
Artículo de investigación

Ingeniería y
Competitividad
Vol 25 (suplemento) 2023; doi: 0.25100/iyc.v25iSuplemento.13133

ISSN
 0123-3033
e- 2027-8284

Edición especial 25 años del
doctorado en ingeniería

Applying parallelism to a bisimulation algorithm to improve efficiency
in software testing of time-critical systems

Aplicando paralelismo a un algoritmo de bisimulación
para mejorar la eficiencia de pruebas de software de siste-
mas de tiempo crítico

Joan S. Betancourt1§, Jesús Aranda1, James Ortiz2

1 Escuela de Ingeniería de Sistemas y Computación, Universidad del
Valle, Cali, Colombia

2 Université de Namur, Namur, Belgium
§ joan.betancourt@correounivalle.edu.co, jesus.aranda@correounivalle.

edu.co, james.ortizvega@unamur.be

Cómo citar: Betancourt, J.S., Aranda, J., Ortiz, J. Applyn parallelism to
a bisimulation algorithm to improve efficiency in software testing

of time-critical systems. Ingeniería y Competitividad. 25(suplemento) ,e-
20713144. doi: 10.25100/iyc.v25iSuplemento.13144

Número Suplemento

Este trabajo está licenciado bajo una licencia inter-
nacional Creative Commons Reconocimiento-No
Comercial-CompartirIgual4.0.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

2 /19

Abstract

Time-Critical Systems (TCS) play a crucial role in environments where strict timing cons-
traints are essential to ensure reliability and correctness. Model-Based Mutation Testing
(MBMT) is considered a valuable strategy for quality assurance of TCS, but it suffers from
the equivalent mutant problem, which is known to increase computational cost and
reduce confidence in MBMT. To address this problem, a strong timed bisimulation equi-
valence (STBE) algorithm can be used when TCS are modeled as Timed Automata (TA).
STBE is computationally expensive and can benefit from parallelism. We survey available
STBE implementations, identify opportunities to apply parallelism, build an extension
that takes advantage of them, and test its effects. The resulting solution is a Java pro-
gram that receives multiple TAs expressed in UPPAAL format and determines which TAs
are equivalent using an STBE implementation such as TimBrCheck or MUTES and pro-
cess-based parallelism. Compared to existing solutions, our tests show that our proposal
is more efficient, reducing the runtimes of STBE by more than half. This could improve
the reach, reliability, and effectiveness of MBMT for TCS.
Keywords: Timed Automata, Mutation Testing, Timed Bisimulation, Parallelism, UPPAAL.

Resumen

Los Sistemas de Tiempo Crítico (STC) son importantes cuando estrictos requerimientos
temporales garantizan fiabilidad y correctitud de los sistemas. Las Pruebas de Mutación
(PM) son una valiosa técnica para el aseguramiento de la calidad de STCs, pero sufren
del Problema de los Mutantes Equivalentes (PME), que incrementa costos de cómputo y
reduce la confiabilidad de PM. Para combatir el PME, un algoritmo de Bisimulación Tem-
porizada (BT) puede ser usado si los STC se expresan como Autómatas de Tiempo (AT).
BT es computacionalmente costoso, y podría beneficiarse de técnicas de paralelismo. En
este trabajo, se analizan implementaciones de BT disponibles en la literatura, se identi-
fican oportunidades para aplicar técnicas de paralelismo, se construye una solución que
aprovecha estas oportunidades, y se comprueba su efectividad. La solución construida es
un programa en Java que recibe múltiples ATs en formato UPPAAL y determina qué ATs
son equivalentes, usando una implementación de BT como TimBrCheck o MUTES y para-
lelismo basado en procesos. Comparado con las soluciones disponibles previamente, los
experimentos muestran que nuestra propuesta es más eficiente, ya que los tiempos de
ejecución de BT se reducen a menos de la mitad. Esto podría mejorar el alcance, la con-
fiabilidad y efectividad de PM para STC.
Palabras clave: Autómatas de Tiempo, Pruebas de mutación, Bisimulación con Tiempo,
Paralelismo, UPPAAL

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

3 /19

Introduction

Time-Critical Systems (TCS) are systems that must respond in time to external events (11).
Examples of TCS include device drivers, coffee makers, communication protocols, and
ATMs. The behavior of TCS is typically subject to strict timing constraints. For example, a
railroad crossing gate must be closed within a specified time after a train is detected, or
cars and pedestrians may be injured. Similarly, a radiation machine must deliver a high
dose of radiation to a cancer patient within a specified time, or the patient may not receive
the necessary treatment.

The consequences of a TCS failing to meet its timing constraints can be severe. Because
of the potential consequences, it is essential that TCS be thoroughly tested to ensure that
they meet the timing constraints agreed with the customer. This can be a challenging task,
as TCS are often complex and have many interacting components (11). However, ensuring
the quality assurance of TCS remains a paramount concern.

To address this problem, Model-Based Testing (MBT) (1) is emerging as a valuable strat-
egy. MBT uses (timed) specifications to generate test cases that systematically evaluate
the behavior of a system. Importantly, it avoids the scalability problems associated with
exhaustive verification (2). MBT has been used successfully to analyze industry TCS like the
UNISIG railway communication standard (28), the SCADA programmable logic controller
interface for critical systems (29), the FlexRay automotive communication protocol (30), a
cardiac pacemaker (31) or a mechanical ventilator for medical aid (32).

When MBT is applied to TCS, the functional requirements are specified as temporal prop-
erties, e.g. “the airbag of the car should be deployed within 50ms when a crash is detect-
ed”. Therefore, temporal defects of TCS models can be detected by identifying functional
failures through MBT. One notable modality of MBT is Model-Based Mutation Testing
(MBMT), which provides a robust solution for automatically finding defects associated with
both missing functionality and misinterpreted specifications through the application of
mutation testing (3). Mutation testing, a technique at the heart of MBMT, involves the de-
liberate injection of artificial defects into an original system, creating new systems known
as mutants (4). By evaluating whether the tests can distinguish these mutants from the
original system, we gain greater confidence in the effectiveness of the defect detection
tests.

However, not all mutants are relevant. Some mutants may be equivalent, having the be-
havior of the original system despite syntax variations (5). In such cases, test cases will
not be able to distinguish between these mutants. In addition, some mutants may be
duplicates, exhibiting the same behavior as other mutants (5). Equivalent and duplicate
mutants (i.e., useless mutants) increase costs approximately 20% to 40% (26). Identifying
and eliminating such useless mutants reduces the computational cost of MBMT while
increasing confidence in the final test results. This task is encapsulated in the Equivalent
Mutant Problem (EMP) (6).

To address the EMP, it is essential to compute behavioral equivalence between the orig-
inal model and its mutants. However, determining equivalence between two temporal
systems can be computationally expensive (7). Furthermore, when mutants are generated
in large batches, resolving the EMP can become very time-consuming. This challenge un-

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

4 /19

derscores why behavioral equivalence has not been widely adopted to address the EMP
within MBMT (6). Improving the practicality of this solution could effectively expand the
horizons of model-based mutation testing, thereby increasing the caliber and security of
critical systems.

Recently, the speed-up of sequential chip design has slowed due to various factors such
as power consumption and heat generation. In contrast, parallel hardware continues to
improve its computational performance (8). To take advantage of this, solutions must be
developed that take advantage of parallel acceleration. In this work, we explore a way to
apply parallelization to the computation of behavioral equivalence between TCSs to im-
prove the viability of MBMT solutions.

Document structure. Section 2 sets the theoretical context. Then, in section 3, we lay out
our plan: We review related work in detail (3a, b), implement a usable prototype solution
(3c), and compare the results with other approaches (3d). Section 4 presents the results,
detailing the architecture of the created tool (4a) and showing how it is twice as fast as
other available solutions (4b).

Theoretical Framework

a. Timed Automata (TA)

TAs are used to model the behavior of TCS. They can be thought of as a directed graph,
where locations are the states of the system and edges are transitions that specify how
the system evolves. Locations and transitions can be enriched with time constraints that
specify the conditions for the system to remain in a particular state or transition to a new
state. These time constraints use clocks. Clocks model the continuous time domain. Clocks
are non-negative real-valued variables that increase synchronously at the same rate and
can be reset by a transition. Transitions in TA can be enabled or disabled based on clock
constraints.

Definition 1. (Clock Constraints) (11). Let be a finite set of clock variables ranging over
(non-negative real numbers). Let be a set of clock constraints over . A clock constraint is
of the form where and .

Conditions to remain at a certain location can also be modeled as clock invariants.

Definition 2. (Clock Invariants) (11). Let be a finite set of clock variables ranging over . Let
be a set of clock invariants over . A clock invariant is of the form where and .

Clocks can be modeled with resets and progress via clock valuations.

Definition 3. (Clock Valuations) (11). Given a finite set of clocks , a clock valuation function
assigning to each clock a value . We denote the set of all valuations. For a clock valuation
and a time value , is the valuation satisfied by for each . Given a clock subset , we denote
the valuation defined as follows: if and otherwise.

With these previous concepts, we are ready to define timed automata formally.

Definition 4. (Timed Automaton) (11). A timed automaton is a tuple , where is a finite set

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

5 /19

of locations, is an initial location, is a finite set of clocks, is a finite set of actions, is a finite
set of edges between locations, and assigns invariants to locations.

For a transition we will write and call and the source and target location, the guard, the
action and the set of clocks to reset. TAs will be our formalism of choice to model TCS.
Figure 1 depicts an example of TA that models a simplified coffee machine, which starts
in the “idle” state until a button is pressed. When the “press” action occurs, clock x is reset
to zero while the machine jumps to the “warm up” location and remains there while . The
“Coffee” action can only be performed when the clock is and the system goes to the “Fill
Cup” location. The “Sugar” action resets clock , can only be performed when , and returns
the machine to its initial idle state.

Figure 1: Example of TA modeling: A coffee machine.

The semantics of a TA are carried by a Timed Transition System (TTS) where a state is a
pair , where denotes the current location with its accompanying clock valuation , starting
at where maps each clock to 0. The transitions can be of two types: Delay transitions
and discrete transitions. Delay transitions only let time pass without changing location.
Discrete transitions occur instead between a source and a target location. The transition
can only happen if the current clock values satisfy both the guard of the transition and the
invariant of the target location.

Definition 5. (Semantics of TA) (11). Let be a TA. The semantics of TA A are given by a
where is a set of states, with for all and , , and is a transition relation defined by two
rules: Discrete transitions for iff , , and and delay transitions , for some iff .

b. Strong Timed Bisimulation Equivalence (STBE)

Bisimulation equivalences identify automata that have the same branching behavior, sim-
ulating each other’s steps (11). One bisimulation equivalence is the Strong Timed Bisimu-
lation Equivalence (STBE).

Definition 6. Strong Timed Bisimulation Equivalence (STBE) (11). Let , be two TTS over a
common set of actions . A timed bisimulation for is a binary relation where implies two

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

6 /19

things: First, for every discrete transition with , there exists a matching transition such
that and vice versa. Second, for every delay transition with , there exists a transition such
that and vice versa.

Figure 2: Two TAs which are strongly bisimilar

Two TAs and are equivalent under STBE if there is a timed bisimulation relation over
and such that their initial locations are related. In the example of Figure 2, the two TAs
are strongly timed bisimilar. Intuitively, they “behave similarly”: Starting from the initial
locations, every transition one TA takes can be mirrored by the other. The clocks might
not advance in the same way, but actions have the same relative time span: Action from
location to can be taken in the same exact way from and , and action from to can only
be done within the next unit of time, just as action from to .

To compute whether two TAs are equivalent under STBE, complex operations must be
performed in order to operate over the continuous time domain (7). Nevertheless, STBE is
one of the few behavioral equivalences that is decidable (6). If two TCS expressed as TA are
equivalent under STBE, they show the same behavior, and thus they should be equivalent
regarding tests in MBMT (12), despite their potential syntactic differences. Therefore, it
will be our equivalence relation of choice for this work. Where clarity is not compromised,
STBE may be referred to as timed bisimulation, or simply the equivalence.

c. UPPAAL

UPPAAL (13) is an integrated environment popular for modeling, validation, and verifica-
tion of real-time systems. UPPAAL was designed for modeling non-deterministic process-
es with finite control structures and real-valued clocks, communicating through channels
and shared data structures. In other words, it allows modeling TCS with data types and
structures, saving them in an XML-based format. The UPPAAL model-checker is built upon
the theory of TA (13). UPPAAL is a common choice to apply MBMT to TCS, for example,
an automotive gear controller (33), wire brake (34), car alarm (35) and web service (36)
UPPAAL models have been tested with MBMT. For this reason, UPPAAL is our chosen op-
erational format to express TAs. Figure 3 is an example of a TCS in UPPAAL, a model of
the previous coffee machine.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

7 /19

Figure 3: A simplified model of a coffee machine modeled in UPPAAL.

Methodology

In an attempt to help with the burden of EMP in MBMT, we aim to apply parallelism to
the identification of equivalent TCS expressed as TA. More specifically, we want to explore
the parallelization potential of deciding STBE between several UPPAAL models. To achieve
this, we will:

Step 1. Identify the approaches to STBE currently available in the literature,

Step 2. Determine opportunities to apply parallelism or other improvements in the
internal operations carried out by these.

Step 3. Build a solution that exploits those opportunities to compute STBE between
UPPAAL models.

Step 4. Run experiments to compare our approach to other possible solutions.

d. Step 1: Literature review and state-of-the-art survey for STBE solutions

Timed bisimulation was shown to be decidable by characterizing TA semantics on a finite
representation called region graphs (13). This, however, was just a theoretical tool that was
not viable for automatic verification. Later, Weise and Lenkes proposed the use of zone
graphs, a representation that uses less space (14). With these advancements, automatic
verification of timed bisimulation has been attempted:

1. In the early 2000s, the Concurrency Workbench of the New Century (15) supported
timed bisimulation, but it is no longer accessible or usable.

2. In 2015, Andersen et al. released CAAL, a web suite for educational purposes that
models TCS with a similar formalism to TA. CAAL includes a bisimulation equiva-
lence (16).

3. In 2017, Ortiz and colleagues (10) implemented MUTES, a STBE checker that ac-
cepts UPPAAL models as inputs.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

8 /19

4. In 2019, TimBrCheck (9) was made available. This is also a STBE checker for UPPAAL
models, with the added value of zone-history graphs, a representation proposal
that claims to have better accuracy.

Deciding bisimilarity for different formalisms has been thoroughly investigated in the liter-
ature. Kanellakis and Smolka (17) proposed an algorithm with quadratic complexity. Paige
and Tarjan (18) found an alternative that runs in linearithmic time. In May 2021, Martens
and colleagues (19) proposed a parallel algorithm that verifies bisimilarity for (untimed)
automata in linear time by using partition refinement and GPU acceleration. To the best of
our knowledge, no parallel application to STBE has been published yet.

e. Step 2: Review of the internal operations needed for STBE

After surveying available STBE implementations, we chose to continue our work by ana-
lyzing MUTES and TimBrCheck, which are the two options that suit our context of TA and
UPPAAL.

As MUTES (10) is a product of the work of one of the authors, we had direct access to first-
hand details and source code. MUTES is a Java application that processes two XML files
as input. ANTLR, a parser generator (20), is utilized to parse the XML files generated by
UPPAAL. These XML files contain information about clocks, transitions, invariants, guards,
and the structure of the TA. Upon successful parsing of the XML input files representing
two TA models, the following steps are executed:

1) Parallel Composition: MUTES generates a new TA, which is a parallel composition
of two individual TAs.

2) Creation of Symbolic Timed Zone Graph: The tool proceeds to build a finite sym-
bolic Zone Graph (ZG) based on the generated parallel composition. This graph
serves as a representation of the potential states and transitions of the composed
automaton.

3) Refinement Algorithm for Timed Bisimulation: MUTES performs a refinement algo-
rithm on the ZG. This algorithm is employed to rigorously examine and verify the
concept of timed bisimulation between the two original TAs.

Figure 4 provides an overall visual representation of the MUTES tool and its functionality
in these stages.

TimBrCheck (9) is another Java application that also accepts two UPPAAL models as input.
This application builds upon ZG to achieve more accuracy. ZGs are enriched to become
Zone-History Graphs (ZHG). ZHG are very complex to handle and require the third-party
IBM ILOG CPLEX Optimizer to run (36).

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

9 /19

Figure 4: General software architecture of MUTES

After reviewing these two approaches, we found the following opportunities for improve-
ment:

OP1. Both MUTES and TimBrCheck decide STBE between two TAs at a time. Be-
cause mutants come in batches of TA, we want to know, for each TA of the batch, to
which other TAs it is equivalent to. Therefore, we need to compute STBE with each
TA against all others to compare them in a similar fashion to round-robin tourna-
ments. Because each equivalence is independent, we can run each comparison in
parallel.

OP2. STBE is a transitive relation. This property can be used to infer bisimilarities
based on already-known results and save up computing time.

OP3. MUTES is simpler in terms of theoretical complexity. However, its perfor-
mance could be refined by auditing its code implementation. Our investigation
detailed in (21) suggests room for improvement based on observations of memory
usage and logging output.

OP4. Because ZG bisimilarity is computed with a refinement algorithm similar to
untimed bisimulation, previously surveyed techniques of parallelism, like GPU ac-
celeration of (19), may be applied to that step.

We will focus mainly on opportunities OP1 to OP3. Opportunity OP4 was explored in (21)
and remains a promising future work.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

10 /19

f. Step 3: Building a solution

Developing software that takes a set of TAs in UPPAAL format and efficiently computes
the partition induced by the STBE relation will be our goal. A partition is a set of sets whose
union is the original input set. Each set of the partition is called an equivalence class. Each
TA in an equivalence class is equivalent to every other member of the same class.

Based on the previously shown opportunities, the work will be twofold:

A. Build a program that receives the set of TAs and schedules a MUTES or TimBrCheck
run for every pair in the set. These runs will be concurrent, exploiting opportunity
OP1.

For OP2, the program should be able to infer equivalences from previous results. To
see this, imagine an input set that consists of TAs A, B, and C. At the beginning of
the operation, the equivalence between A and B is decided as true, and then equiv-
alence A vs. C is computed as also true. In this case, the software should be able to
infer, without any further STBE computation, that B and C are equivalent too. This
feature will be referred to as Transitivity Inference (TI).

B. MUTES source code will be audited. This comes from an inspection of performance
detailed in (21).

g. Step 4: Comparison between approaches

To measure the impact of our work, we need to determine the performance of the result-
ing solution. The performance will be evaluated under the previously defined use case of
computing equivalence between mutants. This will be accomplished by running the fol-
lowing experiment: Three TAs that describe real-world systems will be mutated with var-
ious operators to produce a pool of mutants. Five samples of ten mutants will be picked
from the pool, and then every sample will be submitted as input to the available solutions
five times. The total duration of the runs will be timed. The fastest solution should be the
best for our use case.

Considered solutions. In this experiment, four competing solutions will be featured:

1. Approach SM: Sequential MUTES. This solution consists of scheduling equivalences
one after the other by running MUTES once, waiting for a result, and, once it is fin-
ished, running the next one. MUTES will be called once at a time for every distinct
pair of TA in the input set. This solution was the one available before the present
work was carried out and will serve as control.

2. Approach ST: Sequential TimBrCheck. Same setting as approach A, but makes use
of TimBrCheck. TimBrCheck uses a bound parameter to limit the resources used

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

11 /19

by the ZHG mechanism (9). Because its competitor MUTES do not make use of this
mechanism, the parameter will be set, disabling the histories component, so that
the results are a fair comparison.

3. Approach PM2: Parallel MUTES v2. This solution will take advantage of the pro-
posed work in the previous section. A program will receive a set of TA and schedule
parallel executions of the audited and improved version of MUTES, called MUTES
v2. On top of that, the TI feature will be active to infer equivalences. This approach
will reflect the effectiveness of our work.

4. Approach PT: Parallel TimBrCheck. This solution will also use the program that
schedules runs in parallel and is able to deduce equivalences a priori with TI, but
this time TimBrCheck will be used as STBE implementation, with .

Comparison metrics. To improve efficiency, we are trying to answer the following research
question:

Speed criterion. How much time does the solution need in order to decide if
two automata are timed bisimilar or not?

To measure this criterion, Average Comparison Time (ACT) will be used. This is the ratio in
seconds of total execution time divided by the number of timed bisimulations successfully
computed. For example, imagine a run of approach SM that received a set of 10 autom-
ata as input and lasted 90 seconds before producing the partition induced by STBE. All
possible distinct pairs in a set of 10 automata is , therefore 45 equivalences need to be
computed. Then, this run would yield of ACT. The choice of this measurement is justified
by the use case of MBMT with big sets of mutants: The total time to process the whole
set can be estimated by knowing the number of mutants and multiplying the ACT and the
number of distinct pairs.

Subject systems. We will consider three different TA models taken from community bench-
marks, frequently used in recent experimental evaluation of TCS analysis techniques:

1. Gear Controller (GC) (22): Component of the control system operating in a modern
vehicle.

2. Collision Avoidance (CA) (23): Protocol of communication for an Ethernet-like me-
dium.

3. Combined Gear Control (CGC) (24): Combined manual gear control for vehicles.

Table 1 provides an overview of key properties of the models to have a sense of their
magnitudes.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

12 /19

Table 1. Key properties of subject TA for comparison experiments

Property GC CA CGC

Locations 24 7 85

Transitions 32 15 120
Clocks 1 1 4
Resets 12 2 31

These models will be mutated with the following operators, most of them proposed in
(25):

1. Transition MIssing (TMI) removes a random transition.

2. Transition ADd (TAD) adds a transition between two random locations.

3. State MIssing (SMI) removes an arbitrary location other than the initial and all its
transitions.

4. State MIssing No Redundant (SMI-NR) Removes an arbitrary location, avoiding du-
plicates (26).

5. Constant eXchange L (CXL) increases the constant of a clock constraint.

6. Constant eXchange C (CXS) decreases the constant of a clock constraint.

7. Clock Constraint Negation (CCN) negates a clock constraint.

These mutants and systems were taken from Cuartas et al. work (26). Table 2 shows the
number of mutants generated per operator and system. These quantities depended on
the properties of the base model.

Table 2. Number of generated mutants per operator

System TMI TAD SMI SMI-NR CXL CXS CCN Total

GC 13 501 12 3 0 2 2 533

CA 9 26 2 0 1 1 2 41

CGC 36 1625 27 5 4 46 10 1.713

From the set of mutants of each system, five samples of 10 mutants will be randomly
picked. Each sample will be submitted as input to the four approaches five times. To
measure the total execution time, two timestamps are stored: one at the beginning, right
after the input TAs in XML files are found, and another at the end, after the result output

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

13 /19

is printed, when all OS processes of TimBrCheck or MUTES are terminated. The result of
the difference between these two timestamps is the total execution time. These time-
stamps are taken by executing System.currentTimeMillis(), a Java method that returns
the current time with a granularity of milliseconds, and then rounding up to seconds. Be-
cause MBMT is not a time-critical process, but a process which time-critical processes go
through in the software design phase, we believe this time measuring method is enough
for our purposes.

After that, the total elapsed time will be divided by the 45 equivalences that need to be
decided between the ten systems, and the resulting quotient will be the ACT. The runtime
of each execution will be limited to 15 minutes.

Execution environment. The experiment was executed with the OpenJDK JRE 11.0.17 on
Windows 10 with 16 GB of memory and an Intel(R) Core (TM) i3-12100F with 8 cores at
3.30GHz.

Results and discussion

h. Building of a parallel solution

The resulting software product is called ThreadsBash. ThreadsBash is a Java application
that can be executed with a Command Line Interface (CLI) command. An execution com-
mand may be java -jar threadsbash.jar -E JARPATH -F FOLDERPATH, where JARPATH
is the path to an STBE implementation (e.g. MUTES or TimBrCheck) and FOLDERPATH is a
path to a folder that should contain UPPAAL XML models. Other flags are also available to
tune other variables for execution. The project can be accessed via GitHub https://github.
com/SebastianBetancourt/threadsbash. Figure 5 lays out its general workflow architecture.

ThreadsBash implements Process-based parallelism. Process-based parallelism creates
different processes at the Operative System (OS) level and lets the OS manage concurrent
resources. ThreadsBash accomplishes this by using the ProcessBuilder class to implement
a Runnable that can be executed by Java’s ThreadPoolExecutor, a concurrency mechanism
provided by the Java Virtual Machine (27). ProcessBuilder is instantiated by passing a CLI
command as a parameter, which in this case would be the command to run the STBE pro-
gram that will be used to spawn a process at OS level. Because this class implements the
interface Runnable, a ThreadPoolExecutor can receive the object and assign the task of
executing it to one of

https://github.com/SebastianBetancourt/threadsbash
https://github.com/SebastianBetancourt/threadsbash

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

14 /19

Figure 5: General software architecture of ThreadsBash

 multiple concurrent threads, which in turn will be in charge of initiating the comparison,
effectively starting multiple parallel OS processes that check bisimulation between differ-
ent automata. The concurrency of this technique is bounded by the number of parallel
processes a processor and OS might be able to carry. This parallel mechanism is the result
of exploiting opportunity OP1.

ThreadsBash also has the TI feature enabled by default. This means that ThreadsBash can
infer equivalence before it computes, depending on previous results. It does so by storing
results as a partition. This partition can be built with incoming STBE results by performing
the following checks before starting a comparison between two TAs A and B:

1) If and belong to the same equivalence class, then it can be inferred that and are
equivalent.

2) If any member of the equivalence class of was previously compared with any mem-
ber of the equivalence class of , and it resulted in they not being equivalent, then
it can be inferred that and are not equivalent either.

3) If neither of these two cases holds, then the STBE must be carried out, but its result
may contribute to constructing the partition further. If and turn out to be bisimilar,
their equivalence classes may be merged. If they are not bisimilar, the result may
also be stored for future inferences of step 2.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

15 /19

The details and pseudocode of this algorithm can be found in (21). This procedure takes
advantage of OP2.

OP3 was capitalized on by conducting an inspection and refactoring of the MUTES source
code, which is detailed in (21). Logging was muted, and the resulting MUTES v2 shows a
remarkable improvement in performance. This is evidenced in the results of the experi-
ments.

i. Results of the experiment

The experiment designed for step 4 (section 3d) was conducted using 8 concurrent threads.
To accomplish the promised parallelism, MUTES v2 and TimBrCheck were equipped with
ThreadsBash, setting up approaches PM2 and PT, respectively. The results of this experi-
ment are shown in Figure 6. For three TCS, mutant samples of 10 automata were gener-
ated, compared using one of the proposed alternatives, and the ACT was plotted in the
y-axis. For every approach and system, each box plots the 25 ACTs produced by process-
ing five different samples five times.

In general, the results are consistent in the sense that they do not vary much between tries
or samples. The size of the TA seems to have an impact on ACT, as seen with the results
of system CGC, which is orders of magnitude bigger than the other two. This validates the
theoretical time complexity of the STBE operation that depends on the number of loca-
tions and transitions (21).

Approach SM had problems with the system CGC and its mutants. That was the only case
where executions timed out, totaling 20 runs that exceeded the 15-minute limit. We be-
lieve that the first version of MUTES, which is the one used in approach SM, had perfor-
mance problems that would not let it successfully finish in some cases. These problems
were solved for MUTES v2, which was included in approach PM2. Even though timed-out
runs were not included in the plotted data, the five runs of SM which successfully finished
yielded a very high ACT, which further discards the approach.

Figure 6. Average Comparison Time of four approaches to computing bisimilarity of
three timed systems and its mutants. Lower is better.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

16 /19

Applying parallelism proved to be valuable. This is reflected by the halving of ACT be-
tween ST and its parallel counterpart PT and sequential SM, regarding PM2.

However, this experiment leaves a clear winner highlighted in green: Approach PM2, which
is the proposed solution backed by our work. Even when TimBrCheck is augmented with
parallel processing in approach PT, the results of PM2 are less than a half of the ACT of
every other approach.

Given the multiple factors of the computing platform and execution environment that may
introduce big variations in the measurements, we decided to evaluate the robustness and
scalability of the proposed solution by executing additional tests. This is detailed in (21),
where 45 experiments were run on three different computers, two different operating sys-
tems and inputs that vary between 8 to almost 2000 TA, using different configurations and
numbers of parallel processors. In those experiments, the results presented remain true:
At worst, PM2 is twice as fast, and at best, six times faster than the other alternatives. With
the addition of these results, we are confident that the improvements can be applied to
larger scenarios, because the parallelization technique and problem at hand are suitable
to scale in concurrency: The STBE processes are completely independent, and therefore no
race condition, deadlocks or resource starvation is foreseen. In fact, this property could be
further exploited with other alternatives, such as GPU parallelization or distributed com-
puting, alternatives that were considered in (21) but remain as future work.

One thing to investigate may be the ZHG mechanism that the authors of TimBrCheck
propose, which they say is necessary to have a correct algorithm (9). This would imply
differences in precision between TimBrCheck and MUTES that may have an impact on the
choice of implementation of STBE to be used in MBMT. In this experiment, in particular,
the output partitions were the same between the four approaches. Nevertheless, we be-
lieve this poses a threat to validity which we are currently looking into.

Conclusions

This article introduces a tool that helps to solve EMP when using UPPAAL models for
MBMT of TCS. ThreadsBash is a product that can augment available STBE implementations
with parallelism to determine equivalences between large sets of mutants, and then the
ones that are equivalent can be pruned. This can be done efficiently with ThreadsBash
and MUTES v2, as seen in the results of the experiments, where timed bisimulation equiv-
alences are decided two times faster than previously available solutions, accounting for
environmental factors like configuration and concurrency and input properties like size
and variety of TA. In fact, our solution is already being used in other scientific work. This
makes the application of MBMT more viable for adoption in industries that rely on quality
assurance of systems such as TCS.

Acknowledgments

This article was a result of Joan S. Betancourt bachelor’s thesis work, directed by professors
Jesús Aranda and James Ortiz (21). Special thanks to the Erasmus+ multilateral agreement
between the University of Namur and Universidad del Valle, which made the collaboration
between the two institutions possible.

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

17 /19

References

(1) Tretmans, J. Model Based Testing with Labeled Transition Systems. In: Formal
Methods and Testing – An Outcome of the FORTEST Network. Berlin: Springer-Ver-
lag, 2008. p. 1–38.

(2) Zander, J, Schieferdecker, I. Model-Based Testing for Embedded Systems. CRC
Press; 2017.

(3) Budd, TA, Gopal, AS. “Program testing by specification mutation”. Computer Lan-
guages, 1985.

(4) Jia, Y, Harman, M. “An Analysis and Survey of the Development of Mutation Test-
ing”. IEEE Transactions on Software Engineering 2011; 37(5):649-678.

(5) Papadakis, M, Kintis, M, Zhang, J, Yue, Traon, Y, Harman, M. Chapter Six - Mutation
Testing Advances: An Analysis and Survey. In: Advances in Computers, Volume 112,
2019; 112:275-378.

(6) Ortiz Vega, J, Perrouin, G, Amrani, M, Schobbens, PY. Model-Based Mutation Op-
erators for Timed Systems: A Taxonomy and Research Agenda. In 2018 IEEE Inter-
national Conference on Software Quality, Reliability and Security (QRS) 2018 (pp.
325-332).

(7) Guha, S. On Decidability of Prebisimulation for Timed Automata. In Computer Aid-
ed Verification, 2012 (pp. 444–461). Springer Berlin Heidelberg.

(8) Leiserson, CE, Thompson, NC, Emer, JS, Kuszmaul, BC, Lampson, BW, Sanchez, D,
Schardl, TB. “There’s plenty of room at the Top: What will drive computer perfor-
mance after Moore’s law?”. Science 2020; 368(6495):eaam9744.

(9) Luthmann, L, Göttmann, H, Bacher, I, Lochau, M. Checking Timed Bisimulation with
Bounded Zone-History Graphs – Technical Report. 2019. Available at: https://arxiv.
org/abs/1910.08992

(10) Ortiz Vega, J, Amrani, M, Schobbens, PY. Multi-timed Bisimulation for Distributed
Timed Automata. In NASA Formal Methods, 2017 (pp. 52–67). Springer Internatio-
nal Publishing.

(11) Baier, C, Katoen, JP. Principles of Model Checking. The MIT Press; 2008. pp. 673-
738

(12) Čerāns, K. Decidability of bisimulation equivalences for parallel timer processes. In
Computer Aided Verification, 1993 (pp. 302–315). Springer Berlin Heidelberg.

(13) UPPAAL [Internet]. Uppsala Universitet. Available at: https://uppaal.org/

(14) Weise, C, Lenzkens, D. Efficient scaling-invariant checking of timed bisimulation. In
STACS 97 1997 (pp. 177–188). Springer Berlin Heidelberg.

(15) Concurrency Workbench of the New Century [Internet]. North Carolina State Uni-
versity; [cited Aug 13 2023]. Available at: https://www3.cs.stonybrook.edu/~cwb/

https://arxiv.org/abs/1910.08992
https://arxiv.org/abs/1910.08992
https://uppaal.org/
https://www3.cs.stonybrook.edu/~cwb/

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

18 /19

(16) Andersen, J, Hansen, M, Andersen, N. CAAL [Internet]. Aalborg University; [cited
Aug 13 2023]. Available at: http://caal.cs.aau.dk/docs/CAAL2_EPG.pdf

(17) Kanellakis P. Smolka S. “CCS expressions, finite state processes, and three problems
of equivalence”. Information and Computation, 1990.

(18) R. Paige, R. Tarjan. “Three partition refinement algorithms”. SIAM Journal on Com-
puting 1987.

(19) Martens J, Groote, JF, van den Haak, LB, Hĳma, P, Wijs, A. “A linear parallel al-
gorithm to compute bisimulation and relational coarsest partitions”. CoRR 2021;
abs/2105.11788.

(20) ANTRL [Internet]. Available at: https://www.antlr.org/

(21) Betancourt JS. A parallel algorithm to compute strong timed bisimulation [bach-
elor’s thesis]. Cali: Universidad del Valle; 2023 [cited Aug 10 2023]. Available at:
https://drive.google.com/file/d/1zxDyAf-4qXV0tMry8MkbTThjzJKBUr5b/view?us-
p=sharing

(22) Lindahl, W. Formal design and analysis of a gear controller. In Tools and Algorithms
for the Construction and Analysis of Systems, 1998 (pp. 281–297). Springer Berlin
Heidelberg.

(23) Jensen, H, Larsen, K, Skou, A. “Modelling and Analysis of a Collision Avoidance Pro-
tocol using SPIN and UPPAAL”. BRICS Report Series 2002; 3.

(24) Lindahl, M, Tettersson, P, Yi W. Formal design and analysis of a gear controller. In
Tools and Algorithms for the Construction and Analysis of Systems, 1998. Springer
Berlin Heidelberg.

(25) Basile, D, Beek, M, Cordy, M, Legay, A. Tackling the Equivalent Mutant Problem in
Real-Time Systems: The 12 Commandments of Model-Based Mutation Testing. In
Proceedings of the 24th ACM Conference on Systems and Software Product Line:
Volume A - Volume A 2020. Association for Computing Machinery.

(26) Cuartas, J, Aranda, J, Cordy, M, Ortiz, J, Perrouin, G, Schobbens, PY. MUPPAAL: Re-
ducing and Removing Equivalent and Duplicate Mutants in UPPAAL. In 2023 IEEE
International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW) 2023.

(27) Oracle. Thread (Java Platform SE7). [Cited Aug 14 2023] Available at https://docs.
oracle.com/javase/7/docs/api/java/lang/Thread.html

(28) Basile D, Alessandro Fantechi, Rosadi I. Formal Analysis of the UNISIG Safety Ap-
plication Intermediate Sub-layer. Lecture Notes in Computer Science. 2021 Jan
1;174–90.

(29) Mercaldo, F, Martinelli, F, & Santone, A. Real-Time SCADA Attack Detection by
Means of Formal Methods. In 2019 IEEE 28th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 231-236).

http://caal.cs.aau.dk/docs/CAAL2_EPG.pdf
https://www.antlr.org/
https://drive.google.com/file/d/1zxDyAf-4qXV0tMry8MkbTThjzJKBUr5b/view?usp=sharing
https://drive.google.com/file/d/1zxDyAf-4qXV0tMry8MkbTThjzJKBUr5b/view?usp=sharing
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi: 10.25100/iyc.v25i4.13164

19 /19

(30) Guo, X, Lin, HH, Kenro, Yatake. An UPPAAL Framework for Model Checking Auto-
motive Systems with FlexRay Protocol. Communications in computer and informa-
tion science. 2014.

(31) Pajic, M, Jiang, Z, Lee, I, Sokolsky, O, Mangharam, R. From Verification to Imple-
mentation: A Model Translation Tool and a Pacemaker Case Study. IEEE 18th Real
Time and Embedded Technology and Applications Symposium 2012.

(32) Cuartas, J, Cortés, D, Betancourt, J, Aranda, J, García, J, Valencia, A, Ortiz, J. Formal
Verification of a Mechanical Ventilator Using UPPAAL. In Proceedings of the 9th
ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical
Systems 2023 (pp. 2–13). Association for Computing Machinery.

(33) Lorber, F, Larsen, K, Nielsen, BModel-Based Mutation Testing of Real-Time Systems
via Model Checking. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) 2018 (pp. 59-68).

(34) Larsson, J. Automatic Test Generation and Mutation Analysis using UPPAAL SMC
[Thesis]. Marinescu R, editor. [Mälardalen University, School of Innovation, Design
and Engineering]; 2017.

(35) Siavashi, J. Testing Web Services with Model-Based Mutation. In Software Technol-
ogies 2017 (pp. 45–67). Springer International Publishing.

(36) Mathematical program solvers - IBM CPLEX [Internet]. Ibm.com. Available from:
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

1. Table of abbreviations

Abbreviation Meaning
ACT Average Comparison Time
CGC, GC, CA Subject systems
CLI Command Line Interface
EMP Equivalent Mutant Problem
MBMT Model-Based Mutation Testing
MBT Model-Based Testing
OS Operative System
SMI, SMI-NR, TMI, TAD, CXL, CXS, CCN Mutation operators
SM, ST, PM2, PT Considered solutions

STBE
Strong Timed Bisimulation Equiva-
lence

TA Timed Automata
TCS Time-Critical Systems
TI Transitivity Inference
TTS Timed Transition System
ZG Zone Graph
ZHG Zone-History Graph

	_lhhwjaka72es
	_hhya1ayyfs9j
	_vthdjcpp42rn
	_81b6apks9zyx
	_2l0mlsx23tt0
	_3tuhgw68400f
	_ugmxk6mdu7sh

