
Original Research

Ingeniería y
Competitividad
Vol 26 (1) 2024; doi: 10.25100/iyc.v26i1.13145

ISSN
 0123-3033

e- 2027-8284

Vol 26 (1)

Cognitive complexity points: a metric to evaluate the
design of microservices-based applications

Puntos de complejidad cognitiva: una métrica para
evaluar el diseño de aplicaciones basadas en microser-
vicios

Fredy H. Vera–Rivera1

Abstract

Resumen

Keywords: Software metrics,
software complexity, cognitive
complexity, microservices gra-
nularity, microservices-based
applications.

Palabras clave: Métricas de
software, complejidad del sof-
tware, complejidad cognitiva,
granularidad de los micro –
servicios, aplicaciones basadas
en microservicios.

How to cite?

Vera–Rivera, F.H. Cognitive
complexity points: a metric to
evaluate the design of micro-
services-based applications.
Ingeniería y Competitividad,
2024, 26(1) e-21013145. .

https://doi.org/10.25100/iyc.
v26i1.13145

Recibido: 15-09-23
Aceptado: 26-02-24

Correspondencia:
fredyhumbertovera@ufps.edu.
co

This work is licensed under a
Creative Commons Attribu-
tion-NonCommercial-ShareA-
like4.0 International License.

Conflict of interest: none de-
clared

The complexity of the software allows us to analyze how difficult to understand, im-
plement and maintain the program can be. The metrics allow us to measure and
estimate certain characteristics of the software to make decisions and corrective or
preventive actions. The definition of the complexity of the microservices-based appli-
cations design is fundamental since it directly affects the performance of the appli-
cation, development, testing, maintainability, storage (transactions and distributed
queries), and the use and consumption of computational resources. In this paper,
a cognitive complexity metric is proposed to evaluate the design and granularity of
microservices-based applications, which define the required effort, or degree of di-
fficulty to understand the microservices that make up the system. Typical cases were
analyzed, which can appear in the design of microservices-based applications, the
calculation of cognitive complexity was correct and consistent with the difficulty of
understanding, maintaining, and developing a microservice system, therefore it is a
viable option for analyzing complexity in microservices-based architecture.

La complejidad del software permite analizar lo difícil que puede ser entender, implemen-
tar y mantener el programa. Las métricas nos permiten medir y estimar ciertas caracterís-
ticas del software para tomar decisiones y acciones correctivas o preventivas. La definición
de la complejidad del diseño de aplicaciones basadas en microservicios es fundamental,
ya que afecta directamente el rendimiento de la aplicación, los tiempos de desarrollo y
prueba, la mantenibilidad, el almacenamiento (transacciones y consultas distribuidas), el
uso y consumo de recursos computacionales. En este artículo se propone una métrica de
complejidad cognitiva para evaluar el diseño y la granularidad de las aplicaciones basa-
das en microservicios, la cual define el esfuerzo requerido, o el grado de dificultad para
comprender los microservicios que componen el sistema. Se analizaron casos típicos que
pueden presentarse en el diseño de aplicaciones basadas en microservicios, en los cua-
les el cálculo de la complejidad cognitiva fue correcto y consistente con la dificultad de
entender, mantener y desarrollar un sistema de microservicios, por lo tanto, la métrica
propuesta es una opción viable para analizar la complejidad en sistemas basados en mi-
croservicios.

1 Grupo de investigación en Inteligencia Artificial (GIA), Universidad Francisco de Paula Santander, Cúcuta, Colom-
bia.

https://orcid.org/0000-0003-4003-497X

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 2 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Why was it carried out?
When designing microservices-based applications, it is necessary to determine the number and services that each
of them will implement, that is, to define their granularity. The reasoning and evaluation of the proposed design
is essential for correct implementation and subsequent deployment. The proposed metric evaluates and estima-
tes at design time the complexity of understanding and maintaining the microservices proposed in the design
phase. It assigns complexity points according to the size of each microservice, its history points, its calls and
requests, as well as the complexity of the graph they form. The metric was created as part of the Microservices
Backlog, a model that uses intelligent algorithms to determine the granularity of microservices; this metric allows
us to evaluate and compare the complexity of the solutions obtained by these algorithms.

What were the most relevant results?
The most important results consist in the definition of a way to estimate the complexity of understanding and
implementing a microservices-based system at design time, making it possible to compare several proposals and
to select the one with the least complexity. The metric was used in various case studies to assess the complexity
of the proposed design and the granularity of the microservices. The metric allows us to choose the design with
the least points of complexity.

What do these results provide?
The research proposes a novel metric to evaluate the complexity of microservices-based system and its granulari-
ty at design time.

Graphical Abstract

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 3 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Introduction
Software metrics allow us to measure and monitor different aspects and characteristics
of the software product, there are metrics at the design, implementation, testing,
maintenance, and deployment time. Therefore, these metrics allow us to understand,
control, and improve what happens during the development, operation, and
maintenance of the software and to take corrective and preventive actions.

One of the most important metrics is cyclomatic complexity, which can be used in
the development or maintenance phases among others. Cyclomatic complexity is the
metric that brings us how complex is the logic of a program, it is based on a graph
that represents the flowchart that is determined by the representation of the control
structures of a given program, it is a software metric that provides a quantitative
measure of the logical complexity of a program (1). Complexity metrics have a lot
of potential uses which include: the provision of feedback during a software project
to help control the design activity, and the provision of detailed information about
software modules to help pinpoint areas of potential instability during testing and
maintenance (2).

The introduction of cognitive computing into the software engineering domain through
the work of Wang (3) has led to the emergence of a new set of complexity metrics
called cognitive complexity metrics. These metrics introduce cognitive weights, which
define the required effort, relative time, or degree of difficulty to understand the
software (2). Cognitive Complexity is a measure of the degree of difficulty involved
in intuitively understanding a block of code; as opposed to cyclomatic complexity,
which determines how difficult it is to test the code. To establish the value of cognitive
complexity, points are established at which they must be fixed within an algorithm, as
follows: a) It increases when there is a jump in the code flow (up-down, left-right); Some
elements that increase cognitive complexity are: loops, conditionals, exceptions (try/
catch/throws), switch or case instructions, sequences of logical operators (a || b && c ||
d), recursion, jumping to labels (go to label), for loop. b) It is incremented when control
structures are nested. c) The code is not more complex by using language structures
that allow us to include several sentences in a single line. One of the purposes that
cognitive complexity seeks is to encourage good practices when coding, so that in this
way a more understandable and therefore maintainable product is obtained (4).

On the other hand, microservices are an architectural and organizational approach to
software development in which applications are made up of small independent services
that communicate through a well-defined Application Programming Interface (API) (5),
many companies use microservices to structure their applications. Also, microservices
architecture has been used in other areas such as the Internet of Things (IoT), edge
computing, the development of autonomous vehicles, telecommunications, E-Health,
and E-Learning systems, among others.

A great challenge when designing microservices-based applications is to find an
appropriate partition or granularity of the microservices, it is performed and designed
intuitively, according to the experience of the architect or the development team. The
definition of the granularity of microservices is an open research topic. There are no
standardized patterns, methods, or models that allow defining how small a microservice
should be. The most used strategies to estimate the granularity of microservices are
machine learning, semantic similarity, genetic programming, and domain engineering

https://doi.org/10.1109/ACCESS.2018.2791344
http://ieeexplore.ieee.org/document/1327456/
https://doi.org/10.1109/ACCESS.2018.2791344
https://enmilocalfunciona.io/complejidad-cognitiva/
http://oreilly.com/catalog/errata.csp?isbn=9781491950357

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 4 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

(6). During the design of a microservices-based application, the granularity of the
microservices must be determined, how many microservices should make up the
system, what relationship or dependencies exist between each one, and low coupling
and high cohesion must be sought in the system.

Additionally, it is very important to determine the complexity of understanding,
implementing, and maintaining the proposed design. The definition of the complexity
of the microservices-based applications design is fundamental since it directly affects
the performance of the application, development, testing, maintainability, storage
(transactions and distributed queries), and the use and consumption of computational
resources. The computing resources are used mainly in the cloud since the cloud is the
most common platform where microservices are executed and deployed (7). Therefore,
the following research question was proposed: How to measure the cognitive
complexity of microservices-based applications design? To answer this question,
the metric of cognitive complexity points (CxT) is proposed in this paper. This metric
evaluates the difficulty of understanding and maintaining the design of microservices-
based applications.

In previous work, we proposed the Microservices Backlog (MB) (8), (9), a semiautomatic
model for defining and evaluating the granularity of microservice-based applications;
MB decomposes the candidate microservices, allowing to analyze graphically the size of
each microservice, as well as its complexity, dependencies, coupling, cohesion metrics,
and the number of calls or requests between microservices. CxT is a fundamental part
of MB, in previous works the approach of CxT is not fully formalized and explained, for
this reason in this article its approach is detailed and its application in the design of
microservices-based applications is validated.

A systematic literature review was carried out to identify the methods and metrics
used to evaluate the granularity of microservices (10), within these metrics complexity
metrics were identified: Function points. A method for measuring the size of the
software. A function point count is a measurement of the amount of functionality that
software will provide (11). COSMIC function points estimate the size in the planning
phase, based on the user’s functional requirements. The four main data group types
are entry, exit, read, and write. The COSMIC function point calculation is aimed at
measuring the system at the time of planning. This size calculation can be used for
estimating efforts (12). Total response for service (TRS). The sum of all responses for
operation (RFO) values for all operations of the interface of service (13). Number of
singleton clusters (NSC) and Maximum cluster size (MCS) (14), these metrics are used to
assess whether the size of the microservices is adequate.

Section 2 presents the methodology of this research, section 3 proposes de complexity
metric to evaluate microservice-based application design, section 4 shows the results
and discussions, and finally section 5 presents the conclusions.

Methodology
The research employed the approach of design science research as outlined by Hevner
et al. (15). This research framework attempts to enhance the development of artefact
creations through a consistent and iterative procedure, in which the artifact is evaluated
and improved in each iteration. In this research, the artifact is the metric of cognitive
complexity points to evaluate Microservices-based applications (MSBA) designs. Figure
1 shows the adaptation of design science research to this work.

https://doi.org/10.7717/peerj-cs.695
https://doi.org/10.1007/978-3-319-99007-1_100
https://doi.org/10.1109/ACCESS.2021.3106342
https://doi.org/10.7717/peerj-cs.1380
https://www.totalmetrics.com/our_approach
https://doi.org/10.1007/978-3-319-95174-4_36
https://doi.org/10.1109/ASWEC.2007.17
https://doi.org/10.1007/978-3-030-29983-5_3
https://pdfs.semanticscholar.org/fa72/91f2073cb6fdbdd7c2213bf6d776d0ab411c.pdf

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 5 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Based on the problem context and the knowledge base, the cognitive complexity
points metric (CxT) is proposed, the mathematical formulation is presented in section
3, the methodology used to calculate the metric is: 1) Define the user stories and user
stories dependences, 2) Define microservices granularity and MSBA design, 3) Define
de microservices Backlog model, 3) Calculate the metrics calls, request, microservices
story points, microservices interdependences, weighted service interface count, with
this metrics CxT can be calculated. Then, the metric results are validated in simple cases
and typical cases, which can appear in many MSBA designs. Finally, CxT is used in four
study cases to evaluate microservice granularity.

Cognitive complexity points (CxT)

Measuring complexity is critical to developing microservices-based applications. If the
complexity is high, the cost of change is higher, also the cost of implementation and
the development time are increased. Measuring the complexity of the system at design
time is important for decision-making for its implementation, testing, maintenance, and
deployment.

Figure 1. Research methodology

The mathematical formulation begins with a microservices-based application (MSBA),
that is made up of a set of microservices (MSi), as shown in Ec.1.

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 6 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

 (1)

Each MSi is composed of user stories or operations (USj), Ec. 2. The user stories have
an identifier, a name, a description, an estimated effort points (P), an estimated
development time (T), a priority, and dependencies between each story that makes up
the system.

 (2)

User story points are an estimate of the effort required to develop the user story.
The points are an indicator of the development speed of the team; therefore, each
microservice (MSi) has a total of story points associated with it (equation 3).

 (3)

Where:

Pi is the total story points associated with MSi. m is the number of user stories
associated with the MSi. PUj corresponds to the story points estimated by the
development team for the jth user story of MSi.

CxT is calculated by adding complexity points according to the complexity of the
microservice. It was raised in accordance with the following postulates:

The difficulty of developing, maintaining, and understanding an application based on
microservices is estimated.

The starting point was the estimation of the user story points made by the
development team.

Points are added according to the complexity of the microservice, its relationships, and
its dependencies.

It is based on the complexity of a graph and its depth.

A base case is considered, which corresponds to the least complexity; this case would
be an MSBA with only one microservice, with a value of one point of the estimated story
point for its development, which would be the simplest case to develop. For this case
Cx0 = 2.

CxT corresponds to the number of times that the MSBA is more complex in relation to
the base case.

Cognitive points are increased according to the next points:

The total estimated points for each microservice that is part of the application (Pi).

The number of microservices that are part of the application (n).

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 7 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

The number of user stories or operations associated with each microservice.

The number of invocations - calls (out) and requests (in) of the microservice.

The depth of the number of calls that a microservice makes to other microservices.
Corresponds to the number of consecutive nodes used in the call from one
microservice to another.

Formally CxT was defined as follows:

(4)

 (5)

Where:

i = ith microservice.

Cgi = Pi * (Callsi + Requesti)

Pi = Total user stories points of the i-th microservice. See equation (3).

Max(P1, …, Pn): Maximum Pi of MSBA.

n = number of microservices of MSBA.

WSICT: Highest WSIC of the application, defined in equation (6).

Pfi: Number of nodes used sequentially from a call made by a microservice to other
microservices, counted from the ith microservice; Greater depth implies greater
complexity of deploying and maintaining the application.

SIY: Microservice interdependence, number of interdependent microservices with MSi.

Cx0: The base case where the application has one microservice, with one user story and
one point of estimated story point. So Cg1 = 0, Max(P1) = 1, n=1, WsicT=1, Pf1 =0, SIY=0, Cx =
2. Therefore, Cx0 = 2.

Measuring or estimating the performance of an application at design time is
difficult and imprecise. We use calls and requests between microservices to estimate
performance. We assume that if there are more calls and requests between the
microservices, then the communication, latency, and response time of the application
increases, therefore the performance of the application is directly affected. Ideally,
in a microservices-based application, you would have microservices that do not
communicate with each other and that work independently. Therefore, we define two
metrics:

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 8 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Calls from a microservice (callsi): The calls correspond to the number of MSi invocations
to other microservices.

Requests for a microservice (requestsi): Requests correspond to the number of
invocations of other microservices to MSi.

Figure 2 shows the calculation of the calls, requests, and WSICT of the MSBA with three
microservices and four user stories.

Figure 2. Example of the calculation of WSICT, calls, and requests.

Weighted Service Interface Count (WSIC): The WSIC is the number of exposed interface
operations of the MSi (16). For our model, a user story is related to an operation (one-
to-one); therefore, we adapt this metric as the number of user stories associated with
the MSi. Other authors called this metric the number of operations. We define WSICT
as the maximum number of user stories associated with a microservice, so WsicT is the
maximum WSIC of the MSBA, so:

 (6)

Microservice Interdependence (SIY): SIY corresponds to the number of interdependent
microservice pairs (12). In this case, SIYi defines the number of pairs of microservices
that are bidirectionally dependent on MSi divided by the total number of microservices.
In the example of Figure 1, it is possible to calculate SIY as follows: SIY1 = 1/3 =0.33, SIY2
= 1/3 =0.33, and SIY3 = 0; because ms1 has one interdependent microservice just like ms2
while ms3 has no interdependency.

Additionally, for the example of Figure 1, we define one point of estimated story points
for each user story, we calculated CxT as follows:

P1 = 2, P2 = 1, and P3 = 1.

Cgi = Pi * (Callsi + Requesti),

Cg1 = P1 (calls1 + request1) = 2 (3+1) = 8

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 9 /17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Cg2 = P2 (calls2 + request2) = 1 (1+1) = 2

Cg3 = P3 (calls3 + request3) = 1 (0+2) = 2

= 12

 = 2

WSIC1=2, WSIC2=1, WSIC3=1, so WSICT = 2; n=3, therefore n * WSICT = 6

Pfi: Number of nodes used sequentially from a call made by a microservice to other
microservices.

Pf1 = 2, A call is performed by ms1 to ms2, and another call is performed by ms1 to ms3.

Pf2 = 1, A call is performed by ms2 to ms1.

Pf3 = 0, No calls are performed by ms3.

The cognitive complexity points (CxT) for this case imply that MSBA is 11.83 times more
complex than the base case.

A critical point of the proposed metric is the dependencies between user stories. They
must be identified and provided as input data to the method. A dependency is defined
between USi and USj when USi calls or executes USj. For example, to create a fly trip
(US1) you must obtain get the city (US2) of departure and destination, this implies that
US1 has a dependency on US2. The dependencies can be calculated according to the
business logic of the application.

Additionally, dependency is defined when a user story uses or calls another user story.
In the migration from monolith to microservices, the user stories can be replaced by
the operations/methods or services of the application; in this case, a dependency
corresponds to an execution dependency, in which one operation calls another
operation to fulfill its purpose. In the cases where the monolithic application source
code is available; to define the dependencies between user stories, the source code
can be analyzed to identify the invocation dependencies between user stories and/or
operations.

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 10/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Implementation algorithm

The cognitive complexity metric was automated and implemented as part of the
Microservice Backlog tool (8), within the metrics calculator component. The algorithm
that was implemented for its automatic calculation is summarized below.

Cognitive Complexity algorithm

1. CgiT=0
2. SumSIY=0
3. Sumpf = 0
4. For i=1 to n
5. Get p= Pi(i)
6. Calculate c = callsi(i)
7. Calculate r = requesti(i)
8. Calculate cgi = p * (c+r)
9. Calculate pf = Pfi(i)
10. Calculate Sumpf = Sumpf + pf
11. Identify mpi = max(Pi)
12. Identify mwsic = max(Wsici)
13. Calculate CgiT = CgiT + cgi
14. Calculate siy = SIYi(i)
15. Calculate SumSIY = SumSIY + siy
16. End for
17. Calculate w = n * mwsic
18. Calculate Cx = CgiT + mpi + w + Sumpf + SumSIY
19. Calculate CxT = Cx / Cx0 = Cx / 2

Calls and requests are calculated through a matrix of invocations where each MSi
is in the rows and columns and at their intersection the number of times that one
microservice invokes another appears. The algorithm was implemented in Python and
used to calculate cognitive complexity in the examples and case studies.

Results and discussion

To validate the proposed cognitive points metric (CxT), we are going to assume several
cases where a microservices-based application is clearly more complex than another,
carry out the calculations and verify that the given points correspond correctly to each
application, with the least complex having fewer points and more points to the more
complex.

Case 1: Two microservices without dependencies versus the same microservices with
dependencies

If there are dependencies and invocations between the microservices that make up the
MSBA, their complexity must be greater than an MSBA without a dependency, therefore
the CxT of MSBA-a must be less than CxT of MSBA-b. Figure 3 shows this example
and the calculation of CxT. The results show that indeed the CxT of MSBA-a is 4 times
higher than the CxT of MSBA-b.

https://doi.org/10.1109/ACCESS.2021.3106342

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 11/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Figure 3. Example of the calculation of CXT case 1.

Case 2: Two microservices with interdependence versus the same microservices without
interdependence

The interdependence between microservices implies a high coupling between them,
causing greater complexity when implementing, maintaining, and deploying the
application. Any change applied to a microservice may imply changing the other
microservice as well. Figure 4 shows the calculation for this case, where the complexity
CxT of MSBA-b without interdependence may be less than the CxT of MSBA-c with
interdependence. The results confirm this approach.

Figure 4. Example of the calculation of CXT case 2.

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 12/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Case 3: Two microservices with few calls versus the same microservices with high calls

Creating a microservices-based application where there are many calls or dependencies
between the microservices implies more complexity than an application with fewer
calls. Figure 5 shows this case, where CxT of MSBA-d is less than CxT of MSBA-b, and
CxT of MSBA-a is also lower than CxT of MSBA-d, confirming that the lower number of
invocations of other microservices, the cognitive complexity points should be lower.

Figure 5. Example of the calculation of CXT case 3.

Case 4: calls with depth versus the same calls without depth

Successive invocations in a microservices-based application imply more complexity
than having those same invocations with a smaller depth. Figure 6 shows this case and
confirms this statement, CxT of MSBA-e is greater than CxT of MSBA-b.

Case 5: calls to a microservice with fewer story points versus calls to a microservice with
higher story points

Developing and maintaining a microservice that has a higher number of story points
is more complex, the effort is higher; if the story points increase the complexity must
increase. This case is illustrated in Figure 7. We can see that the CxT of MSBA-b is less
than the CxT of MSBA-f.

The analyzed cases correspond to typical cases that can appear in the MSBA design, the
calculation of cognitive complexity (CxT) is correct and consistent with the difficulty of
understanding, maintaining, and developing an MSBA, therefore it is a viable option for
analyzing complexity in MSBA.

Afterward, we detail the calculation of the metric in case studies in which we obtained
different designs and we calculated CxT to compare and measure their complexity in
four study cases (Cargo Tracking, JPet Store, Foristom conferences, and Sinplafut). We
used CxT to evaluate methods and algorithms for the microservice granularity definition
(8), (9), (17). Table 1 shows the results.

https://doi.org/10.1109/ACCESS.2021.3106342
https://doi.org/10.7717/peerj-cs.1380
https://doi.org/10.1007/978-3-030-59592-0_6

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 13/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Figure 6. Example of the calculation of CXT case 4

Figure 7. Example of the calculation of CXT case 5

The design method (second column) corresponds to the procedure or method used
to obtain the microservices of MSBA, which were obtained from the state-of-the-art
revision, they are used to define the microservices granularity.

Table 1 shows different CxT calculations for the study cases, with different microservices
granularity, some with more or fewer microservices, with different numbers of user
stories, with different estimations of story points, some with many invocations between
microservices and others with very few, even zero. Cognitive complexity estimates the
degree of difficulty to understand, create and maintain an MSBA, for the cases analyzed
it helps to make design decisions, and allows the architect or development team to
select the design with less complexity. Making these kinds of decisions at design time
can help to reduce MSBA development, maintenance, and deployment costs.

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 14/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

Table 1. Study cases results

Study case
Design
Method

Metrics

n WsicT Max Pi Calls
Avg.
Calls

CxT

Cargo-
Tracking (18)
(19)

Genetic
programming
(8)

3 6 23 3 1.0 74.0

Semgromi (9) 4 9 35 8 2.0 178.5

Domain-
driven design
(DDD) (20)

4 6 27 9 2.3 145.0

Service Cutter
(21)

3 10 41 8 2.7 202.5

MITIA (19) 4 5 19 12 3.0 190.0

Jpet-Store
(22)

Genetic
programming

5 9 35 3 0.6 102.5

Semgromi 5 6 20 7 1.4 140.5

Domain-
driven design
(DDD)

4 8 22 9 2.3 200.0

Execution
Traces (23)

4 7 19 8 2.0 175.5

Foristom
Conferencias
(8)

Genetic
programming

4 8 67 0 0.0 49.5

Semgromi 5 13 90 7 1.4 466.5

Domain-
driven design
(DDD)

4 9 83 6 1.5 426.0

Sinplafut
(24)

Genetic
programming

13 13 49 24 1.8 788.5

Semgromi 11 16 58 24 2.2 814.0

Domain-
driven design
(DDD)

9 19 75 23 2.6 920.5

A priori
development
team.

5 34 127 9 1.8 721.0

Most of the complexity metrics are calculated at execution time, or at development
time, for their calculation the source code of the program is required to identify

https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1109/ACCESS.2021.3106342
https://doi.org/10.7717/peerj-cs.1380
http://dddcommunity.org/book/evans_2003/
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1007/978-3-319-67262-5_2
https://github.com/mybatis/jpetstore-6
https://ieeexplore.ieee.org/document/8686152/
https://doi.org/10.1109/ACCESS.2021.3106342
https://doi.org/10.1088/1742-6596/1388/1/012026

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 15/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

the flows and time it takes to execute that program. At design time, few metrics
are proposed, therefore, CxT represents a contribution to the analysis of software
complexity, specifically in microservices-based applications. For calculating CxT does
not require the source code of the microservices or runtime information.

Conclusions

In this work, a cognitive complexity metric was proposed that allows estimating the
effort and difficulty of understanding, developing, and maintaining a microservices-
based application at design time. The estimation of the complexity is made from the
proposed design, in which the granularity of the microservices, their relationships, and
dependencies must be defined.

The mathematical formulation is based on graph theory, where the calls (outputs) and
requests (inputs) between each microservice, their interdependence, and the sequential
call (depth) that can occur between the microservices are considered. Its calculation
was demonstrated in a set of typical cases that can occur in any microservices-based
application, verifying that there are fewer points in cases of low complexity and more
points in cases of high complexity.

Additionally, the metric was used to compare methods for defining the granularity
of microservices in four study cases, allowing a comparative analysis of cognitive
complexity, the development team can evaluate different ways of distributing user
stories in microservices and make decisions at design time. Therefore, with this
proposal we can reason about the complexity and granularity of microservices at
design time, thus covering one of the research gaps proposed in the state-of-the-art.

References

1. Pressman RS. Ingeniería del Software un enfoque práctico. Septima. Mexico:
McGraw Hill Interamericana editores; 2010.

2. Misra S, Adewumi A, Fernandez-Sanz L, Damasevicius R. A Suite of Object
Oriented Cognitive Complexity Metrics. IEEE Access. 2018;6(c):8782–96.

3. Wang Y. On the cognitive informatics foundations of software engineering. In:
Proceedings of the Third IEEE International Conference on Cognitive Informatics,
2004 [Internet]. IEEE; 2004 [cited 2019 Feb 6]. p. 22–31. Available from: http://
ieeexplore.ieee.org/document/1327456/

4. López López S. Complejidad Cognitiva [Internet]. enmilocalfunciona.io. 2018
[cited 2019 Feb 5]. Available from: https://enmilocalfunciona.io/complejidad-
cognitiva/

5. Newman S. Building Microservices [Internet]. First Edit. Building Microservices.
Gravenstein Highway North, Sebastopol, CA 95472, United States of America:
O’Reilly Media, Inc.; 2015. 102 p. Available from: http://oreilly.com/catalog/errata.
csp?isbn=9781491950357 for

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 16/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

6. Vera-Rivera FH, Gaona C, Astudillo H. Defining and measuring microservice
granularity—a literature overview. PeerJ Comput Sci [Internet]. 2021 Sep 8 [cited
2022 Feb 7];7:e695. Available from: https://peerj.com/articles/cs-695

7. Hamzehloui MS, Sahibuddin S, Salah K. A Systematic Mapping Study on
Microservices Mohammad. In: Saeed F, Gazem N, Mohammed F, Busalim
A, editors. IRICT: International Conference of Reliable Information and
Communication Technology 2018 [Internet]. Cham: Springer International
Publishing; 2019. p. 1079–90. (Advances in Intelligent Systems and Computing;
vol. 843). Available from: http://link.springer.com/10.1007/978-3-319-99007-1

8. Vera-Rivera FH, Puerto E, Astudillo H, Gaona CM. Microservices Backlog–A
Genetic Programming Technique for Identification and Evaluation of
Microservices From User Stories. IEEE Access [Internet]. 2021 [cited 2022 Feb
3];9:117178–203. Available from: https://ieeexplore.ieee.org/document/9519691/

9. Vera-rivera FH, Puerto Cuadros E, Perez B, Gaona Cuevas CM, Astudillo H.
SEMGROMI — a semantic grouping algorithm to identifying microservices using
semantic similarity of user stories. PeerJ Comput Sci. 2023 May;9(e1380).

10. Vera-Rivera FH, Astudillo H, Gaona-Cuevas CM. Defining and measuring
microservice granularity – a literature overview. PeerJ Comput Sci. In review.

11. Totalmetrics.com. Total Metrics Approach - Function points [Internet]. www.
totalmetrics.com. [cited 2020 Aug 5]. Available from: https://www.totalmetrics.
com/our_approach

12. Vural H, Koyuncu M, Misra S. A Case Study on Measuring the Size of
Microservices. In: Laganá A, Gavrilova ML, Kumar V, Mun Y, Tan CJK, Gervasi O,
editors. International Conference on Computational Science and Its Applications
- ICCSA 2018 [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018. p.
454–63. (Lecture Notes in Computer Science). Available from: http://link.springer.
com/10.1007/b98048

13. Perepletchikov M, Ryan C, Frampton K, Tari Z. Coupling Metrics for Predicting
Maintainability in Service-Oriented Designs. In: 2007 Australian Software
Engineering Conference (ASWEC’07) [Internet]. IEEE; 2007 [cited 2019 Jun 18]. p.
329–40. Available from: http://ieeexplore.ieee.org/document/4159685/

14. Nunes L, Santos N, Rito Silva A. From a Monolith to a Microservices Architecture:
An Approach Based on Transactional Contexts. In: 13th European Conference,
ECSA 2019 Lectures Notes in Computer Science 11681 [Internet]. Springer; 2019.
p. 37–52. Available from: http://link.springer.com/10.1007/978-3-030-29983-5_3

15. Hevner AR, March ST, Park J, Ram S. Design science in information systems
research. MIS Q [Internet]. 2004 [cited 2018 May 16];28(1):75–105. Available from:
https://pdfs.semanticscholar.org/fa72/91f2073cb6fdbdd7c2213bf6d776d0ab411c.
pdf

Ingeniería y Competitividad, 2024 vol 26(1) e-21013145/ enero-abril 17/17
doi: 10.25100/iyc.v26i1.13145

Cognitive complexity points: a metric to evaluate the design of microservices-based applications

16. Hirzalla M, Cleland-Huang J, Arsanjani A. A Metrics Suite for Evaluating Flexibility
and Complexity in Service Oriented Architectures. In Springer, Berlin, Heidelberg;
2009 [cited 2019 Jun 18]. p. 41–52. Available from: http://link.springer.
com/10.1007/978-3-642-01247-1_5

17. Vera-Rivera FH, Puerto-Cuadros EG, Astudillo H, Gaona-Cuevas CM. Microservices
Backlog - A Model of Granularity Specification and Microservice Identification.
In: International conference on service computing SCC 2020 Lecture Notes in
Computer Science [Internet]. Springer Science and Business Media Deutschland
GmbH; 2020 [cited 2020 Nov 20]. p. 85–102. Available from: https://link.springer.
com/chapter/10.1007/978-3-030-59592-0_6

18. Li S, Zhang H, Jia Z, Li Z, Zhang C, Li J, et al. A dataflow-driven approach to
identifying microservices from monolithic applications. J Syst Softw. 2019;157.

19. Baresi L, Garriga M, De Renzis A. Microservices identification through interface
analysis. In: European Conference on Service-Oriented and Cloud Computing -
Lecture Notes in Computer Science [Internet]. Springer, Cham; 2017 [cited 2017
Nov 2]. p. 19–33. Available from: http://link.springer.com/10.1007/978-3-319-
67262-5_2

20. Evans E. Domain-Driven Design [Internet]. Addison Wesley; 2004. 529 p. Available
from: http://dddcommunity.org/book/evans_2003/

21. Gysel M, Kölbener L, Giersche W, Zimmermann O. Service Cutter: A
Systematic Approach to Service Decomposition. In: IFIP International
Federation for Information Processing 2016 [Internet]. Springer, Cham; 2016
[cited 2019 May 17]. p. 185–200. Available from: https://link.springer.com/
chapter/10.1007%2F978-3-319-44482-6_12

22. mybatis.org. Mybatis Jpetstore-6: A web application built on top of MyBatis 3,
Spring 3 and Stripes [Internet]. [cited 2020 Nov 22]. Available from: https://github.
com/mybatis/jpetstore-6

23. Jin W, Liu T, Cai Y, Kazman R, Mo R, Zheng Q. Service Candidate Identification
from Monolithic Systems based on Execution Traces. IEEE Trans Softw
Eng [Internet]. 2019;X(X):1–1. Available from: https://ieeexplore.ieee.org/
document/8686152/

24. Vera-Rivera FH, Vera-Rivera JL, Gaona-Cuevas CM. Sinplafut: A microservices
– based application for soccer training. In: 5th International Week of
Science, Technology & Innovation Journal of Physics: Conference Series
[Internet]. 2019. p. 012026. Available from: https://iopscience.iop.org/
article/10.1088/1742-6596/1388/1/012026

	Resumen
	Abstract
	Correspondencia:
	Graphical Abstract
	RANGE!C3
	_Hlk59445048

