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Abstract

Time-Critical Systems (TCS) play a crucial role in environments where strict timing cons-
traints are essential to ensure reliability and correctness. Model-Based Mutation Testing 
(MBMT) is considered a valuable strategy for quality assurance of TCS, but it suffers from 
the equivalent mutant problem, which is known to increase computational cost and 
reduce confidence in MBMT. To address this problem, a strong timed bisimulation equi-
valence (STBE) algorithm can be used when TCS are modeled as Timed Automata (TA). 
STBE is computationally expensive and can benefit from parallelism. We survey available 
STBE implementations, identify opportunities to apply parallelism, build an extension 
that takes advantage of them, and test its effects. The resulting solution is a Java pro-
gram that receives multiple TAs expressed in UPPAAL format and determines which TAs 
are equivalent using an STBE implementation such as TimBrCheck or MUTES and pro-
cess-based parallelism. Compared to existing solutions, our tests show that our proposal 
is more efficient, reducing the runtimes of STBE by more than half. This could improve 
the reach, reliability, and effectiveness of MBMT for TCS.
Keywords: Timed Automata, Mutation Testing, Timed Bisimulation, Parallelism, UPPAAL.

Resumen

Los Sistemas de Tiempo Crítico (STC) son importantes cuando estrictos requerimientos 
temporales garantizan fiabilidad y correctitud de los sistemas. Las Pruebas de Mutación 
(PM) son una valiosa técnica para el aseguramiento de la calidad de STCs, pero sufren 
del Problema de los Mutantes Equivalentes (PME), que incrementa costos de cómputo y 
reduce la confiabilidad de PM. Para combatir el PME, un algoritmo de Bisimulación Tem-
porizada (BT) puede ser usado si los STC se expresan como Autómatas de Tiempo (AT). 
BT es computacionalmente costoso, y podría beneficiarse de técnicas de paralelismo. En 
este trabajo, se analizan implementaciones de BT disponibles en la literatura, se identi-
fican oportunidades para aplicar técnicas de paralelismo, se construye una solución que 
aprovecha estas oportunidades, y se comprueba su efectividad. La solución construida es 
un programa en Java que recibe múltiples ATs en formato UPPAAL y determina qué ATs 
son equivalentes, usando una implementación de BT como TimBrCheck o MUTES y para-
lelismo basado en procesos. Comparado con las soluciones disponibles previamente, los 
experimentos muestran que nuestra propuesta es más eficiente, ya que los tiempos de 
ejecución de BT se reducen a menos de la mitad. Esto podría mejorar el alcance, la con-
fiabilidad y efectividad de PM para STC.
Palabras clave: Autómatas de Tiempo, Pruebas de mutación, Bisimulación con Tiempo, 
Paralelismo, UPPAAL
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Introduction

Time-Critical Systems (TCS) are systems that must respond in time to external events (11). 
Examples of TCS include device drivers, coffee makers, communication protocols, and 
ATMs. The behavior of TCS is typically subject to strict timing constraints. For example, a 
railroad crossing gate must be closed within a specified time after a train is detected, or 
cars and pedestrians may be injured. Similarly, a radiation machine must deliver a high 
dose of radiation to a cancer patient within a specified time, or the patient may not receive 
the necessary treatment.

The consequences of a TCS failing to meet its timing constraints can be severe. Because 
of the potential consequences, it is essential that TCS be thoroughly tested to ensure that 
they meet the timing constraints agreed with the customer. This can be a challenging task, 
as TCS are often complex and have many interacting components (11). However, ensuring 
the quality assurance of TCS remains a paramount concern.

To address this problem, Model-Based Testing (MBT) (1) is emerging as a valuable strat-
egy. MBT uses (timed) specifications to generate test cases that systematically evaluate 
the behavior of a system. Importantly, it avoids the scalability problems associated with 
exhaustive verification (2). MBT has been used successfully to analyze industry TCS like the 
UNISIG railway communication standard (28), the SCADA programmable logic controller 
interface for critical systems (29), the FlexRay automotive communication protocol (30), a 
cardiac pacemaker (31) or a mechanical ventilator for medical aid (32). 

When MBT is applied to TCS, the functional requirements are specified as temporal prop-
erties, e.g. “the airbag of the car should be deployed within 50ms when a crash is detect-
ed”. Therefore, temporal defects of TCS models can be detected by identifying functional 
failures through MBT. One notable modality of MBT is Model-Based Mutation Testing 
(MBMT), which provides a robust solution for automatically finding defects associated with 
both missing functionality and misinterpreted specifications through the application of 
mutation testing (3). Mutation testing, a technique at the heart of MBMT, involves the de-
liberate injection of artificial defects into an original system, creating new systems known 
as mutants (4). By evaluating whether the tests can distinguish these mutants from the 
original system, we gain greater confidence in the effectiveness of the defect detection 
tests.

However, not all mutants are relevant. Some mutants may be equivalent, having the be-
havior of the original system despite syntax variations (5). In such cases, test cases will 
not be able to distinguish between these mutants. In addition, some mutants may be 
duplicates, exhibiting the same behavior as other mutants (5). Equivalent and duplicate 
mutants (i.e., useless mutants) increase costs approximately 20% to 40% (26). Identifying 
and eliminating such useless mutants reduces the computational cost of MBMT while 
increasing confidence in the final test results. This task is encapsulated in the Equivalent 
Mutant Problem (EMP) (6).

To address the EMP, it is essential to compute behavioral equivalence between the orig-
inal model and its mutants. However, determining equivalence between two temporal 
systems can be computationally expensive (7). Furthermore, when mutants are generated 
in large batches, resolving the EMP can become very time-consuming. This challenge un-
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derscores why behavioral equivalence has not been widely adopted to address the EMP 
within MBMT (6). Improving the practicality of this solution could effectively expand the 
horizons of model-based mutation testing, thereby increasing the caliber and security of 
critical systems.

Recently, the speed-up of sequential chip design has slowed due to various factors such 
as power consumption and heat generation. In contrast, parallel hardware continues to 
improve its computational performance (8). To take advantage of this, solutions must be 
developed that take advantage of parallel acceleration. In this work, we explore a way to 
apply parallelization to the computation of behavioral equivalence between TCSs to im-
prove the viability of MBMT solutions. 

Document structure. Section 2 sets the theoretical context. Then, in section 3, we lay out 
our plan: We review related work in detail (3a, b), implement a usable prototype solution 
(3c), and compare the results with other approaches (3d). Section 4 presents the results, 
detailing the architecture of the created tool (4a) and showing how it is twice as fast as 
other available solutions (4b).

Theoretical Framework

a. Timed Automata (TA)

TAs are used to model the behavior of TCS. They can be thought of as a directed graph, 
where locations are the states of the system and edges are transitions that specify how 
the system evolves. Locations and transitions can be enriched with time constraints that 
specify the conditions for the system to remain in a particular state or transition to a new 
state. These time constraints use clocks. Clocks model the continuous time domain. Clocks 
are non-negative real-valued variables that increase synchronously at the same rate and 
can be reset by a transition. Transitions in TA can be enabled or disabled based on clock 
constraints.

Definition 1. (Clock Constraints) (11). Let  be a finite set of clock variables ranging over 
(non-negative real numbers). Let  be a set of clock constraints over . A clock constraint  is 
of the form   where  and .

Conditions to remain at a certain location can also be modeled as clock invariants.

Definition 2. (Clock Invariants) (11). Let  be a finite set of clock variables ranging over . Let  
be a set of clock invariants over . A clock invariant  is of the form where  and .

Clocks can be modeled with resets and progress via clock valuations.

Definition 3. (Clock Valuations) (11). Given a finite set of clocks , a clock valuation function  
assigning to each clock  a value . We denote  the set of all valuations. For a clock valuation  
and a time value ,  is the valuation satisfied by  for each . Given a clock subset , we denote  
the valuation defined as follows:  if  and   otherwise.

With these previous concepts, we are ready to define timed automata formally.

Definition 4. (Timed Automaton) (11). A timed automaton is a tuple , where  is a finite set 
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of locations,  is an initial location,  is a finite set of clocks,  is a finite set of actions,  is a finite 
set of edges between locations, and  assigns invariants to locations.

For a transition  we will write  and call  and  the source and target location,  the guard,  the 
action and  the set of clocks to reset. TAs will be our formalism of choice to model TCS. 
Figure 1 depicts an example of TA that models a simplified coffee machine, which starts 
in the “idle” state until a button is pressed. When the “press” action occurs, clock x is reset 
to zero while the machine jumps to the “warm up” location and remains there while . The 
“Coffee” action can only be performed when the clock is  and the system goes to the “Fill 
Cup” location. The “Sugar” action resets clock , can only be performed when , and returns 
the machine to its initial idle state.

Figure 1: Example of TA modeling: A coffee machine.

The semantics of a TA are carried by a Timed Transition System (TTS) where a state is a 
pair , where  denotes the current location with its accompanying clock valuation , starting 
at  where  maps each clock to 0. The transitions can be of two types: Delay transitions 
and discrete transitions. Delay transitions only let time pass without changing location. 
Discrete transitions occur instead between a source and a target location. The transition 
can only happen if the current clock values satisfy both the guard of the transition and the 
invariant of the target location.

Definition 5. (Semantics of TA) (11). Let  be a TA. The semantics of TA A are given by a  
where  is a set of states,  with  for all  and , , and  is a transition relation defined by two 
rules: Discrete transitions  for  iff , ,  and  and delay transitions , for some  iff .

b. Strong Timed Bisimulation Equivalence (STBE)

Bisimulation equivalences identify automata that have the same branching behavior, sim-
ulating each other’s steps (11). One bisimulation equivalence is the Strong Timed Bisimu-
lation Equivalence (STBE).

Definition 6. Strong Timed Bisimulation Equivalence (STBE) (11). Let  ,  be two TTS over a 
common set of actions . A timed bisimulation for  is a binary relation  where  implies two 
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things: First, for every discrete transition   with , there exists a matching transition   such 
that  and vice versa. Second, for every delay transition   with , there exists a transition   such 
that  and vice versa.

Figure 2: Two TAs which are strongly bisimilar

Two TAs  and  are equivalent under STBE if there is a timed bisimulation relation over  
and  such that their initial locations are related. In the example of Figure 2, the two TAs 
are strongly timed bisimilar. Intuitively, they “behave similarly”: Starting from the initial 
locations, every transition one TA takes can be mirrored by the other. The clocks might 
not advance in the same way, but actions have the same relative time span: Action  from 
location  to  can be taken in the same exact way from  and , and action  from  to  can only 
be done within the next unit of time, just as action  from  to . 

To compute whether two TAs are equivalent under STBE, complex operations must be 
performed in order to operate over the continuous time domain (7). Nevertheless, STBE is 
one of the few behavioral equivalences that is decidable (6). If two TCS expressed as TA are 
equivalent under STBE, they show the same behavior, and thus they should be equivalent 
regarding tests in MBMT (12), despite their potential syntactic differences. Therefore, it 
will be our equivalence relation of choice for this work. Where clarity is not compromised, 
STBE may be referred to as timed bisimulation, or simply the equivalence.

c. UPPAAL

UPPAAL (13) is an integrated environment popular for modeling, validation, and verifica-
tion of real-time systems. UPPAAL was designed for modeling non-deterministic process-
es with finite control structures and real-valued clocks, communicating through channels 
and shared data structures. In other words, it allows modeling TCS with data types and 
structures, saving them in an XML-based format. The UPPAAL model-checker is built upon 
the theory of TA (13). UPPAAL is a common choice to apply MBMT to TCS, for example, 
an automotive gear controller (33), wire brake (34), car alarm (35) and web service (36) 
UPPAAL models have been tested with MBMT. For this reason, UPPAAL is our chosen op-
erational format to express TAs.  Figure 3 is an example of a TCS in UPPAAL, a model of 
the previous coffee machine.
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Figure 3: A simplified model of a coffee machine modeled in UPPAAL.

Methodology

In an attempt to help with the burden of EMP in MBMT, we aim to apply parallelism to 
the identification of equivalent TCS expressed as TA. More specifically, we want to explore 
the parallelization potential of deciding STBE between several UPPAAL models. To achieve 
this, we will:

Step 1. Identify the approaches to STBE currently available in the literature, 

Step 2. Determine opportunities to apply parallelism or other improvements in the 
internal operations carried out by these.

Step 3. Build a solution that exploits those opportunities to compute STBE between 
UPPAAL models.

Step 4. Run experiments to compare our approach to other possible solutions.

d. Step 1: Literature review and state-of-the-art survey for STBE solutions

Timed bisimulation was shown to be decidable by characterizing TA semantics on a finite 
representation called region graphs (13). This, however, was just a theoretical tool that was 
not viable for automatic verification. Later, Weise and Lenkes proposed the use of zone 
graphs, a representation that uses less space (14). With these advancements, automatic 
verification of timed bisimulation has been attempted:

1. In the early 2000s, the Concurrency Workbench of the New Century (15) supported 
timed bisimulation, but it is no longer accessible or usable.

2. In 2015, Andersen et al. released CAAL, a web suite for educational purposes that 
models TCS with a similar formalism to TA. CAAL includes a bisimulation equiva-
lence (16).

3. In 2017, Ortiz and colleagues (10) implemented MUTES, a STBE checker that ac-
cepts UPPAAL models as inputs.
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4. In 2019, TimBrCheck (9) was made available. This is also a STBE checker for UPPAAL 
models, with the added value of zone-history graphs, a representation proposal 
that claims to have better accuracy.

Deciding bisimilarity for different formalisms has been thoroughly investigated in the liter-
ature. Kanellakis and Smolka (17) proposed an algorithm with quadratic complexity. Paige 
and Tarjan (18) found an alternative that runs in linearithmic time. In May 2021, Martens 
and colleagues (19) proposed a parallel algorithm that verifies bisimilarity for (untimed) 
automata in linear time by using partition refinement and GPU acceleration. To the best of 
our knowledge, no parallel application to STBE has been published yet.

e. Step 2: Review of the internal operations needed for STBE

After surveying available STBE implementations, we chose to continue our work by ana-
lyzing MUTES and TimBrCheck, which are the two options that suit our context of TA and 
UPPAAL.

As MUTES (10) is a product of the work of one of the authors, we had direct access to first-
hand details and source code. MUTES is a Java application that processes two XML files 
as input. ANTLR, a parser generator (20), is utilized to parse the XML files generated by 
UPPAAL. These XML files contain information about clocks, transitions, invariants, guards, 
and the structure of the TA. Upon successful parsing of the XML input files representing 
two TA models, the following steps are executed:

1) Parallel Composition: MUTES generates a new TA, which is a parallel composition 
of two individual TAs. 

2) Creation of Symbolic Timed Zone Graph: The tool proceeds to build a finite sym-
bolic Zone Graph (ZG) based on the generated parallel composition. This graph 
serves as a representation of the potential states and transitions of the composed 
automaton.

3) Refinement Algorithm for Timed Bisimulation: MUTES performs a refinement algo-
rithm on the ZG. This algorithm is employed to rigorously examine and verify the 
concept of timed bisimulation between the two original TAs.

Figure 4 provides an overall visual representation of the MUTES tool and its functionality 
in these stages. 

TimBrCheck (9) is another Java application that also accepts two UPPAAL models as input. 
This application builds upon ZG to achieve more accuracy. ZGs are enriched to become 
Zone-History Graphs (ZHG). ZHG are very complex to handle and require the third-party 
IBM ILOG CPLEX Optimizer to run (36). 
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Figure 4: General software architecture of MUTES

After reviewing these two approaches, we found the following opportunities for improve-
ment:

OP1. Both MUTES and TimBrCheck decide STBE between two TAs at a time. Be-
cause mutants come in batches of TA, we want to know, for each TA of the batch, to 
which other TAs it is equivalent to. Therefore, we need to compute STBE with each 
TA against all others to compare them in a similar fashion to round-robin tourna-
ments. Because each equivalence is independent, we can run each comparison in 
parallel.

OP2. STBE is a transitive relation. This property can be used to infer bisimilarities 
based on already-known results and save up computing time.

OP3. MUTES is simpler in terms of theoretical complexity. However, its perfor-
mance could be refined by auditing its code implementation. Our investigation 
detailed in (21) suggests room for improvement based on observations of memory 
usage and logging output.

OP4. Because ZG bisimilarity is computed with a refinement algorithm similar to 
untimed bisimulation, previously surveyed techniques of parallelism, like GPU ac-
celeration of (19), may be applied to that step.

We will focus mainly on opportunities OP1 to OP3. Opportunity OP4 was explored in (21) 
and remains a promising future work.



Ingeniería y Competitividad, 2023 vol 25(suplemento) e-20713144/ Sept-dic

doi:  10.25100/iyc.v25i4.13164

10 /19

f. Step 3: Building a solution

Developing software that takes a set of TAs in UPPAAL format and efficiently computes 
the partition induced by the STBE relation will be our goal. A partition is a set of sets whose 
union is the original input set. Each set of the partition is called an equivalence class. Each 
TA in an equivalence class is equivalent to every other member of the same class.

Based on the previously shown opportunities, the work will be twofold:

A. Build a program that receives the set of TAs and schedules a MUTES or TimBrCheck 
run for every pair in the set. These runs will be concurrent, exploiting opportunity 
OP1. 

For OP2, the program should be able to infer equivalences from previous results. To 
see this, imagine an input set that consists of TAs A, B, and C. At the beginning of 
the operation, the equivalence between A and B is decided as true, and then equiv-
alence A vs. C is computed as also true. In this case, the software should be able to 
infer, without any further STBE computation, that B and C are equivalent too. This 
feature will be referred to as Transitivity Inference (TI).

B. MUTES source code will be audited. This comes from an inspection of performance 
detailed in (21).

g. Step 4: Comparison between approaches

To measure the impact of our work, we need to determine the performance of the result-
ing solution. The performance will be evaluated under the previously defined use case of 
computing equivalence between mutants. This will be accomplished by running the fol-
lowing experiment: Three TAs that describe real-world systems will be mutated with var-
ious operators to produce a pool of mutants. Five samples of ten mutants will be picked 
from the pool, and then every sample will be submitted as input to the available solutions 
five times. The total duration of the runs will be timed. The fastest solution should be the 
best for our use case.

Considered solutions. In this experiment, four competing solutions will be featured:

1. Approach SM: Sequential MUTES. This solution consists of scheduling equivalences 
one after the other by running MUTES once, waiting for a result, and, once it is fin-
ished, running the next one. MUTES will be called once at a time for every distinct 
pair of TA in the input set. This solution was the one available before the present 
work was carried out and will serve as control.

2. Approach ST: Sequential TimBrCheck. Same setting as approach A, but makes use 
of TimBrCheck. TimBrCheck uses a bound parameter  to limit the resources used 
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by the ZHG mechanism (9). Because its competitor MUTES do not make use of this 
mechanism, the parameter  will be set, disabling the histories component, so that 
the results are a fair comparison.

3. Approach PM2: Parallel MUTES v2. This solution will take advantage of the pro-
posed work in the previous section. A program will receive a set of TA and schedule 
parallel executions of the audited and improved version of MUTES, called MUTES 
v2. On top of that, the TI feature will be active to infer equivalences. This approach 
will reflect the effectiveness of our work.

4. Approach PT: Parallel TimBrCheck. This solution will also use the program that 
schedules runs in parallel and is able to deduce equivalences a priori with TI, but 
this time TimBrCheck will be used as STBE implementation, with .

Comparison metrics. To improve efficiency, we are trying to answer the following research 
question:

Speed criterion. How much time does the solution need in order to decide if 
two automata are timed bisimilar or not?

To measure this criterion, Average Comparison Time (ACT) will be used. This is the ratio in 
seconds of total execution time divided by the number of timed bisimulations successfully 
computed. For example, imagine a run of approach SM that received a set of 10 autom-
ata as input and lasted 90 seconds before producing the partition induced by STBE. All 
possible distinct pairs in a set of 10 automata is , therefore 45 equivalences need to be 
computed. Then, this run would yield  of ACT. The choice of this measurement is justified 
by the use case of MBMT with big sets of mutants: The total time to process the whole 
set can be estimated by knowing the number of mutants and multiplying the ACT and the 
number of distinct pairs.

Subject systems. We will consider three different TA models taken from community bench-
marks, frequently used in recent experimental evaluation of TCS analysis techniques:

1. Gear Controller (GC) (22): Component of the control system operating in a modern 
vehicle.

2. Collision Avoidance (CA) (23): Protocol of communication for an Ethernet-like me-
dium.

3. Combined Gear Control (CGC) (24): Combined manual gear control for vehicles.

Table 1 provides an overview of key properties of the models to have a sense of their 
magnitudes.
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Table 1. Key properties of subject TA for comparison experiments

Property GC CA CGC

Locations 24 7 85

Transitions 32 15 120
Clocks 1 1 4
Resets 12 2 31

These models will be mutated with the following operators, most of them proposed in 
(25):

1. Transition MIssing (TMI) removes a random transition.

2. Transition ADd (TAD) adds a transition between two random locations.

3. State MIssing (SMI) removes an arbitrary location other than the initial and all its 
transitions. 

4. State MIssing No Redundant (SMI-NR) Removes an arbitrary location, avoiding du-
plicates (26).

5. Constant eXchange L (CXL) increases the constant of a clock constraint.

6. Constant eXchange C (CXS) decreases the constant of a clock constraint.

7. Clock Constraint Negation (CCN) negates a clock constraint.

These mutants and systems were taken from Cuartas et al. work (26). Table 2 shows the 
number of mutants generated per operator and system. These quantities depended on 
the properties of the base model.

Table 2. Number of generated mutants per operator

System TMI TAD SMI SMI-NR CXL CXS CCN Total

GC 13 501 12 3 0 2 2 533

CA 9 26 2 0 1 1 2 41

CGC 36 1625 27 5 4 46 10 1.713

From the set of mutants of each system, five samples of 10 mutants will be randomly 
picked. Each sample will be submitted as input to the four approaches five times. To 
measure the total execution time, two timestamps are stored: one at the beginning, right 
after the input TAs in XML files are found, and another at the end, after the result output 
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is printed, when all OS processes of TimBrCheck or MUTES are terminated. The result of 
the difference between these two timestamps is the total execution time. These time-
stamps are taken by executing System.currentTimeMillis(), a Java method that returns 
the current time with a granularity of milliseconds, and then rounding up to seconds. Be-
cause MBMT is not a time-critical process, but a process which time-critical processes go 
through in the software design phase, we believe this time measuring method is enough 
for our purposes.

After that, the total elapsed time will be divided by the 45 equivalences that need to be 
decided between the ten systems, and the resulting quotient will be the ACT. The runtime 
of each execution will be limited to 15 minutes.

Execution environment. The experiment was executed with the OpenJDK JRE 11.0.17 on 
Windows 10 with 16 GB of memory and an Intel(R) Core (TM) i3-12100F with 8 cores at 
3.30GHz.

Results and discussion

h. Building of a parallel solution

The resulting software product is called ThreadsBash. ThreadsBash is a Java application 
that can be executed with a Command Line Interface (CLI) command. An execution com-
mand may be java -jar threadsbash.jar -E JARPATH -F FOLDERPATH, where JARPATH 
is the path to an STBE implementation (e.g. MUTES or TimBrCheck) and FOLDERPATH is a 
path to a folder that should contain UPPAAL XML models. Other flags are also available to 
tune other variables for execution. The project can be accessed via GitHub https://github.
com/SebastianBetancourt/threadsbash. Figure 5 lays out its general workflow architecture.

ThreadsBash implements Process-based parallelism. Process-based parallelism creates 
different processes at the Operative System (OS) level and lets the OS manage concurrent 
resources. ThreadsBash accomplishes this by using the ProcessBuilder class to implement 
a Runnable that can be executed by Java’s ThreadPoolExecutor, a concurrency mechanism 
provided by the Java Virtual Machine (27). ProcessBuilder is instantiated by passing a CLI 
command as a parameter, which in this case would be the command to run the STBE pro-
gram that will be used to spawn a process at OS level. Because this class implements the 
interface Runnable, a ThreadPoolExecutor can receive the object and assign the task of 
executing it to one of

https://github.com/SebastianBetancourt/threadsbash
https://github.com/SebastianBetancourt/threadsbash
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Figure 5: General software architecture of ThreadsBash

 multiple concurrent threads, which in turn will be in charge of initiating the comparison, 
effectively starting multiple parallel OS processes that check bisimulation between differ-
ent automata. The concurrency of this technique is bounded by the number of parallel 
processes a processor and OS might be able to carry. This parallel mechanism is the result 
of exploiting opportunity OP1.

ThreadsBash also has the TI feature enabled by default. This means that ThreadsBash can 
infer equivalence before it computes, depending on previous results. It does so by storing 
results as a partition. This partition can be built with incoming STBE results by performing 
the following checks before starting a comparison between two TAs A and B:

1) If  and  belong to the same equivalence class, then it can be inferred that  and  are 
equivalent.

2) If any member of the equivalence class of  was previously compared with any mem-
ber of the equivalence class of ,  and it resulted in they not being equivalent, then 
it can be inferred that  and  are not equivalent either.

3) If neither of these two cases holds, then the STBE must be carried out, but its result 
may contribute to constructing the partition further. If  and  turn out to be bisimilar, 
their equivalence classes may be merged. If they are not bisimilar, the result may 
also be stored for future inferences of step 2.
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The details and pseudocode of this algorithm can be found in (21). This procedure takes 
advantage of OP2.

OP3 was capitalized on by conducting an inspection and refactoring of the MUTES source 
code, which is detailed in (21). Logging was muted, and the resulting MUTES v2 shows a 
remarkable improvement in performance. This is evidenced in the results of the experi-
ments.

i. Results of the experiment

The experiment designed for step 4 (section 3d) was conducted using 8 concurrent threads. 
To accomplish the promised parallelism, MUTES v2 and TimBrCheck were equipped with 
ThreadsBash, setting up approaches PM2 and PT, respectively. The results of this experi-
ment are shown in Figure 6. For three TCS, mutant samples of 10 automata were gener-
ated, compared using one of the proposed alternatives, and the ACT was plotted in the 
y-axis. For every approach and system, each box plots the 25 ACTs produced by process-
ing five different samples five times. 

In general, the results are consistent in the sense that they do not vary much between tries 
or samples. The size of the TA seems to have an impact on ACT, as seen with the results 
of system CGC, which is orders of magnitude bigger than the other two. This validates the 
theoretical time complexity of the STBE operation that depends on the number of loca-
tions and transitions (21).

Approach SM had problems with the system CGC and its mutants. That was the only case 
where executions timed out, totaling 20 runs that exceeded the 15-minute limit. We be-
lieve that the first version of MUTES, which is the one used in approach SM, had perfor-
mance problems that would not let it successfully finish in some cases. These problems 
were solved for MUTES v2, which was included in approach PM2. Even though timed-out 
runs were not included in the plotted data, the five runs of SM which successfully finished 
yielded a very high ACT, which further discards the approach. 

Figure 6. Average Comparison Time of four approaches to computing bisimilarity of 
three timed systems and its mutants. Lower is better.
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Applying parallelism proved to be valuable. This is reflected by the halving of ACT be-
tween ST and its parallel counterpart PT and sequential SM, regarding PM2.

However, this experiment leaves a clear winner highlighted in green: Approach PM2, which 
is the proposed solution backed by our work. Even when TimBrCheck is augmented with 
parallel processing in approach PT, the results of PM2 are less than a half of the ACT of 
every other approach.

Given the multiple factors of the computing platform and execution environment that may 
introduce big variations in the measurements, we decided to evaluate the robustness and 
scalability of the proposed solution by executing additional tests. This is detailed in (21), 
where 45 experiments were run on three different computers, two different operating sys-
tems and inputs that vary between 8 to almost 2000 TA, using different configurations and 
numbers of parallel processors. In those experiments, the results presented remain true: 
At worst, PM2 is twice as fast, and at best, six times faster than the other alternatives. With 
the addition of these results, we are confident that the improvements can be applied to 
larger scenarios, because the parallelization technique and problem at hand are suitable 
to scale in concurrency: The STBE processes are completely independent, and therefore no 
race condition, deadlocks or resource starvation is foreseen. In fact, this property could be 
further exploited with other alternatives, such as GPU parallelization or distributed com-
puting, alternatives that were considered in (21) but remain as future work.

One thing to investigate may be the ZHG mechanism that the authors of TimBrCheck 
propose, which they say is necessary to have a correct algorithm (9). This would imply 
differences in precision between TimBrCheck and MUTES that may have an impact on the 
choice of implementation of STBE to be used in MBMT. In this experiment, in particular, 
the output partitions were the same between the four approaches. Nevertheless, we be-
lieve this poses a threat to validity which we are currently looking into.

Conclusions

This article introduces a tool that helps to solve EMP when using UPPAAL models for 
MBMT of TCS. ThreadsBash is a product that can augment available STBE implementations 
with parallelism to determine equivalences between large sets of mutants, and then the 
ones that are equivalent can be pruned. This can be done efficiently with ThreadsBash 
and MUTES v2, as seen in the results of the experiments, where timed bisimulation equiv-
alences are decided two times faster than previously available solutions, accounting for 
environmental factors like configuration and concurrency and input properties like size 
and variety of TA. In fact, our solution is already being used in other scientific work. This 
makes the application of MBMT more viable for adoption in industries that rely on quality 
assurance of systems such as TCS.
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1. Table of abbreviations

Abbreviation Meaning
ACT Average Comparison Time
CGC, GC, CA Subject systems
CLI Command Line Interface
EMP Equivalent Mutant Problem
MBMT Model-Based Mutation Testing
MBT Model-Based Testing
OS Operative System
SMI, SMI-NR, TMI, TAD, CXL, CXS, CCN Mutation operators
SM, ST, PM2, PT Considered solutions

STBE
Strong Timed Bisimulation Equiva-
lence

TA Timed Automata
TCS Time-Critical Systems
TI Transitivity Inference
TTS Timed Transition System
ZG Zone Graph
ZHG Zone-History Graph


	_lhhwjaka72es
	_hhya1ayyfs9j
	_vthdjcpp42rn
	_81b6apks9zyx
	_2l0mlsx23tt0
	_3tuhgw68400f
	_ugmxk6mdu7sh

