensor of laser-etched reduced graphene oxide 

electrodes decorated with gold nanoparticles to identify the cancer indicator glycoprotein CA-

19-9 by its antibody. The addition of the antibody to the biosensor was performed, on the one 

hand, by binding to the gold nanoparticles via Au-S bonds, specifically with the thiol groups of the 

exposed cysteine residues of the anti-CA-19-9 and, on the reduced graphene oxide side, through 

electrostatic, π-π stacking and hydrophobic interactions, due to the characteristic sp2 carbon 

structure of graphene.  

Another technique used for biomarker recognition is molecular polymer imprinting, known 

as MIP. This technique creates a polymeric matrix around the target biomarker through 

https://doi.org/10.3390/bios11040114
https://doi.org/10.18433/jpps31171
https://doi.org/10.1016/j.aca.2020.04.077
https://doi.org/10.1016/j.bios.2020.112821
https://doi.org/10.1016/j.surfin.2024.104197
https://doi.org/10.1016/j.colsurfb.2018.10.025
https://doi.org/10.1016/j.colsurfb.2018.10.025
https://doi.org/10.1016/j.bios.2024.116142
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electropolymerization. Subsequently, the target biomarker is removed, leaving a vacancy designed 

explicitly for the selective capture of the cell or molecule to be identified (33). Researchers Carvalho 

et al. (34) used pyrrole monomer to synthesize the STEAP1 enzyme template for prostate cancer 

detection. Printing was performed by applying potential variations for 10 cycles with a possible 

range between -0.8 and 1.1V at 0.02 V/s, the solution of pyrrole monomer, STEAP1, and phosphate-

buffered saline (PBS) and subsequently removing the biomarker template by dropping 5 µl of 

100-fold diluted trypsin on the modified biosensor and incubating at 37 °C for 1 h, followed by 

an electrochemical procedure with PBS to remove unreacted amino acids or monomers from the 

electrode surface by CV for 10 cycles at a potential between - 0.4 and 0.5 V at a scanning rate of 

0.05 V/s. Another example of this method is the investigation of (35) using an alpha-fetoprotein 

as a template in a graphene and gold nanoparticle-based device to detect tumor lesions. 

The above are the most common methods used to identify specific biomarkers, which are usually 

identified with different signals depending on the type of biosensor. The main types include 

amperometric, voltammetric, and impedimetric biosensors. Amperometric biosensors detect the 

electrical current generated by an electrochemical reaction between the biomolecule of interest 

and an electrode, allowing quantification of the analyte (36). On the other hand, voltammetric 

biosensors measure the electrical current as a function of the potential applied to the electrode, 

providing information about the chemical oxidation-reduction process with the analyte (37) (38). 
Finally, impedimetric biosensors quantify changes in the electrical impedance of the system, 

allowing the detection of biomolecular interactions (39). The standard conditions of these assays 

consist of a three-electrode system: platinum auxiliary electrode, Ag/AgCL reference electrode, 

and the working electrode. The latter is the electrochemical biosensor developed for each study, 

and the way to determine its effectiveness is to compare the signals obtained when subjected to 

different concentrations of solutions containing the biomarker under study (40,41).   

Another influential factor in determining which biosensor to develop is the type of sample to work 

with, since for diagnostics with electrochemical biosensors, a variety of biological fluids or cellular 

samples containing the analyte of interest are required. These may include sera, plasma, saliva, 

urine, and interstitial fluid. For specific diseases, such as cancer, tumor tissue samples or isolated 

cancer cells may also be used. In addition, in research studies, simulated or artificial fluids at 

different concentrations are used to evaluate the sensitivity and detection limit of electrochemical 

biosensors (42–44).

Economic perspective

The medical and diagnostic fields are emerging as highly profitable market segments, driven 

by a growing interest in monitoring devices, rapid point-of-care testing, and the demand 

for modern diagnostic methods. This momentum is supported by significant advances in 

manufacturing methodology, which has enabled the development of sensitive, selective, and 

efficient electrochemical sensors for clinical analysis. Integrating biosensors into various diagnostic 

medical equipment adds a new market opportunity to the projected horizon. In addition, massive 

https://doi.org/10.1016/j.microc.2021.106955
https://doi.org/10.1016/j.bioelechem.2023.108461
https://doi.org/10.1016/j.ijoes.2023.100081
https://doi.org/10.1016/j.coelec.2018.06.003
https://doi.org/10.1016/j.trac.2017.11.010
https://doi.org/10.3390/s80314000
https://doi.org/10.1007/s00430-020-00668-0
https://doi.org/10.1002/elan.202000065
https://doi.org/10.3390/s20051372
https://doi.org/10.1186/s40824-019-0181-y
https://doi.org/10.1039/D2SD00226D
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investment in research and development to improve medical technology reflects the continued 

growth of this sector (45).

The biosensors market, segmented into various applications such as healthcare, agriculture, and 

food toxicity, will experience significant growth. Healthcare is expected to generate the largest 

revenue share due to its use in drug delivery and disease detection areas. The food toxicity 

category is expected to see rapid revenue growth. Projections indicate that the global biosensors 

market will reach USD 41.48 million by 2029, up from USD 20.75 million in 2020, where the most 

significant contributing country to this growth is the US, followed by China (46,47). With the cost of 

cancer diagnosis projected to reach $266 billion by 2030, biosensors emerge as a much more cost-

effective alternative as they do not require specialized personnel or robust or complex equipment 

(48). 

The market for biosensors is booming thanks to their diversification across multiple sectors, with 

a particular emphasis on healthcare, where they are used for a wide range of applications, from 

disease detection to drug discovery. Promising growth is observed, with projections suggesting an 

even more expansive outlook in the coming years.

Carbon Quantum Dots (CQD)

The quasi-spherical structure of carbon quantum dots (CQDs) can be amorphous or crystalline 

as well as graphitic or turbostratic sp2-based or of graphene and graphene oxide sheets fused by 

diamond-like sp3 hybridized carbon inserts (49). The distinguishing feature of CQDs is their ability to 

exhibit quantum properties due to their small size. These quantum properties can include electronic 

confinement effects that give them unique electronic properties. CQDs have attracted considerable 

research attention because of their potential application in electronics, optoelectronics, and as 

contrast agents in biomedical imaging due to their unique optical properties (50,51).

The interest in these nanomaterials lies in the possibility of replacing traditional semiconducting 

CQDs with low biocompatibility properties, which, although possessing good conductive properties, 

have been little explored in electrochemical biosensors (52). However, these nanomaterials have 

disadvantages that limit their use, such as their synthesis in a multi-step process, harsh chemical 

conditions, and poor size control (53). According to the information reported in Table 1, most of 

the research on CQDs in electrochemical biosensors has focused on breast cancer diagnosis (54–63) 

and found that the presence of CQD favors the interaction of thionin with the dsDNA to detect the 

BRCA1 gene, obtaining a detection limit of 0.003 μmol L-1(54). The strong electrical conductivity and 

large specific surface area of carbon quantum dots have enabled their use as a substrate for metal 

ions in breast cancer detection (60). Abdel-aal et al. (56) found detection limits similar to those 

reported by Garcia et al. (54) with a polypyrrole nanocomposite and carbon quantum dots.

In addition, wireless bio-devices have been developed for the detection of breast cancer-related 

cells (62) using ureidopyriminone-conjugated gelatin hydrogel (Gel-UPy) incorporating diselenide-

containing carbon dots when reacting with MDA-MB-231 cells or the nanocomposite of carbon, 

hyaluronic acid, titanium oxide, and Cu2+ ions for differentiation of cancer cell pyrophosphatase and 

https://www.mordorintelligence.com/es/industry-reports/global-electrochemical-sensors-market-industry
https://www.emergenresearch.com/es/industry-report/biosensores-mercado
https://exactitudeconsultancy.com/es/reports/24967/biosensors-market/#segment-analysis
https://www.precedenceresearch.com/cancer-diagnostics-market
https://doi.org/10.1039/C4CS00269E
https://doi.org/10.3390/s20041072
https://doi.org/10.3389/fchem.2019.00671
https://doi.org/10.1016/j.talanta.2017.09.082
https://doi.org/10.1016/j.jddst.2023.104156
https://doi.org/10.1016/j.electacta.2020.136522
https://doi.org/10.1039/D1AN00436K
https://doi.org/10.1016/j.electacta.2020.136522
https://doi.org/10.1016/j.bioelechem.2021.107890
https://doi.org/10.1016/j.bioelechem.2022.108301
https://doi.org/10.1016/j.electacta.2020.136522
https://doi.org/10.1021/acsnano.0c02517
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alkaline phosphatase, achieving a minimum detection limit of 2.31 cells/mL (64).

The use of CQD in electrochemical biosensors for cancer types other than those already mentioned 

has not been pervasive, but related research was found for the detection of specific malignant 

tumors (65), ovarian cancer (66), pancreas (67) and prostate (68).

Table 1. Research on the use of carbon quantum dots (CQD) in electrochemical biosensors for the detection of different 

types of cancer 

 Type of 

cancer
Functionalization Biomarker / Bioreceptor

Electrode 

type

Detection 

limit
Range Ref.

Breast

Thionine as a hybridization 

indicator and CQD as a 

nano substrate for direct 

immobilization of the DNA 

probe

BRCA1/Thionine Gold  55.0 pg μL-1 (54)

Breast
sulfur/nitrogen, polypyrrole, 

cobalt phthalocyanine
HER2/HB5 GCE 0.00141 ng/mL 1–10 ng/mL (55)

Breast

 cobalt tetraphenoxyacetic 

acid phthalocyanine 

(CoTAPc), S- and N-doped 

graphene QDs, gold 

nanoparticles, and cerium 

oxide nanoparticles

HER2/HB5 GCE 6.0 pg/mL 1–10 ng/mL (56)

Breast

pencil graphite electrode/

carbon points/overoxidized 

polypyrrole (Ov-Ox PPy/CD/

PGE)

tryptophan (Trp)/Ov-OX 

PPy
PGE

0.003 μmol 

L−1

0.01 - 0.09 µmol L−1 and 0.5 - 9.0 

µmol L−1
(57)

Breast
graphene quantum dots 

(GQDs)

differentiation antigen-44 

(CD44)/Anti-CD44
GCE 2.71 fg/mL 1.0 pg/mL - 100.0 ng/mL (58)

Breast

Graphene quantum dots 

(GQDs) rich in carboxylic 

acid groups modified with 

gold nanoparticles and a 

binuclear porphyrin (CoP-

BNF) structure

HER2/HB5 GCE 0.0489 ng/mL Does not report (59)

Breast

antimonene nanoflakes 

(AMNF) and carbon quantum 

dots (CQD) as substrate for 

cadmium ion (Cd2+)

miRNA-21/ss-RNA GCE 9pm 100aM-100nM (60)

Breast

sulfur/nitrogen-doped 

graphene quantum dots and 

a cobalt phthalocyanine

HER2/HB5 GCE 1.41 pm/mL  1–10 ng/mL (61)

Breast
Nitrogen-doped graphene 

quantum dots

MCF-7 cells/

phytohemagglutinin-L 

(PHA-L

SPE

1 cells mL-1 

in PBS and 2 

cells mL-1 in 

human serum

5 to 106 cells ml-1 in PBS and 20-

106 cells ml-1 in human serum
(62)

https://doi.org/10.1016/j.cej.2021.129196
https://doi.org/10.1016/j.aca.2021.338909
https://doi.org/10.1016/j.bioelechem.2023.108430
https://doi.org/10.1016/j.electacta.2022.141390
https://doi.org/10.1016/j.microc.2020.105301
https://doi.org/10.1016/j.electacta.2020.136522
https://doi.org/10.1016/j.sbsr.2021.100467
https://doi.org/10.1016/j.bioelechem.2022.108301
https://doi.org/10.1007/s00216-023-04784-7
https://doi.org/10.3390/bios12110966
https://doi.org/10.1016/j.jinorgbio.2022.111764
https://doi.org/10.1016/j.bioelechem.2021.107890
https://doi.org/10.1016/j.snb.2022.132233
https://doi.org/10.1021/acsnano.0c02517
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Breast

ureidopyriminone-

conjugated gelatin (Gel-UPy) 

hydrogels that incorporate 

diselenide-containing carbon 

dots (dsCD)

/ (63)

Breast

gold nanoparticles/graphene 

quantum dots/graphene 

oxide film

miRNA-21, miRNA-155, 

and miRNA-210/

0.04, 0.33, and 

0.28 fM
 0.001 to 1000 pM (65)

Ovary zinc oxide, carbon ink CA-125/CA125 antibodies ITO 0.1 fg·mL−1 1 ag·mL−1 − 100 ng·mL−1 (66)

Pancreas

Single-stranded DNA (thiol-

ss-DNA) modified and 

thiolated with graphene 

oxide quantum dots

miR-141/Modified and 

thiolated single-stranded 

DNA (thiol-ss-DNA)

SPCE  0.091 pM 2.3 to 6.1 nM (67)

Prostate

gold nanoparticles, multi-

walled carbon nanotubes 

and graphene quantum dots

PSA/Anti-PSA GCE 0.48 pg/ml 1 - 10,000 pg/ml (68)

Carbon nanotubes

Carbon nanotubes (CNTs) are graphene sheets rolled to form a cylinder with a high length/

diameter ratio. According to the number of carbon sheets, they are classified as single-layer, or 

single-wall, and double-wall, or multilayer, nanotubes (69). Nanotubes stand out for their high 

functionalization capacity and good conductive properties (70). However, some studies report 

that in their pristine state, they have a level of toxicity that is risky to health (71–73). Although the 

reason has not been determined precisely, the causes point to the heterogeneity of its surface that 

can induce its reaction with plasma proteins and the production of reactive oxygen species (ROS), 

which activate an inflammatory response through the release of cytokines and cause the release of 

apoptotic factors that lead to cell death (74).

Other research shows that functionalized nanotubes or in the form of structured aggregates do not 

reveal evidence of toxicity since the modification of the surface of carbon nanotubes reduces their 

reactivity and improves their biocompatibility (75,76). Furthermore, the formation of structured 

aggregates can minimize the exposure of carbon nanotubes’ active surface, reducing the potential 

for interaction with biomolecules and consequent toxicity.

Monolayer nanotubes

In Table 2, we observe that single-walled CNTs functionalized with single-stranded DNA have 

been used for the diagnosis of bladder cancer (77) and breast cancer (78–80) taking advantage 

of the excellent affinity of different nanostructures combined with a high surface area of ​​carbon 

nanotubes (81).

Cancer detections are possible thanks to the fact that carbon nanotubes provide conductivity 

and the ability to functionalize with other nanomaterials and with bioreceptors such as 

https://doi.org/10.1039/D1AN00436K
https://doi.org/10.1016/j.aca.2021.338909
https://doi.org/10.1016/j.bioelechem.2023.108430
https://doi.org/10.1016/j.electacta.2022.141390
https://doi.org/10.1016/j.microc.2020.105301
https://doi.org/10.1016/j.mser.2003.10.001
https://doi.org/10.1016/j.bios.2019.111919
https://doi.org/10.1016/j.jpha.2019.04.003
https://doi.org/10.1080/01480545.2019.1709492
https://doi.org/10.1016/j.jconrel.2016.09.033
https://doi.org/10.1016/j.msec.2017.05.089
https://doi.org/10.1016/j.carbon.2020.10.077
https://doi.org/10.1021/acs.analchem.2c03156
https://doi.org/10.1016/j.microc.2022.108173
https://doi.org/10.1007/s00604-019-3619-y
https://doi.org/10.1021/acsomega.2c03532
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carcinoembryonic antigen (CEA) (82), p-type glycoprotein (P-gp) (83) or exosomes derived from 

A549 cells (84).

Table 2. Research on the use of monolayer carbon nanotubes in electrochemical biosensors for the detection of different 

types of cancer

Type of cancer Functionalization Biomarker / Bioreceptor Detection limit Range Ref.

 Changes generated by 

tumors
DNA/ferrocene

exosomes derived from 

A549 cells/Epidermal 

growth factor receptor 

(EGFR)

9.38×104 exosomes/

mL

4.66×10 

6- 9.32×109 

exosomes/mL

(84)

 Changes generated by 

tumors

three-dimensional 

hierarchical nanohybrid 

based on bimetallic Cu-Au 

nanocrystals embedded 

in carbon nanotube arrays 

grown vertically on carbon 

spheres

CEA/anti-CEA 0.5 pg/mL 0.025–25 ng/mL (82)

Breast

antimonide quantum 

dots (AMQDs), aromatic 

heterocyclic dyes and 

single-walled carbon 

nanotubes (SWCNTs)

microRNA-21and 

miRNA-155 / ss-RNA(1 5 5)
64 am and 89 am 0 - 1 pM (78)

Breast

palladium (Pd) 

nanostructures supported 

on oxidized carbon 

nanotubes

HER2/Anti-HER2 1ng/mL 10 - 100ng/ml (81)

Breast

single-walled carbon 

nanotubes (SWCNTs) 

incorporating the 

polymerization of an 

oxiran-2-ylmethyl 

3-(1H-pyrrol-1-yl) 

propanoate monomer 

(Pepx)

calreticulin (CALR) / anti-

CALR
4.6 fg/mL 0.015 - 60 pg/mL (79)

Breast

electrochemically reduced 

graphene oxide and single-

walled carbon nanotubes

 HER2/Anti-HER2 50 fg/mL
0.1 pg/mL - 1 ng/

mL
(80)

Bladder single-stranded DNA miRNA-21/ssDNA 3.0 fM (77)

Leukemia
No functionalization other 

than the antibody

P-glycoprotein (P-gp)/anti-

P-glycoprotein
19 cells/mL

1.5×103cells/mL – 

1.5 × 107cells/mL
(83)

https://doi.org/10.1016/j.bios.2018.08.022
https://doi.org/10.1016/j.ab.2018.07.020
https://doi.org/10.1016/j.ab.2022.114971
https://doi.org/10.1016/j.ab.2022.114971
https://doi.org/10.1016/j.bios.2018.08.022
 https://doi.org/10.1016/j.microc.2022.108173
https://doi.org/10.1021/acsomega.2c03532
https://doi.org/10.1021/acsbiomaterials.2c00499
https://doi.org/10.1007/s00604-019-3619-y
https://doi.org/10.1021/acs.analchem.2c03156
https://doi.org/10.1016/j.ab.2018.07.020
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Table 3. Research on the use of multilayer carbon nanotubes in electrochemical biosensors for the detection of different 

types of cancer

Type of 

cancer
Functionalization Biomarker / Bioreceptor Detection limit Range

 Changes 

generated 

by tumors

 Copper Cobalt Spinel (CuCo2O4)/N-Doped 

Nonotubes

25(OH)D3 / G-quadruplex aptamer 

VDBA14-35
0.063 pM

1x10−13 - 1x10−6 

M
(85)

 Changes 

generated 

by tumors

mesoporous carbon functionalized with 

multilayer carbon nanotubes and gold 

nanoparticles

Cancer exosomes extracted from cell line 

MCF7/CD9 protein
70 exosomes/μL

1x102 - 1×107 

exosomes/µL
(86)

Breast gold nanoparticles HER2-ECD/anti-HER2-ECD  0.16ng/mL 7.5 - 50 ng/mL (87)

Breast

Double-layer nanotubes, tungsten 

disulfide semiconductor nanosheets, silver 

nanoparticles

miRNA-21/complementary DNA 1.54 am 10 −18- 10−11 M (88)

Breast

Carboxy and activators regenerated by 

electron transfer atom transfer radical 

polymerization (ARGET ATRP) into a highly 

conductive poly(3,4-ethylenedioxythiophene): 

polystyrene sulfonate (PEDOT). :PSS) 

PEDOT:PSS and Gold Nanoparticles

HER2 / HER2 aptamer-antibody (Apt-

HER2-Ab*)
1.979 fg mL−1

10−2 - 103 ng 

mL−1

(89)

Breast
gold nanoparticles (GNPs) and multi-walled 

carbon nanotubes (MWCNTs)
HER2/aptamer, MCH 4.4 µg/mL

1 Pg/mL - 25 

ng/mL
(90)

Breast
multi-walled carbon nanotubes (MWCNT) 

deposited on electrode needle
4T1 and MC4L2

In vivo detection in 

biomodels
(91)

Ovary
AuNPs@MWCNTs

CA125/acid treatment (H2SO4 and HNO3) 
of CBNs resulted in surface modification 
and ended up with oxygen-containing 
functional groups that are essential for 
binding with biomolecules

Does not report 0.001 - 10 μg/
mL

(92)

Ovary
Amine-Modified Multi-Walled Carbon 

Nanotubes (MWCNT)

squamous cell carcinoma antigen (SCC-

Ag)/anti-SCC-Ag antibody
 80 pM 60 - 120 pm (93)

cervical
reduced graphene oxide nanocomposite and 

multi-walled carbon nanotubes
HPV-18/ssDNA 0.05 fM

0.01 fM and 0.01 

nM
(94)

Prostate

polymerization of the monomer such as 

pyrrole-2-carboxylic acid (PY-COOH) with 

a nanocomposite of dendritic platinum 

nanoparticles aminated with carbon 

nanotubes (CNTs-PAH/Pt).

Prostate epithelial antigen 1 STEAP1 / 

Molecular imprinting on polymer
Does not report

130 pg/mL - 13 

µg/mL
(95)

Prostate

Carboxyl-functionalized multi-walled 

carbon nanotubes (MWCNT) and Fe3O4 

nanoparticles

PSA/anti-PSA 0.39 pg/mL
2.5 pg/mL - 100 

ng/mL
(96)

Prostate
multi-walled carbon nanotubes (MWCNT) 

modified with gold nanoparticles (AuNPs)

Self-assembled PSA/thiolated single-

stranded DNA
1 pg/mL 1–100 ng/mL (97)

Pancreas carboxyl group miRNA/ss-DNA 3 pm 1.3–12 nM (98)

Pancreas
multi-walled carbon nanotubes and gold 

nanoparticles
microribonucleic acid (miR-21) 3.68 fM Does not report (99)

https://doi.org/10.1016/j.microc.2023.109186
https://doi.org/10.1016/j.jelechem.2022.116590
https://doi.org/10.1002/elan.201800537
https://doi.org/10.1016/j.snb.2023.134086
https://doi.org/10.1039/D3NJ00297G
https://doi.org/10.1016/j.snr.2023.100158
https://doi.org/10.1016/j.bios.2020.112209
mailto:AuNPs@MWCNTs
https://doi.org/10.3390/s23031131
https://doi.org/10.1002/bab.1808
https://doi.org/10.1186/s12951-020-0577-9
https://doi.org/10.1016/j.bioelechem.2023.108461
https://doi.org/10.1016/j.snb.2021.130459
https://doi.org/10.3390/bios12121130
 https://doi.org/10.1007/s42823-023-00545-9
https://doi.org/10.1108/SR-01-2020-0004
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Lung

composite of UiO-66-NH2 and carboxylated 

multi-walled carbon nanotubes (CMWCNTs) 

and chitosan functionalized with gold 

nanoparticles

cytokeratin fragment 19 antigen 21-1 

(CYFRA 21-1) / Anti-CYFRA 21-1
1.15 pg/mL

0.005–400 ng/

mL
(100)

Lung
amidated multi-walled carbon nanotubes (Au 

NCs/MWCNT-NH2)

Long non-coding RNAs (lncRNAs) MALAT 

1
42.8 fM 10 –7– 10 –14M (101)

Liver Fe3O4/MWCNTs-COOH/Gold Naoparticles Alpha-fetoprotein (AFP)/Anti-AFP 1.09034 pg mL−1
1 pg mL −1– 10 

μg mL−1
(102)

Liver
 multi-walled carbon nanotubes (MWCNT) 

with chitosan film
OV6/Anti-OV6 100 cells/mL

1x102 - 5×105 

cells/mL
(103)

colorectal, 

pancreatic 

lung

multi-walled carbon nanotubes/chitosan ionic 

liquid/gold nanoparticles
KRAS gene/T7E1 enzyme mutation 11.89 fM 100 fM - 1 µM (104)

Multilayer nanotubes

As shown in Table 3, the functionalization of these materials with gold nanoparticles has achieved 

the development of electrochemical biosensors for breast cancer detection (87) where they reached 

a low detection limit of 0.16 ng/mL. The above was achieved thanks to the contributions of the high 

sensitivity of the nanotubes and the properties of gold nanoparticles for effective immobilization 

of HER2 antigen used as biomarkers in this assay. Most biosensors based on multilayer nanotubes 

have been used in the diagnosis of breast cancer (87–91), using functionalization with metal 

nanoparticles, mainly gold and silver. 

Other cancers studied with these nanomaterials are prostate cancer (100,101), pancreatic cancer 

(99) (98), colorectal cancer (104), ovarian cancer (88,93), liver cancer (102) or biomarkers related to 

tumor cells (85).

Graphene

Graphene is a two-dimensional allotrope of carbon, one atom thick with sp2 hybridization (105). It is 

a nanomaterial with a large surface area, good biocompatibility, and superior electrical conductivity 

compared to other carbon derivatives, which make it ideal for detecting and quantifying cancer 

biomarkers (106,107). Graphene has notable potential for its functionalization with different types 

of drugs, biological agents (proteins and nucleic acids), metals, and fluorescent probes intended for 

the detection of intracellular components, thanks to its flat geometry (108).

The simplicity of its functionalization combined with its excellent electrical properties has driven 

many investigations into using this nanomaterial in electrochemical biosensors to detect malignant 

tumors, prostate, breast, and liver cancer (Table 4).

https://doi.org/10.1016/j.colsurfb.2023.113517
https://doi.org/10.1038/s41598-021-83244-7
https://doi.org/10.1016/j.talanta.2023.124492
https://doi.org/10.3390/genes9020089
https://doi.org/10.1007/s00604-021-05089-1
https://doi.org/10.1002/elan.201800537
https://doi.org/10.1002/elan.201800537
https://doi.org/10.1016/j.bios.2020.112209
https://doi.org/10.1016/j.colsurfb.2023.113517
https://doi.org/10.1038/s41598-021-83244-7
https://doi.org/10.1108/SR-01-2020-0004
https://doi.org/10.1007/s42823-023-00545-9
https://doi.org/10.1007/s00604-021-05089-1
https://doi.org/10.1016/j.snb.2023.134086
https://doi.org/10.1002/bab.1808
https://doi.org/10.1016/j.talanta.2023.124492
https://doi.org/10.1016/j.microc.2023.109186
https://doi.org/10.3390/molecules22071048
https://doi.org/10.1016/j.envres.2023.117368
https://doi.org/10.1002/adfm.201806792
https://doi.org/10.1002/slct.202002501
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Table 4. Research on the use of graphene in electrochemical biosensors for the detection of different types of cancer

Type of cancer Functionalization
Biomarker / 

Bioreceptor

Detection 

limit
Range Ref.

 Changes 

generated by 

tumors

aptameric graphene-based field effect transistor with 

buried gate geometry with HfO2 as a dielectric layer and 

online signal processing circuits to measure the signals

interleukin-6 (IL-6) / 

Unlabeled
12pm

Does not 

report
(109)

 Changes 

generated by 

tumors

antibody-modified graphene field effect transistor

Carcinoembryonic 

Antigen (CEA) / 

Unlabeled

100 pg/mL
100 pg/mL - 

100 ng/mL
(110)

 Changes 

generated by 

tumors

Laser-etched graphene electrodes on a polyimide sheet
eIF3d protein 

biomarker / Anti-eIF3d
 50.4 ng/mL 75–500 ng/mL (111)

 Changes 

generated by 

tumors

graphene foam Functionalized with pyrene carboxylic 

acid
IL-10/Anti-IL-10 7.89 fg/mL

10 fg/ml and 

100 fg/ml
(112)

 Changes 

generated by 

tumors

 graphene nanosheets decorated with Ag nanoparticles 

(GNSs@Ag NPs)

carcinoembryonic 

antigen (CEA)
 0.5 fg/mL

0.001 pg/mL - 

10 pg/mL
(113)

 Changes 

generated by 

tumors

uniform thin films of amine-functionalized graphene 

(f-graphene) and Ti3C2-Mxene nanohybrid

carcinoembryonic 

antigen (CEA) / anti-

CEA

 0.30 pg 

mL−1

0.01 pg mL−1 - 

2000 ng mL−1
(114)

 Changes 

generated by 

tumors

 large size (~ 2.5 × 1.0 cm2), uniform, continuous, single-

layer graphene films on copper (Cu) substrate using

carcinoembryonic 

antigen (CEA) / anti-

CEA

0.23 ng mL−1
1.0 - 25.0 ng 

mL-1
(115)

 Changes 

generated by 

tumors

graphene-zirconia nanocomposite

carcinoembryonic 

antigen (CEA) / anti-

CEA

4.25 pg/mL
0.01 - 10ng/

mL
(116)

 Changes 

generated by 

tumors

Amine functionalized graphene
microRNA-155 /anti-

microRNA-155
12.5 fM mL−1

30 fM mL−1 - 1 

pM mL−1
(117)

 Changes 

generated by 

tumors

cubic dendritic gold/platinum nanomaterials 

functionalized with nitrogen-doped graphene loaded 

with copper ions

carcinoembryonic 

antigen (CEA) / anti-

CEA

0.167 pg/mL
0.5 pg/ml - 50 

ng/ml
(118)

 Changes 

generated by 

tumors

graphene field effect transistor

human chorionic 

gonadotropin (hCG) / 

anti-hCG

pg/mL
1 pg/mL - 1 

ng/mL
(119)

Breast Polypyrrole, gold nanoparticles miRNA-21/Unlabeled 0.020 fM
1.0 fM - 1.0 

nM
(120)

Breast
Nanostructured Gold Modified Laser Etched Graphene 

(LSG)
HER2 0.008 ng/mL

0.1 - 200 ng/

mL
(121)

Breast / Ovary
electrospun graphene-doped manganese III oxide 

(GMnO) nanofibers

 BRCA1/single-

stranded DNA

0.8 ± 0.069 

pM
10 pM - 1 μM (122)

Prostate
3-aminobenzoic acid (ABA), porous gold and silver 

nanoparticles.
PSA/Anti-PSA  50 amol/L

0.0001 and 

1000 pmol/L
(123)

Prostate Chitosan
Sarcosine oxidase (SOx) 

/ Sarcosine
0.001 μM 0.001–100 μM (124)

Prostate iron oxide Fe3O4 PSA/anti-PSA 0.38ng/mL 1 - 150 ng/mL (125)

https://doi.org/10.1016/j.bios.2019.03.053
https://doi.org/10.1016/j.bios.2016.09.025
https://doi.org/10.1002/elan.202060482
https://doi.org/10.1016/j.bios.2022.114954
https://doi.org/10.1016/j.envres.2023.117363
https://doi.org/10.1016/j.ijbiomac.2023.127260
https://doi.org/10.1016/j.bios.2018.01.014
https://doi.org/10.1038/s41598-021-99498-0
https://doi.org/10.1016/j.measurement.2019.05.008
https://doi.org/10.1016/j.bios.2018.04.025
https://doi.org/10.3390/diagnostics8010005
https://doi.org/10.1039/D1AN00116G
https://doi.org/10.1016/j.bios.2021.113116
https://doi.org/10.1002/elan.201800220
https://doi.org/10.1016/j.snb.2019.126657
https://doi.org/10.1016/j.sintl.2022.100174
https://doi.org/10.1007/s10854-020-04102-2
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Prostate carbon fabric modified with gold nanoparticles
microRNA-141/

aptamer 1 (APT1)
50 AM 0.1 fM - 1 nM (126)

Prostate 3D graphene airgel (GA)/AuNPs/Nafion PSA/Anti-PSA
0.0306 

ng∙mL−1

0.05 - 50 

ng∙mL−1
(127)

Prostate graphene nanoplatelets with diblock copolymers PSA/anti-PSA 40 fg mL-1
0.1 pg mL-1 - 

100 ng mL-1
(128)

Liver gold nanoparticles

Alpha-fetoprotein 

(AFP) / Molecular 

imprinting on polymer

3.7 pg/mL
0.001 ng/mL - 

1000 ng/mL
(129)

Lung 3D graphene functionalized with Ag nanoparticles CYFRA21-1/ssDNA 1.0×10−14 M
1.0×10−14 - 

1.0×10−7 M
(130)

According to Table 4, 50% of the research has aimed at the development of biosensors for the 

diagnosis of non-specific malignant tumors (115) (116) (117) (118) (119) through the detection of 

carcinoembryonic antigen, a normal glycoprotein in fetuses but which indicates the presence of 

tumors in adults (131). An example of this is the biosensor developed with graphene nanosheets 

decorated with silver nanoparticles (113), which achieved a low detection limit of 0.5 fg/mL and a 

linear detection range of 0.001 pg/mL to 10 pg/mL. For this same biomarker, thin graphene sheets 

have been functionalized with amine and Ti3C2-Mxene nanohybrid with a low detection limit of 0.30 

pg mL−1 and detection range of 0.01 pg mL−1 to 2000 ng mL−1(114). This biomarker has also been 

detected using graphene-zirconia compounds (116), graphene-copper (115) or cubic dendritic 

gold/platinum nanomaterials with sulfur and nitrogen functionalized graphene (118) with detection 

limits of less than 4 pg/mL.

The protein interleukin-6 (IL-6) (109), the D subunit of eukaryotic translation initiation factor 3 

(eIF3d) (111), the carcinoembryonic antigen (CEA), microRNA-155 (117), and human chorionic 

gonadotropin (hCG) (119), are related to the presence of different types of cancer and have 

been detected only with graphene nanoparticles functionalized with their respective antibodies, 

reaching detection limits of 12 pM, 50.4 ng/mL, 100 pg/mL, 12.5fM mL−1 and 1 pg/mL, respectively, 

demonstrating the ability of graphene to conduct the biochemical signal produced by the 

biomarker-bioreceptor interaction.

Graphene nanocomposites with gold nanoparticles have been studied for the diagnosis of prostate 

cancer (126) reaching detection limits of 50 aMol/L (S/N = 3) and a detection range between 

0.0001 and 1000 pmol/L when an oxidation reaction occurs between the glucose oxidase aptamer 

and the prostate-specific antigen analyte. The same detection limit was obtained by adding silver 

nanoparticles and 3-aminobenzoic acid to the graphene nanocomposite and gold nanoparticles 

to detect microRNA-141, also related to prostate cancer (123). Other types of functionalization 

with nanoparticles, such as iron oxide (125), biopolymers such as chitosan (124) and even synthetic 

polymers such as polystyrene and polyacrylic acid (128) have achieved detection limits lower than 

0.001 μM when detecting biomarkers related to prostate cancer (132).

According to Table 4, the third most studied type of cancer in detection with graphene-based 

biosensors is breast cancer. For this, biosensors based on electrospun graphene and manganese 

III oxide nanofibers have been developed (122) where the inherent electrical properties of the 

electrospun nanofibers are taken advantage of to achieve superior reaction kinetics, reaching 

https://doi.org/10.1016/j.aca.2022.340589
https://doi.org/10.1016/j.microc.2023.109436
https://doi.org/10.1039/C7AN01932G
https://doi.org/10.1016/j.ijoes.2023.100081
https://doi.org/10.1016/j.snb.2017.09.111
https://doi.org/10.1016/j.bios.2018.01.014
https://doi.org/10.1038/s41598-021-99498-0
https://doi.org/10.1016/j.measurement.2019.05.008
https://doi.org/10.1016/j.bios.2018.04.025
https://doi.org/10.3390/diagnostics8010005
https://doi.org/10.1016/j.gastrohep.2014.04.007
https://doi.org/10.1016/j.envres.2023.117363
https://doi.org/10.1016/j.ijbiomac.2023.127260
https://doi.org/10.1016/j.bios.2018.01.014
https://doi.org/10.1016/j.bios.2018.04.025
https://doi.org/10.1016/j.bios.2019.03.053
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https://doi.org/10.1016/j.aca.2022.340589
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https://doi.org/10.1007/s10854-020-04102-2
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a minimum detection limit of 0.8 pM and a range of 10 pM to 1 mM. Nanostructured gold-

functionalized graphene biosensors (121) and gold and polypyrrole nanoparticles (120) have 

reached detection limits of 0.008 ng/ml and 1.0 fM, respectively, thanks to the graphene in the 

nanocomposite, which increases both the surface area and the conductivity of the electrode.

Other cancers, such as lung and liver, have been investigated through the detection of 

the CYFRA21-1 gene with a 3D graphene biosensor functionalized with Ag nanoparticles 

(130), obtaining a minimum detection limit of 1.0×10−14 M, thanks to the fact that these 

nanocomposites provide a favorable microenvironment to retain the bioactivity of the DNA of 

the immobilized probe and effectively promote the transfer of electrons due to their excellent 

biocompatibility and good conductivity. Liver cancer (129) It has also been detected through 

the functionalization of graphene with gold nanoparticles and through the detection of alpha-

fetoprotein, a protein whose presence is normal in the development of the fetus but which in adults 

can indicate the presence of malignant tumors. The limit of detection is 3.7 pg/mL, and the range is 

0.01 ng/mL to 1000 ng/mL. 

Graphene oxide and reduced graphene oxide

Graphene oxide (GO) and reduced graphene oxide (rGO) are derivatives of graphene, which are 

composed of a layer of graphene with hydroxyl, carbonyl, peroxide, and carbonyl functional groups 

(133). A known, but not definitive, model for GO is that of Lerf and Klinowski, which postulates a 

random distribution of hydroxyl and epoxy groups throughout the graphene oxide layer, while 

the carboxyl and carbonyl groups are located at the edge of the graphene oxide layer (134). This 

layer consists of an unoxidized benzene ring region (planar hexagonal structure) and an oxidized 

six-membered aliphatic ring region (carbon atoms in this region can form open chains instead of 

closed structures as in benzene), which vary according to the degree of oxidation and the random 

distribution of GO (134). In addition to these areas with different degrees of oxidation, they also 

present gap defects due to over-oxidation and exfoliation from the synthesis process (135).

The reduction of GO to rGO is carried out to obtain properties like those of graphene, improving, 

for example, its conductive properties (35). rGO has the advantage that the synthesis of GO is much 

easier and cheaper, considering that graphene requires liquid media with meager yields or high-

cost equipment in demanding conditions such as type of substrates or high temperatures (20,136).

Both GO and rGO have been widely used in electrochemical biosensors for specific detection 

of cancer cells due to their large surface area, good electrical conductivity, immobilization of 

biomolecules such as DNA, protein mutations, and microRNA with great sensitivity and selectivity 

(106).

As shown in Table 5, tumor-associated changes have been detected thanks to the implementation 

of GO in a sandwich structure based on Prussian blue/graphene oxide (GO/PB) and pointed gold-

oxide nanoparticles. of iron to detect exosomes derived from tumors (MCF-7), thanks to the fact 

that the combination of Prussian blue/GO has excellent electrochemical properties, favoring 

efficient electron transfer, reaching a minimum detection limit of 80 particles·μL-1(137).

https://doi.org/10.1016/j.bios.2021.113116
https://doi.org/10.1039/D1AN00116G
https://doi.org/10.1016/j.snb.2017.09.111
https://doi.org/10.1016/j.ijoes.2023.100081
https://doi.org/10.3390/molecules26216674
https://doi.org/10.1016/S00092614(98)00144-4
https://doi.org/10.1016/S00092614(98)00144-4
https://doi.org/10.1002/adma.201000732
https://doi.org/10.1016/j.ijoes.2023.100081
https://doi.org/10.1016/j.cej.2022.136183
https://doi.org/10.1039/C9TC04916A
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https://doi.org/10.1016/j.bios.2022.114705
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GO has been implemented to a greater extent in biosensors for the detection of breast cancer 

(138–142) through different types of functionalization, such as with gold nanoparticles and 

graphene quantum dots (63), gold nanoparticles, and molybdenum disulfide (140), different metal 

ions (142), bimetallic gold-platinum nanoparticles (141) with detection limits lower than 1.5 µg/

mL, thanks to the fact that GO sheets can improve the electrochemical signal and sensitivity by 

increasing conductivity and specific surface area.

Table 5. Research on the use of graphene oxide (GO) in electrochemical biosensors for the detection of different types of 

cancer

Type of 

cancer
Functionalization Biomarker / Bioreceptor Detection limit Range

Ref.

 Changes 

generated 

by tumors

sandwich platform based on Prussian 

blue/graphene oxide (GO/PB) and 

pointed Au@Fe3O4 nanoparticles

 Tumor-derived exosomes (MCF-7)/

EpCAM Antibody
80 particles μL-1

2.0×10 

2- 5.0×105 

particles·μL-1

(137)

Breast
different metal ions (Co2+, Ni2+, Mn2+, 

Zn2+, Fe3+, Cr3+, La3+)
miRNA-21 1.18 am 10−17-10−12 M (141)

Breast
two-dimensional (2D) functionalized 

graphene oxide (FGO)
HER2/anti-HER2 0.59 ng/mL

 0.5 ng/mL 25 

ng/mL
(139)

Breast

two-dimensional (2D) poly(3-amino 

benzylamine)/molybdenum selenide/

graphene oxide nanocomposite 

modified with two screen-printed 

carbon electrodes (dual-electrode), 

individually functionalized with 

2,3-diamino phenazine-gold 

nanoparticles and toluidine blue 

nanoparticles gold

15-3 (CA 15-3) and microRNA-21 

(miRNA-21)/anti-CA 15-3 and DNA 

capture probes-21

0.14 U mL-1 and 

1.2 fM

0–500 U mL −1 

and 0–1000 pM
(140)

Breast

Carboxylated graphene oxide followed 

by deposition of bimetallic gold-

platinum nanoparticles

miRNA-21/streptavidin and a 

biotinylated capture probe
1 fM 1 fM - 1 μM (142)

Breast
composed of ionic liquid and graphene 

oxide (GO-IL-PGE)
BRCA1 / Unlabeled 1.48 µg/mL  2–10 μg/mL (138)

Cervical Silver-coated gold nanoparticles
human papillomavirus-16 (HPV-16) / 

HPV-DNA
100aM 100aM - 1 μM (143)

Colorectal  polypropylene-imine (PPI)
carcinoembryonic antigen (CEA) / 

anti-CEA
0.3 pg/mL

0.001 - 2000 ng/

mL
(144)

Colorectal

Graphene oxide (GO) decorated with 

gold (Au) nanoflower nanostructures 

(GO@Au-NS)

miR-223/thiolated DNA probes (Cap-

223)
0.012 aM zM - nM (145)

Liver

graphene oxide modified screen-

printed carbon electrode with the 

N-hydroxy-succinimide ester of 

1-pyrene-butyric acid

Anti-HepG2 human hepatoma 

HepG2 cells
1 × 103 cells/mL

1x103 - 3×105 

cells/mL
(146)

https://doi.org/10.3390/bios12020095
https://doi.org/10.1007/s00604-019-3302-3
https://doi.org/10.1039/D1AN00436K
 https://doi.org/10.1016/j.colsurfb.2021.112260
https://doi.org/10.1007/s00604-019-3302-3
https://doi.org/10.1016/j.talanta.2023.124552
https://doi.org/10.1016/j.bios.2022.114705
https://doi.org/10.1016/j.talanta.2023.124552
https://doi.org/10.20964/2022.04.62
https://doi.org/10.1016/j.colsurfb.2021.112260
https://doi.org/10.1007/s00604-019-3302-3
https://doi.org/10.3390/bios12020095
https://doi.org/10.1016/j.ab.2022.115015
https://doi.org/10.1016/j.envres.2023.117113
https://doi.org/10.1016/j.biosx.2023.100331
https://doi.org/10.3390/IECB2023-14599
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Lung

two layers of graphene oxide-

chitosan@polyvinylpyrrolidone-gold 

nanocomposite (GO-CS/PVP-AuNUs)

miRNA- 141 and miRNA-21/dhDNA-

based probe thiolated methylene 

blue-labeled hairpin capture probe 

(MB-HCP) as internal reference probe 

and a ferrocene-modified anti-

miRNA-21 DNA probe (Fc-AP -21) as 

signal marked with Fc

0.89 and 1.24 fM 2.0 - 105 fM (147)

Lung

Two-layer nanocomposite 

film graphene oxide-chitosan 

polyvinylpyrrolidone-gold nano urchin

miR-141/hematoxylin 0.94 fM 2.0 –5.0×105 fM (148)

Lung
porous zinc oxide/graphene oxide 

(ZnO/HGO) composites

carcinoembryonic antigen (CEA) and 

CA153 / anti-CEA and anti-CAI153

0.07 ng/mL and 

0.22 U/mL

0.1 - 20 ng/ml 

and 0.5 - 70 U/

ml

(149)

Lung  Functionalized with label
Lung cancer DNA/peptide nucleic 

acid (PNA)
0.213 aM

1.0 aM to 100 

fM
(150)

Oral
gold nanoparticles, redox-active 

gadolinium hexacyanoferrate (GdHCF)
cyfra-21-1 / Anti-cyfra- 21–1

0.039 (±0.01) 

ng/mL
2–50 ng/mL (151)

Oral

 aptamer-conjugated graphene oxide 

with methylene blue and graphene 

oxide covalently linked with methylene 

blue

TNF-α/methylene blue (MB)
1 pg mL-1 and 10 

pg mL-1

1-400 pg mL-1 

and 10-300 pg 

mL-1

(152)

The second most studied type of cancer for detection by GO-based biosensors is lung cancer, with 

nanocomposites such as graphene oxide-chitosan, polyvinylpyrrolidone-gold nanourchin for the 

detection of related miRNA-141 and miRNA-21. with this type of cancer (147,148), porous zinc 

oxide/graphene oxide composites (149) and only functionalization with the bioreceptor (150).

Likewise, the detection of other types of cancer has been studied, such as cervical cancer (143), 

colorectal cancer  (144,145),  oral cancer (151,152), prostate cancer (153) and liver cancer (146), 

through the use of biosensors based on GO nanoparticles. 

Table 6 summarizes the research reported on the use of rGO-based electrochemical biosensors 

for the detection of different types of cancer; It is striking that rGO has been investigated for the 

detection of various types of cancer, including breast cancer with some functionalization such as 

nickel-iron, graphene quantum dots conjugated with silver and gold nanostars (154), rGO/amino 

substituted polypyrrole polymer nanocomposite (155), ordered mesoporous carbon and gold 

nanoparticles (156), copper sulfide (157), gold-palladium nanotubes (158), gold nanoparticles (159–

161), conductive polymers (162–164), rhodium nanoparticles (165),  ZnMn2O4 (166) or the research 

conducted by Xia et al. (164) where they functionalized a carbon electrode with 3D rGO nanosheets 

and polyaniline nanofibers, which resulted in a synergistic effect on biosensing, reaching a 

minimum detection limit of 3.01×10−16 M (3S/m). 

Another investigation focused on detecting this type of cancer is that of Sadrabadi et al. (167) In 

this case, the researchers developed a biosensor composed of a magnetic carbon paste electrode, 

a metal-organic nanostructure (called MOF) of copper, carbon nanofibers, and sheets of rGO 

functionalized with iron. This composition reached a low detection limit of 0.08 fM, thanks to the 

https://doi.org/10.1016/j.talanta.2022.123863
https://doi.org/10.1007/s00604-022-05301-w
https://doi.org/10.20964/2022.12.70
https://doi.org/10.1016/j.microc.2020.105766
https://doi.org/10.1016/j.snb.2023.134605
https://doi.org/10.1039/D2SD00035K
https://doi.org/10.1016/j.talanta.2022.123863
https://doi.org/10.1007/s00604-022-05301-w
https://doi.org/10.1016/j.microc.2020.105766
https://doi.org/10.1016/j.ab.2022.115015
https://doi.org/10.1016/j.envres.2023.117113
https://doi.org/10.1016/j.biosx.2023.100331
https://doi.org/10.1016/j.snb.2023.134605
https://doi.org/10.1039/D2SD00035K
https://doi.org/10.1002/elsc.201800093
https://doi.org/10.3390/IECB2023-14599
https://doi.org/10.1016/j.snb.2022.132877
https://doi.org/10.1002/mabi.202200390
https://doi.org/10.1016/j.bioelechem.2022.108256
https://doi.org/10.1007/s00604-017-2532-5
https://doi.org/10.1016/j.bioelechem.2019.04.018
https://doi.org/10.3390/bios12020098
https://doi.org/10.1007/s00604-020-04400-w
https://doi.org/10.1007/s00604-021-04995-8
https://doi.org/10.1002/elan.202060039
https://doi.org/10.1515/ntrev-2022-0047
https://doi.org/10.1021/acsami.9b19126
https://doi.org/10.1016/j.bioelechem.2023.108558
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addition of metallic and carbon-derived sites that provided good electron transfer and the analyte 

immobilization capacity of magnetic rGO.

Table 6. Research on the use of reduced graphene oxide (rGO) in electrochemical biosensors for the detection of 

different types of cancer

Type of cancer Functionalization Biomarker / Bioreceptor Detection limit Range
Ref.

Breast

Nickel-iron (Fe-Ni@rGO), silver-conjugated 

graphene quantum dots (GQD-Ag), and 

gold nanostars (GNS)

miR-155/hematoxylin-

ssDNA and scDNA
20.2 am 0.05 fM - 50.0 pM (154)

Breast

Reduced Graphene/Amino Oxide 

Substituted Polypyrrole Polymer 

Nanocomposite

calreticulin (CALR)/anti-

CALR
10.4 fg/mL 0.025 - 75 pg/mL (155)

Breast

Thionine (TH), reduced graphene oxide 

(rGO), ordered mesoporous carbon (CMK-

3), and gold nanoparticles (AuNPs)

miRNA-21/methylene 

blue (MB)
0.046 fM 0.1 fM - 1 pM (156)

Breast
Reduced graphene oxide (RGO) and copper 

sulfide (CuS)

tumor marker 

carbohydrate 15-3 (CA15-

3) / Anti-CA15–3

0.3 U/mL 1.0–150 U/mL (157)

Breast Au-Pd and rGO nanocubes h2EITHER2 4nM 0.005 μM - 3.5 mM (158)

Breast
Reduced graphene oxide (rGO) decorated 

with gold nanoparticles (AuNPs)

ds-methylated MGMT 

gene/peptide nucleic acid 

(PNA)

0.86 pM  1 pM - 50 µM (159)

Breast rGO and gold nanoparticles

Vascular endothelial 

growth factor A (165) 

(VEGF-A (165)) / Without 

bioreceptor

0.007 pg/mL 20 - 120 pg/mL (160)

Breast

Reduced graphene oxide (rGO) and AuNPs 

modified with pyrene carboxylic acid (PCA) 

and 6-ferrocenyl hexane thiol (Fc-SH)

 miRNA-21/RNA-21 

capture probes
5 fM Does not report (161)

Breast

Graphene oxide/poly(2-amino 

benzylamine)/gold nanoparticles and 

adopting hollow and porous gold-silver 

nanoparticles

miRNA-155, miRNA-16 

and miRNA-21 / Hybrid 

(DNA)-RNA Antibody 

[S9.6]

0.98 fM, 3.58 

fM, and 0.25 fM
1 fM - 10 nM (162)

Breast Polypyrrole/reduced graphene oxide BRCA1 / Unlabeled 3 fM 10 fM – 0.1 μM (163)

Breast Polyaniline (PANI) BRCA1/ssDNA 3.01×10−16M 1.0×10−15–1.0×10−7M (164)

Breast
Reduced graphene oxide nanosheets 

(rGON) and rhodium nanoparticles (Rh-NP)
HER2/anti-HER2 1.0 cells/mL

5.0 - 10.0 × 104 cells/

mL
(165)

Breast

Reduced graphene oxide-wrapped 

ZnMn2O4 microspheres (ZnMn2EITHER4 @

rGO)

h2EITHER2 / electrocatalyst 0.012 μM 0.03-6000μM (166)

Breast
Carbon nanofibers, CuBTC-AIA (CuMOF), 

and magnetic graphene oxide Fe@rGO

microRNA 155 / 

1-pyrene-butyric acid 

N-hydroxysuccinimide 

ester

0.08 fM 0.2 fM – 500 pM (167)

Malignant tumors
Cysteine-coated gold nanoparticles (Cys-

AuNP)

Interleukin 8 (IL-8) / Anti-

IL-8
0.589 pg/mL 1–12 pg/mL (168)

https://doi.org/10.1016/j.snb.2022.132877
https://doi.org/10.1002/mabi.202200390
https://doi.org/10.1016/j.bioelechem.2022.108256
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https://doi.org/10.1016/j.bioelechem.2019.04.018
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Malignant tumors Mxene Gold Nanoparticles
mi-RNA21 / Without 

bioreceptor
0.418 fM 1 fM - 1 nM (169)

Malignant tumors
 Bipolar Exfoliated Reduced Graphene 

Oxide (rGO) (BPE)

Platelet-derived growth 

factor-BB (PDGF-BB) / 

Bioreceptor-free

0.75 pM 1 pM–10 nM (170)

Malignant tumors

Polyethylene terephthalate (PET/Au) coated 

with gold and decorated with bipolar 

exfoliated graphene

platelet-derived BB 

growth (PDGF-BB) / 

Without bioreceptor

0.65 pM 0.0007–20nM (171)

Malignant tumors

Reduced graphene oxide nanosheets 

coated with highly charged poly 

diallyldimethylammonium chloride

h2EITHER2 / gold/

platinum/silver trimetallic 

nanoalloy

1.2nM 0.05 μM to 5.5 mM (172)

Malignant tumors
Reduced graphene oxide nanohybrid 

grafted with molybdenum disulfide

EpCAM/Anti-EpCAM 

epithelial cells
44.22 fg/mL 0.001 - 20 ng/mL (173)

Prostate
 Reduced graphene oxide/gold 

nanoparticles

PSA/anti-PSA total and 

anti-free PSA antibody

0.2 and 0.07 

ng/mL
Does not specify (153)

Prostate

Prussian blue, reduced graphene oxide 

(P-rGO) nanosheets dispersed in polymer 

and sarcosine oxidase (SOx)

 SAR/Sarcosine Oxidase 0.66 μM 10 – 400 μM (174)

Prostate Hybrid TiO nanosheets2(200)-rGO PSA 1 pg/mL 0.003 – 1000 ng/mL (175)

Lung

Reduced graphene oxide (rGO), polypyrrole 

(PPy), silver nanoparticles (AgNPs), and 

single-stranded DNA (ssDNA as capture 

probe)

CYFRA21-1/ssDNA for 

guanine oxidation signal
2.14 fM

1.0×10−14 M - 1.0×10−6 

M
(176)

Lung

Reduced molybdenum disulfide (r-MoS) 

multilayer nanosheet-based matrix2) 

modified with rGO

Neuronal specific enolase 

(NSE)/anti-NSE
1ng/mL 1–200 ng/mL (177)

Lung

 Reduced graphene oxide nanosheets 

modified with gold nanoparticle hybrid 

structures

miRNA-155 

and miRNA-21/

complementary DNA

12.0 and 25.7 

nM

12.0 - 25.7 nM and 51.6 

- 59.6 nM
(178)

Cervical DNA
Human papillomavirus 16 

(HPV 16) / HPV-DNA
2:00 p. m. 1 pM - 1 μM (179)

Cervical
Nano-copper functionalized with perylene 

tetracarboxylic acid

Human papillomavirus 16 

(HPV 16) / HPV-DNA
2.15 fM 10 fM - 10 μM (180)

Ovary
Silver nanoparticles, cysteamine-coated 

gold nanoparticles

Mucin 16 or carcinoma 

antigen 125 (CA 125) / 

anti-CA 125

0.78 U/mL 0.78–400 U/mL (181)

Liver

Flexible hybrid film of reduced graphene 

oxide and carbon nanotubes (rGO-

CNT) with MnO nanoflowers2 and Co 

nanospheres

h2EITHER2 / Without label 66.7nM 0.2 μM – 18.0 mM (182)

Leukemia
Gold/magnetite/reduced graphene oxide 

nanoparticles (AuNPs/Fe3EITHER4/RGO)

miRNA-128/

hexacyanoferrate and 

methylene blue

0.05346 fM and 

0.005483 fM

0.1–0.9 fM and 0.01–

0.09 fM
(183)

Gastric
Polymeric gold nanostars wrapped in 

graphene oxide and l-arginine (rGO-AuNS)
 PIK3CA gene / Unlabeled 1.0 × 10-twenty M

1.0 × 10-twenty - 1.0 × 

10–10 M
(184)
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Oral
Cerium oxide nanocubes (ncCeO2) and 

reduced graphene oxide (RGO)

Cyfra-21-1/anti-

Cyfra-21-1
0.625 pg/mL

0.625 pg/mL - 0.01 ng/

mL
(185)

For biological changes generated by the presence of a tumor, such as the level of EpCAM epithelial 

cells (173) or the overexpression of enzymes such as glucose oxidase and peroxidase, leading to 

an increase in H2O2 levels (172), functionalization has been carried out with gold nanoparticles 

(168,169,171), and even biosensors without bioreceptors that detect platelet-derived growth factor-

BB (PDGF-BB) have been developed by using bipolar exfoliated rGO due to the increase in surface 

area and conductivity provided in the bipolar electrochemistry process (170).

Other case studies have focused on the detection of prostate cancer (153,174,175), lung (176–178) 

and cervical (179,180) and with less abundant results related to ovarian cancer (181), liver (182), 

leukemia (183), gastric (184) and oral (185). 

Challenges and projections

Figure 2. Statistics against research on electrochemical biosensors for cancer screening.

Figure 2 summarizes the amount of research into the detection of different types of cancer and 

the carbon-derived nanomaterials used. It can be seen that some types receive more research 

attention, such as breast and prostate cancer and the identification of cells related to malignant 

tumors in general. These cancers have been extensively studied due to their high incidence and 

interest in developing early detection and effective treatment methods.

However, it is essential to mention that other cancers are equally important to detect, although 

they do not receive the same amount of research. Examples of these are cervical, ovarian, and 

colorectal cancer, among others, and we even find that cancers such as bone cancer may lack 

significant research in the specific context of this article. 
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This is important as, according to the World Health Organization, high-cost non-communicable 

diseases such as cancer continue to represent a global public health problem, causing around 41 

million deaths annually, with low- and middle-income countries being the most affected (186). The 

identification of this disease is of vital importance and, within the category mentioned above, is 

primary bone cancer (PBC), studied in our research group, which consists of the mutation of bone 

cells and their high rate of cell division (187) a high prevalence of mortality and metastatic potential 

(188). 

Among the factors hindering early diagnosis of HCC is the lack of coverage of medical centers 

with the required equipment and their high cost of operation and maintenance, and less access 

to specialized medical controls, which represent an increase in the survival rate, a lower risk of 

metastasis and a greater possibility of not losing limbs in advanced stage treatments (20). In 

addition, 20 out of 100 lesions caused by primary bone cancer have already had effects such 

as wounds, fractures, and infections when the presence of cancer is determined, but due to the 

difficulties of the procedure and turnaround time, treatment time is hampered (21).

A pressing challenge in these cases is related to the three types of samples used for bone cancer 

screening: serological, genetic, and histological, as their collection can be invasive and painful for 

patients, limiting the availability of samples for research and the development of screening systems 

(132). This highlights the need for non-invasive and sensitive screening methods for bone cancer.

Despite the many advantages of biosensors, they have disadvantages that include limitations in 

stability and shelf life, susceptibility to sample interferences, challenges in sensitivity for detecting 

low concentrations, specific storage and operational requirements, high production costs, need for 

periodic calibration and maintenance, and concerns about specificity and selectivity. In addition, 

the development of specific biomarkers can be challenging. Although progress is being made 

to address these limitations, it is essential to keep these issues in mind when considering the 

implementation and application of biosensors in various areas (24).

Conclusions
Among the carbon-derived materials, graphene and reduced graphene oxide emerge as the 

most studied, probably due to their versatility and higher electrical conductivity that improve the 

sensitivity of biosensors. In the case of rGO, the presence of oxygen-rich functionalities facilitates 

functionalization with other particles, making them more suitable and promising in electrochemical 

biosensors for the detection of various types of cancer.

The most studied cancer types with carbon-based electrochemical biosensors are breast cancer, 

non-specific malignancies, and prostate cancer, suggesting the need for future studies in less 

explored types such as oral cancer, colorectal cancer, stomach cancer, and cancers without specific 

reports such as bone cancer.
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Among the various functionalization options, metallic gold and silver nanoparticles have been 

widely explored due to their good biocompatibility and excellent electrical conductivity, which 

makes them naturally able to improve the sensitivity of biosensors. 

The detection limit is crucial to the efficacy of these devices as it defines the minimum 

concentration of a biomarker that the biosensor can reliably detect, and its optimization is essential 

to ensure rapid and accurate detection of cancer biomarkers. In general, the studies analyzed in 

this research presented low detection limits; however, due to the close relationship between early 

cancer detection and patient life expectancy, it is necessary to investigate new alternatives that 

offer the possibility of significantly reducing the current limits and thus achieve a significant impact 

on the health and prognosis of patients.
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