
Article of investigation

Ingeniería y
Competitividad
Vol 26 (1) 2024; doi: 10.25100/iyc.v26i1.12840

ISSN
 0123-3033
e- 2027-8284

Vol 26 (1)

Applied reverse engineering in context
Ingeniería inversa aplicada en función del contexto

Martín E. Monroy1 Martin Pinzger2 José L. Arciniegas3

Abstract

Resumen

Keywords: Design recovery,
Education, Framework, Reverse
engineering, Software produc-
tion.

Palabras clave: Educación,
Ingeniería inversa, Marco de
referencia, Producción de
software, Recuperación del
diseño.

How to cite?

Monroy, M.E., Pinzger, M., Ar-
ciniegas, J.L. Applied Reverse
Engineering in Context. Inge-
niería y Competitividad, 2024,
26(1); e-22112840.

https://doi.org/10.25100/iyc.v26i1.12840

Recibido: 2-03-23
Aceptado: 12-02-23

Correspondencia:
mmonroyr@unicartagena.edu.co

This work is licensed under a
Creative Commons Attribu-
tion-NonCommercial-ShareA-
like4.0 International License.

Conflict of interest: none de-
clared

Reverse engineering is applied in multiple contexts. Each context is defined by a group of stakeholders, a set of
resources and situations within a specific scope. There are diverse approaches for reverse engineering, however,
all they assume that it is done in the context of software production. The aim of this work is to define an approach
to recover the design of software products in different contexts. A comparative analysis of reverse engineering
approaches was made using the pattern matching technique. To validate obtained results, a case study was ca-
rried out in two distinct contexts, the first in an education context to support a teaching-learning process and the
second in a software production context to retrieve a software product design. A framework was defined, which
includes a descriptive conceptual system and a set of instrumental elements of operational type, which serves to
guide the software product design recovery process, based on the context in which this activity is carried out. It
is concluded that the defined framework offers a new approach to software design recovery, because it involves
the context where the process takes place and hides its complexity from non-expert stakeholders in reverse en-
gineering.

La ingeniería inversa se realiza en múltiples contextos. Cada contexto está definido por un grupo de participantes, un
conjunto de recursos y situaciones que se encuentran dentro de un ámbito específico. Existen múltiples propuestas
para realizar ingeniería inversa, sin embargo, todas asumen que se hace en el contexto de la producción de software.
El objetivo de este trabajo es proponer un referente para recuperar el diseño de productos software, que pueda ser
utilizado en diferentes contextos. Se hizo un análisis comparativo de los enfoques de ingeniería inversa utilizando la téc-
nica de coincidencia de patrones. Para validar los resultados obtenidos se realizó un estudio de caso en dos contextos
diferentes, el primero en un contexto de educación para apoyar un proceso de enseñanza aprendizaje y el segundo en
un contexto de producción para recuperar el diseño de un producto software. Se definió un marco de referencia con-
formado por un sistema conceptual descriptivo y un conjunto de elementos instrumentales de tipo operativo, que guía
el proceso de recuperación del diseño de productos software, ajustándose a las características del contexto en el que se
realiza esta actividad. Se concluye que el marco de referencia definido, ofrece un nuevo enfoque para la recuperación
del diseño de productos software, porque involucra el contexto en el que se realiza el proceso y oculta su complejidad
a los participantes que no son expertos en ingeniería inversa.

1Universidad de Cartagena, Programa de Ingeniería de Sistemas, Cartagena, Colombia
2Alpen-Adria-Universität, Software Engineering Research Group, Klagenfurt, Austria,
3Universidad del Cauca, Departamento de Telemática, Popayán, Colombia.

https://orcid.org/0000-0003-4135-3251
https://orcid.org/0000-0002-5536-3859
https://orcid.org/0000-0002-1310-9123

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 2 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Why was it carried out?
Reverse engineering is applied in multiple contexts. Each context is defined by a group of stakeholders,
a set of resources and situations within a specific scope. There are diverse approaches for reverse engi-
neering, however, all they assume that it is done in the context of software production. The aim of this
work is to define an approach to recover the software design according to the context situations and
stakeholders’ concerns.

What were the most relevant results?
A framework was defined, which includes a descriptive conceptual system and a set of operational type
instrumental elements, which serves to guide the software product design recovery process, based on
the context in which this activity is carried out.

What do these results provide?
A conceptual model to recover the design and to analyze the recovered documentation, based on the
ISO/IEC/IEEE 42010, ISO/IEC 19506 and UML standards.
A methodology that guides the reverse engineering process, according to the context where the need
arises, and that allows stakeholders to obtain relevant results to them.
The characterization of the reverse engineering contexts of use.
The inclusion of context analysis in the reverse engineering process, represented by the scope, situa-
tions, resources, stakeholders and their concerns.
The design and construction of a query mechanism prototype to support the recovered documentation
analysis.

Graphical Abstract

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 3 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Introduction

There are multiple approaches to recover the design of software products, classified
into techniques (1-4), tools (6-10), methods (11-13), and frameworks (5, 14-18).
Techniques detail how a specific activity of the reverse engineering process should
be carried out. Methods focus on the process and define the logical order of required
activities to recover the design. Tools implement techniques to automate the process,
and frameworks encompass methods, techniques, and tools. The identified approaches
apply activities defined by Tilley et al. (19): data extraction, knowledge organization,
and information exploration. Some focus on software product analysis (11), others on
supporting evolution (12,20), on design reconstructing (12-16), or on product redesign
(17). All are oriented towards the software engineering process, for maintenance, quality

control, redesign, and asset reuse (21).

Reverse engineering is a research field that has attracted the attention of researchers
in recent years from multiple perspectives (12,22,23). Its main goal is to reconstruct
the implicit knowledge in a system, represented in its architectural views (5). Software
architecture is the fundamental organization of a system embodied in its components,
the relationships that exist between them and their environment, and the principles
that govern its design and evolution (24). An architectural view expresses the system’s
architecture through models, built from the perspective of constraints defined by
stakeholders (24). There are various approaches that specify architectural views and
software viewpoints. This implies selecting an approach to represent system views that
fits the situation and context, which increases the complexity of the recovery process
because it requires considering situations, available resources, stakeholders, their
limitations, and purposes.

The reverse engineering study has focused on defining techniques specialized in
reconstructing system design (15,17), in product review (25), evolution and analysis (11),
or in achieving one or more of these purposes simultaneously (12). These approaches
focus more on specific activities of reverse engineering than on the process itself. The
canonical process defined by Tilley et al. (19) has been refined by several proposals. For
example, Symphony (18) focuses on general aspects of architecture recovery and how
to select views to reconstruct. Cacophony (17) defines a generic process driven by meta-
models. Kerdoudi et al. (13) define a product lines design recovery process. Tamburri
and Kazman (12) propose a generic method for architecture recovery. Stormer (11)
focuses on architecture recovery from the perspective of quality attributes. Bruneliere
et al. (5) define a framework based on KDM (Knowledge Discovery Metamodel) aimed
at product modernization. Tamburri and Kazman (12) suggest a process to extract three
system views to facilitate maintenance; and Schmitt et al. (15) propose a reference
framework that includes a set of principles and processes for recovering architectures.
Each of these approaches defines a set of activities for recovering design and
establishes the logical order under which they should be performed.

On the other hand, Stormer (11) identifies the contexts of reverse engineering as:
improving the understanding of the legacy software systems architecture, enhancing
the architecture itself, evaluating the quality system attribute characteristics, and
improving the system design. All of these activities are typical in the software
construction process. For Favre (17) and Ibrahim et al. (14), the context refers to the
physical environment or situation of the application, while for Tamburri and Kazman

https://doi.org/10.1108/DTA-08-2019-0138
https://doi.org/10.1109/ASE.2013.6693106
https://doi.org/10.1109/ICSME52107.2021.00057
https://www.imagix.com/
https://doi.org/10.1109/CSMR.2007.43
https://doi.org/10.1109/ICECCS.2019.00032
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1016/j.jksuci.2023.101706
https://doi.org/10.1109/WICSA.2004.1310696
https://doi.org/10.1109/WPC.1996.501117
https://doi.org/10.1109/CSMR.2007.43
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1049/iet-sen.2019.0246
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.4067/S0718-07642016000500022
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/ICSESS49938.2020.9237742
https://doi.org/10.4067/S0718-07642017000400010
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.1109/CCST.2018.8585654
https://doi.org/10.1109/CSMR.2007.43
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/WPC.1996.501117
https://doi.org/10.1109/WICSA.2004.1310696
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.1109/ICECCS.2019.00032
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/CSMR.2007.43
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1109/CSMR.2007.43
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.1016/j.jksuci.2023.101706

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 4 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

(12), the context corresponds to the development circumstances of the software
product. Only Van Deursen et al. (18) consider aspects related to resource availability
and the stakeholders concerns when recovering the design of the software product.
However, none of the identified proposals in the literature review explicitly take into
account the situations, stakeholders characteristics, scope, or purpose of the context in
which the reverse engineering process is carried out. This creates a gap that complicates
the design recovery in contexts other than software production, which becomes the
main contribution of this research work.

Reverse engineering is an activity that is also conducted in other contexts such as
education (26-28), computer security (25, 29-31), and computer forensics (32), in
addition to software production. Each of these contexts is determined by a scope,
situations, resources, purposes, and stakeholders with particular concerns and
characteristics (23). In this scenario, the following questions arise when reverse
engineering is conducted in contexts other than software production: How to tailor the
reverse engineering process to be relevant to the characteristics of the stakeholders and
their concerns? How to tailor the reverse engineering process based on the situations
present in the context where it is conducted? How to tailor the reverse engineering
process based on the scope and purpose of the context where it is conducted?
And how to conceal the complexity of the reverse engineering process for those
stakeholders who are not experts?

Consequently, we propose a reference framework for design recovery and
documentation retrieved analysis, involving the stakeholders, their concerns,
circumstances related to resource availability, and the situations encountered when
conducting a reverse engineering process. The main contributions of this work are:
A conceptual model for design recovery and the documentation retrieved analysis,
based on ISO/IEC/IEEE 42010, ISO/IEC 19506, and Unified Modeling Language (UML)
standards. A methodology that guides the reverse engineering process according to
the context in which the need arises, enabling stakeholders to obtain results tailored
to their concerns. The characterization of the contexts in which reverse engineering
is applied. The inclusion of the context analysis in reverse engineering process,
represented by the scope, situations, resources, stakeholders, and their concerns. The
design and construction of a prototype query mechanism to facilitate the analysis of the
recovered documentation.

Methodology
Qualitative research consisting of four sequential phases was conducted. The first phase
involved a literature review following the methodological proposal by Peters et al. (33)
to identify reverse engineering approaches used for software product design recovery.
The search was conducted in IEEE, ACM, and Scopus databases using the search
strings (design OR architecture) AND (retrieval OR reconstruction OR recovery). Only
publications from 2018 onwards from indexed journals and conference proceedings in
English were included. Duplicate documents and those that did not refer to software
reverse engineering were excluded.

In the second phase, the identified proposals were characterized using the comparative
analysis technique. The following characteristics were defined to establish similarities
and differences: type of proposal, purpose, stakeholders, and the context for which it
was created. In the third phase, the conceptual structure of the reference framework

https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/WICSA.2004.1310696
https://doi.org/10.36260/rbr.v11i1.1661
https://doi.org/10.1007/978-3-319-55553-9_9
https://doi.org/10.1109/CCST.2018.8585654
https://doi.org/10.1109/ECASE.2019.00015
https://doi.org/10.1109/ICCITM56309.2022.10031698
https://doi.org/10.23919/MIPRO.2017.7973612
https://doi.org/10.4067/S0718-07642017000400010
https://doi.org/10.11124/JBIES-20-00167

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 5 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

was defined using the logical modeling technique for knowledge representation. Each
of the framework components was specified using the pattern matching technique
(34) applied to the proposals found in the literature review. In the fourth phase, the
reference framework was evaluated. The effectiveness and relevance of the reference
framework were assessed through a case study, while its contribution was determined
using a strategy involving the examination of possible rival explanations (34). For
this purpose, a comparative analysis was conducted between the defined reference
framework and similar proposals identified in the literature review. The comparison
variables included the activities performed for design recovery, the underlying
conceptual model, and the elements constituting the context (purpose, scope,
situations, resources, stakeholders, and their concerns).

The case study was conducted based on its five components (34):

Research question: How does the proposed reference framework contribute to the
software design recovery process?
The main proposition states that: the proposed reference framework guides the
software design recovery process based on the context in which it is applied.
Two units of analysis. One in the context of education and the other in the software
development context.
To make logical inferences, effectiveness is defined as the ability of the reference
framework to achieve the proposed objective in each unit of analysis, and relevance
as the degree to which the reference framework conceals complexity and takes
into account the context: scope, purpose, situations, goals, available resources, and
stakeholders’ concerns (See Table 1).

Criteria for interpreting the results: The reference framework is considered effective
if its assessment is above 75% in each unit of analysis of the case study. Relevance is
assessed using the Likert scale, based on stakeholders’ perception in the case study.

In Table 1, data collection instruments, used resources, and evaluated variables with
their respective formulas and metrics are presented.

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 6 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Table 1. Methodological resources

Criterion
Context

Education Software engineering

Information collection
instruments

Student survey Stakeholders survey

Teacher interview Software Architect interview

Students laboratory reports Technical report outlining
the findings presented to the
company

Report on the academic activity
conducted by the teacher

Recovered artifacts

Resources

The subject of study: JHotDraw version 7.0.6 CPL System version 1.0

Enterprise Architect Tools for recovering and visualizing models

QModel-XMI recovering and visualizing models tools

Imagix 4D Source code analysis tool

Evaluated variables

Equation (1) Effectiveness = (AR*100)/RP AR: Achieved Result, ER: Expected
result

AR: Degree of achievement of the
activity’s objective by the students.

AR: Degree of compliance with
the purpose of the recovered
design views.

ER: All students fully achieve the
objectives of the activity

RP: All recovered design views
fulfill their purpose

Relevance: The Likert scale was used to quantify participants’ perception
regarding the following aspects. Hide the complexity HC, Takes into
account the scope Sc, the purpose P, la situation S, the aims A, the resources
R, the stakeholders concerns C.

Results and discussion
Initially, we introduce the reference framework, consisting of a conceptual system and
an instrumental part, which emerge from the theory regarding the nature of the reverse
engineering process and how to approach it. Subsequently, we explain the evaluation
results of the reference framework, and finally, we address the analysis of the results.

Conceptual system

The conceptual system of the reference framework is composed of a conceptual
model, a theoretical base, and a conceptual base (see Figure 1). This last component is
understood as a scientifically shared, external, precise, comprehensive, and consistent
representation of knowledge that facilitates the teaching and understanding of the
object of study. The conceptual base and the theoretical base correspond to the
available literature on reverse engineering. The proposed conceptual model provides
a comprehensive view of reverse engineering and detailed recovery of design and
analysis of the retrieved documentation, which facilitates the understanding and study
of this field of knowledge.

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 7 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Figure 1. Reference framework

The conceptual model encompasses two aspects: the holistic view of reverse
engineering (see Figure 2) and design recovery. Reverse engineering addresses
methods aimed at recovering implicit knowledge within software to support the
execution of activities requiring an understanding of said system. Therefore, the context
in which the need to recover knowledge arises and the process undertaken to achieve
knowledge recovery must be considered. Hence, the conceptual model encompasses
these two elements, as depicted in Figure 2. The context is determined by the scope,
purposes, situations encountered, available resources, and stakeholders with their
concerns, as detailed by Monroy et al. (23). Furthermore, the knowledge recovery
process is determined by a methodology that utilizes techniques, instruments, and tools
to meet established objectives, carrying out activities that generate and require artifacts
according to the action plan.

The conceptual model focuses on understanding each activity involved in the
canonical process of reverse engineering (19) and the artifacts required or generated
in the development of these activities, as observed in Figure 3. The software product
and expert knowledge are used as inputs to identify the artifacts constituting the
system. These artifacts are decomposed using data extraction techniques. As a result,
implicit knowledge within the system is obtained, represented in KDM to facilitate
interoperability between tools. The elements explicit in the syntax of the studied
product (source packages and KDM code) are obtained by applying mapping rules
to the programming language. This is not the case with the abstraction layer and
the runtime resource layer because the elements are implicit and correspond to
higher levels of abstraction, requiring incremental analysis based on primitive KDM
representations.

https://doi.org/10.4067/S0718-07642017000400010
https://doi.org/10.1109/WPC.1996.501117

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 8 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Figure 2. Holistic view of the reference framework.

Knowledge organization techniques are applied to the identified elements to create
UML models of the system, represented in XMI to ensure interoperability. Considering
the established aims for the reverse engineering process, system views are defined,
which may consist of one or several models. Any tool capable of interpreting XMI code
is used to visualize the UML models.

Figure 3. Conceptual model

Each activity has an aim, receives inputs, employs techniques, and produces outputs.
The reverse engineering process begins with data extraction (19). Its main purpose
is to gather the necessary data to obtain the views to be recovered from the system.

https://doi.org/10.1109/WPC.1996.501117

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 9 /18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

This requires the software product to be analyzed and expert knowledge as inputs.
Data extraction includes two tasks: in the first one, artifacts that make up the system
are identified, applying techniques such as manual inspection. The result is a set of
repositories containing: executables, source code files, binary files, configuration files,
resource descriptors, images, documentation, etc. This depends on the availability of
such artifacts in the context in which the reverse engineering process is carried out.
In the second task, the identified artifacts are decomposed using techniques such as
grammatical islands, syntactic analysis, lexical analysis, fuzzy analysis, data flow analysis,
syntactic matches, profiling, and code instrumentation. The result is an XMI repository
of the KDM representation of the product.

The reverse engineering process continues with the knowledge organization activity,
whose purpose is to transform the data derived from extraction to facilitate its
storage, retrieval, and analysis. The result is UML models in XMI of the recovered
documentation. This is achieved using techniques such as clustering algorithms, SQL
queries, Tarski algebra, propositional algebra, relational algebra, reflection model, and
ad-hoc query languages. Finally, information exploration is performed. The purpose
of this activity is to provide mechanisms to visualize, present the results of the reverse
engineering process, and facilitate its analysis. This is achieved with a query mechanism
that extracts implicit information in the recovered models, facilitating the understanding
of the software product.

Instrumental part

It consists of: the guidelines that establish the directives under which the reference
framework was defined and how it should be used; the methodology that guides
the reverse engineering process considering the stakeholders, their concerns, and
the context in which it takes place; the query mechanism to support the analysis of
the recovered design; and the characterization of the contexts in which the reverse
engineering process is carried out.

Guidelines

The reference framework was defined based on the guidelines outlined in Table 2.
To achieve efficient use of the reference framework, it is suggested to: understand
the conceptual elements comprising it, comprehend its conceptual model, utilize
the proposed methodology by applying the recommended techniques and tools for
each activity, involve an expert in the domain of the application and the problem, and
engage a person knowledgeable about reverse engineering instruments, tools, and
techniques.

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 10/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Table 2. Reference framework guidelines

Criterion Guideline

Aim
To guide the reverse engineering process based on the context in which
it occurs, to ensure relevant, accurate, and efficient results, taking into
account that some participants lack experience in reverse engineering.

Scope
It encompasses the recovery of the design of object-oriented software
systems, irrespective of the technologies used for system development and
deployment.

Reference
standards

ISO/IEC/IEEE 42010:2022 for architectural description.

ISO/IEC 19506:2012 as a meta-model for knowledge discovery.

OMG Specification: XMI 2.5.1:2015 y UML 2.5:2015 to facilitate metadata
exchange..

References

Technological: The use of programming paradigms, architectural patterns,
specific technologies, etc..

Human: It should align with the knowledge, skills, abilities, and interests of
the participants in the reverse engineering process.

Necessary and available resources for carrying out the reverse engineering
process.

The context in which the reverse engineering process takes place.

Design recovery Methodology

The proposal is presented as a methodology in coherence with McGregor’s four
axioms (35). The epistemological axiom is embedded in the conceptual elements of the
reference framework. The axiological axiom establishes the following methodological
guidelines: 1) The methodology corresponds to the reverse engineering process. 2)
Existing proposals are integrated to ensure that the results are appropriate for the
context and situation where the reverse engineering process takes place. 3) The reverse
engineering process is structured based on the activities defined by Tilley et al. (19). 4)
The process defines the proposed goals, activities, and the logical sequence in which
they are executed; the input and output resources; as well as the techniques applied
and the instruments used to achieve the stated goals. The ontological axiom establishes
reverse engineering as the object of study under a specific context (23). Lastly, the
logical axiom consists of the sequence of actions that make the reverse engineering
process feasible.

In addition to the axioms, the methodology defines a structured process in phases:
Inception, data extraction, knowledge organization, and information exploration. Each
phase encompasses activities aimed at achieving the goals and milestones set for
accomplishing the objectives established for the process, supported by techniques and
the use of various tools and instruments (see Figure 4). The sequence of activities is
defined in the action plan, which, like the process objectives, is established based on
the context and situation in which the reverse engineering process takes place. For each
activity, the motivation, stakeholders, and artifacts (inputs and outputs) are defined. If
the activity is structured into tasks, these aspects are also defined for each task.

https://doi.org/10.1111/j.1470-6431.2010.00883.x
https://doi.org/10.1109/WPC.1996.501117
https://doi.org/10.4067/S0718-07642017000400010

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 11/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Figure 4. Design recovery methodology.

The inception phase purpose is to understand the problem context, for which the
following are identified: the scope, the stakeholders and their concerns, the situation
that triggers the design recovery process, the available resources, and the objectives
to be achieved. This phase consists of three sequential activities with their respective
milestones: 1) Context Defining: defining the scope of the problem, 2) Feasibility
Analysis: determining the feasibility of the reverse engineering process, and 3) Process
Planning: establishing the action plan. To specify the scope of the reverse engineering
process situation, two goals are set: 1) Define the context, determined by the scope, the
stakeholders and their concerns, the process objectives, and the available resources.
2) Describe the situation where the reverse engineering process takes place, for which
the causes are established, the circumstances of the context are determined, and the
potential consequences are defined, in order to establish the process objective. The
result of this activity is the document with the description of the problem context.

The feasibility analysis process determines whether all the required resources are
available to achieve the established objective for the reverse engineering process.
The goal of this activity is to identify the project’s feasibility. To accomplish this, it is
recommended to: 1) Define the views that must be recovered based on the context. 2)
For each view, identify the required software artifacts. 3) Verify the availability of these
artifacts. If they are not available, the process ends. 4) Identify the required techniques
and tools for recovering the target views. 5) Check the availability of the required
tools. If the tools are not available, the process ends. 6) Determine if it’s necessary
to qualify the participants or have specialized personnel and define the respective
costs. 7) Determine the cost of the reverse engineering process and its viability based
on the cost-benefit relationship. The outputs of this activity are the decision on the
feasibility of the reverse engineering process, the target views, the required and
available artifacts, the cost of the process, and the tools and techniques to be used.
Finally, in the inception phase, the sequence of activities for the reverse engineering

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 12/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

process is defined based on the participants’ experience, assigning responsibilities and
deliverables. The output is the action plan, the resources, and the responsible parties.

The purpose of the data extraction phase is to identify the structural and low-level
behavioral elements of the software, along with their relationships. It consists of
two activities: 1) Defining the system’s domain model using conceptual modeling
techniques, and 2) Decomposing the system artifacts to obtain the target views using
transformation techniques. Depending on the context in which the reverse engineering
process is conducted, the first activity may be performed iteratively and concurrently
with activities from the inception and information exploration phases. This is because it
helps identify the artifacts to be recovered, guides participants in defining the process
feasibility, process plan, and resource allocation. Additionally, it can be used for model
abstraction. The inputs for this activity include expert knowledge, problem description,
and participant input. In the second activity, static and dynamic analysis techniques
are applied to the artifacts constituting the software implementation to identify its
elements and relationships. The outcome of this activity is the low-level system model
represented in formats such as KDM, FAMIX, Rigi Standard Format, among others (5).

In the knowledge organization phase, the purpose is to transform the low-level models
obtained in the previous phase into high-level models, representing and storing them
in formats that facilitate their retrieval and analysis. The activities involved are: 1) Model
abstraction: Expert domain knowledge is utilized, and mapping rules are applied to
transform the extracted artifacts into high-level system elements constituting the
target views. This is achieved using manual, semi-automatic, and automatic knowledge
organization techniques. 2) Model representation: The goal here is to represent
the UML in XMI format of the elements and relationships obtained in the model
abstraction, thus achieving the milestone of this phase.

The information exploration phase culminates in the preparation of a report detailing
the recovered design and its analysis, arguing the achievement of the established
objectives for the reverse engineering process. Therefore, it provides mechanisms for
presenting, visualizing, navigating, and analyzing the results of the reverse engineering
process. The activities involved are: 1) Visualization: The results obtained in the previous
phase are presented graphically to facilitate interpretation and understanding for
the process participants. This can be done at the architecture, class, and/or source
code level using modeling tools and code editors. This activity applies metaphors and
mapping techniques to present the target views and is complemented by navigation
strategies using hyperlinks to allow exploration of the recovered views. 2) Results
Analysis: The goal is to interpret the recovered views. Inference techniques are applied
to analyze the views, with support from domain experts in the application and problem.
The proposed query mechanism can be used as a supporting tool in this activity.3)
Results Formulation: The obtained results are organized and presented in a final report
to facilitate interpretation by the process participants. Depending on the participants’
working style, the activities of this phase can be performed sequentially or concurrently.

Query Mechanism

A mechanism was designed and implemented to facilitate the analysis of the recovered
views (36, 37) in their KDM and/or UML representations in XMI using the XQuery
language. The mechanism employs a text interface that accepts queries in natural
language (Spanish) and applies them to the recovered views. It comprises two groups of

https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.4067/S0718-07642017000500011
https://doi.org/10.48082/espacios-a20v41n45p17

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 13/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

elements (see Figure 5). The first group includes artifacts received as input or generated
as output, such as: 1) Original Query: The question formulated in natural language. 2)
Processed Query: The statement expressed in XQuery. 3) Result: The response in natural
language to the original query. 4) UML Model: A file containing the recovered UML
views expressed in XMI. 5) KDM Representation: A repository with system elements,
their relationships, and operating environments expressed under the KDM specification.

Figure 5. Query mechanism

The second group comprises the components of the mechanism, consisting of: 1)
Interaction Module: Allows input of the original query and visualization of the results. 2)
Linguistic Analyzer: A finite automaton validates the syntax and grammar of the query.
If correct, it transforms the original query into a processed query. 3) Query Engine:
Generates the result by executing the processed query on the repository containing
the models. The query mechanism operates with the following algorithm: The query is
written in natural language in the interaction module, the linguistic analyzer validates
the syntax and grammar. If correct, the type of query (simple query, compound query,
or metric calculation) is determined. Next, the query engine executes the processed
query depending on the identified type, and finally, the interaction module presents the
results.

Contexts of use

As a result of the research, the following contexts of reverse engineering use were
determined (23): 1) Software Production: In software lifecycle processes such as
documentation, maintenance, asset reuse, and verification. 2) Cybersecurity: To define
strategies to address risks and issues caused by malicious code that may be present
in the system (29-31), facilitating its analysis and understanding. It can also be used
to identify potential security vulnerabilities in software systems (25,29). 3) Computer
Forensics: To construct evidence that demonstrates facts and allows the formulation of
hypotheses (32), facilitating the recovery and presentation of electronically processed
data stored in computational media. 4) Education: Used as a didactic tool to facilitate
learning based on real cases of successes and failures, stimulate curiosity, and foster the
development of design, programming, and maintenance skills (26-28). Additionally, it

https://doi.org/10.4067/S0718-07642017000400010
https://doi.org/10.1109/ECASE.2019.00015
https://doi.org/10.1109/ICCITM56309.2022.10031698
https://doi.org/10.1109/CCST.2018.8585654
https://doi.org/10.1109/ECASE.2019.00015
https://doi.org/10.23919/MIPRO.2017.7973612
https://doi.org/10.36260/rbr.v11i1.1661
https://doi.org/10.1007/978-3-319-55553-9_9

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 14/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

facilitates the understanding of concepts in the field of software engineering, such as
pattern identification using reverse engineering techniques (22).

Reference Framework evaluation

The analysis of the evaluation results is conducted from two perspectives. Initially, it
is based on the outcomes of the case study, and subsequently, on the comparison of
the reference framework with other similar approaches. Table 3 presents the results of
the case study highlighting the achievement of milestones set for each phase of the
methodology proposed in the Reference Framework.

The effectiveness of the Reference Framework was calculated based on Equation (1).
The achieved result corresponds to the degree of accomplishment of the objectives
set for each unit of analysis. In the educational context, the objective comprises three
components: understanding polymorphism concept, identifying its usage in the source
code, and its application by the student, as shown in Table 4. In the software production
context, the assessment of the degree of achievement of the purpose of each recovered
view was made by the software architect, considering the utility that each generated
view represented when making decisions to extend the system’s functionality, using a
scale from one to ten, where 1 indicates that it did not represent any utility and 10 that
it was completely useful. In both cases, the effectiveness of the Reference Framework
was greater than 80%, thus fulfilling this purpose. Figures 6 and 7.

https://doi.org/10.1109/ICSESS49938.2020.9237742
https://doi.org/10.1108/DTA-08-2019-0138

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 15/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Table 3. Case study results for each unit of analysis.

Phase First Unit of Analysis Second Unit of Analysis

Inception

Context Education Software Production

Scope
Teaching - Learning Object Oriented Programming
(OOP)

Development of custom software for a company in the industrial
sector of Cartagena

Purpose
Develop programming skills by applying the OOP
paradigm

 Extend the functionalities of the CPL System version 1.0

Situation
Conducting a course on OOP in the Systems
Engineering program of the University of Cartagena

The new software architect does not know the system and needs to
add functionalities at the request of the Company’s management.
There is no system documentation

Aim
Understand the concept of polymorphism and
develop skills to use it correctly through laboratory
practic.

Recover the logical view and system deployment view to extend its
functionalities.

Stakeholders
and concerns

Product Architect. He must guarantee the architectural integrity of
the CPL System

16 students. They want to learn the study topic.
5 Programmers. They must develop the new functionalities of the
system based on the architectural decisions made

A teacher. He wants to guide the learning process.
Expert in the problem domain. He must collaborate in the
reconstruction of the system information

Company Manager. He wants to extend the functionality of the
system

Resources

 CPL System version 1.0
The software product under study was JHotDraw
version 7.0.6

Business process models

Enterprise Architect tool: to retrieve artifacts and
visualize them

Data dictionary

Imagix 4D: to calculate source code metrics (10) Enterprise Architect tool: to retrieve artifacts and visualize them

QModel-XMI: to analyze the recovered models Imagix 4D: to calculate source code metrics (10)

 QModel-XMI: to analyze the recovered models

Artifacts to be
recovered

Modules (Components) of the system Modules (Components) of the system

System classes
System
classes

 System Deployment View

Data
extraction

Recovered artifacts

Responsible Artifac Responsible Artifac

Teacher

Domain of the analyzed system: Product developed in
Java used by multiple applications to create and edit
graphics.

Expert in
the problem
domain

CPL System domain: plastic packaging production
control. It allows inventory control of production
and raw materials used, generating performance
indicators that support management decisions.

Using Imagix 4D he identified that JHotDraw
has 1,217 classes, 37 interfaces organized in 122
packages, 32,054 code lines and 18,931 comments
lines.

Software
Architect

Using Imagix 4D he identified that the system is
a Java application, made up of 1,302 classes and
3 interfaces distributed in 137 packages. It has
66,095 code lines and 9,872 comments lines. For
persistence use MARIADB together with SQL Server
interfaces

Students
Classes model in XMI format: They used Enterprise
Architect to recovery this view from JHotDraw.

 Developers
System class model in XMI format: They used
Enterprise Architect to recovery the class model of
each system package.

Knowledge
organization

Teacher

View of components and connectors: He applied
mapping rules and used semi-automatic and
manual techniques to obtain a high-level system
representation.

Software
Architect

View of components and connectors: He applied
mapping rules and used semi-automatic and
manual techniques to obtain a high-level system
representation.

Deployment View: He analyzed the system
infrastructure at runtime.

Information
exploration

Students

Lab Report: Used Enterprise Architect to visualize
the retrieved views. With the query mechanism
they interpreted and analyzed the retrieved views
(see Figure 6), which allowed them to identify the
application of polymorphism.

Software
Architect

With the query mechanism, he analyzed the
recovered artifacts and concluded that the
product is structured into four layers (See Figure
7). He observed that the system follows good
software development practices. He recommended
conducting a code cloning analysis to identify
reusable assets and debug the system. This
information is disclosed without prejudice to the
confidentiality agreement signed with the Company

Teacher
He prepared the report of the academic activity
carried out.

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 16/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Figure 6. Use of the query mechanism

Figure 7. Components and connectors CPL system view.

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 17/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Table 4. Reference framework effectiveness evaluation

Context Source Criterion RA RP effectiveness

Education

Report on the
academic activity
conducted by the
teacher

The students understood the polymorphism
concept

15 16 94%

83%
The students identified where polymorphism
applies

13 16 81%

The students applied the polymorphism
concept

12 16 75%

Software
production

Software Architect
interview

System Modules (Components) 9 10 90%

87%System Classes 9 10 90%

Deployment view 8 10 80%

To assess relevance, a survey was conducted with 23 participants in the case study: 16
students, one professor, one software architect, and five developers. The survey aimed
to identify their perception using the Lickert scale (38), regarding the degree to which
the Reference Framework addresses complexity (HC), considers scope (Sc), purpose
(P), situation (S), aims (A), available resources (R), and stakeholders’ concerns (C). As
shown in Table 5, each of these aspects received an approval rating exceeding 80%.
Consequently, it can be affirmed that the Reference Framework effectively guides the
software design recovery process in a manner pertinent to the context in which the
need arises.

Table 5. Frequency in percentage for the values of the Lickert scale

Cate
gories

Scale
HC Sc P S A R C

% n % n % n % n % n % n % n

1
Totally
agree 52,17 12 30,43 7 60,87 14 47,83 11 52,17 12 30,43 7 39,13 9

2 Agreed 39,13 9 65,22 15 30,43 7 47,83 11 39,13 9 52,17 12 52,17 12

3

Neither
agree nor
disagree 4,35 1 0,00 0 8,70 2 0,00 0 8,70 2 8,70 2 8,70 2

4 Disagree 4,35 1 0,00 0 0,00 0 4,35 1 0,00 0 8,70 2 0,00 0

5
Strongly
disagree 0,00 0 4,35 1 0,00 0 0,00 0 0,00 0 0,00 0 0,00 0

Total 100,00 23 100,00 23 100,00 23 100,00 23 100,00 23 100,00 23 100,00 23

In the literature review, 112 proposals were identified, of which 51 were selected and
classified (see Table 6). Considering that only five define a generic process for software

https://doi.org/10.3389/fpsyg.2021.637547

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 18/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

designs recovery, the comparative analysis also included Modisco (5), Cacophony (17),
and Symphony (18) because they are representative references in reverse engineering.
All the analyzed proposals belong to the software development domain and are used
in maintenance situations (13-18), model-driven reverse engineering (5), and product
evolution or migration (12). Similarly, their purpose and participants are specific to the
software development context, and only (14) and (15) do not present a conceptual
model (CM) to facilitate their interpretation, as observed in Table 7.

Table 6. Proposals classification identified in the literature review

Proposal type Scopus
IEEE
Xplore

ACM
Digital
Library

Total

Algorithm 3 1 4

Software product analysis
techniques

3 1 4

Technique evaluation 3 3

Software maintenance 1 1

Design recovery process 5 5

Systematic review 4 1 5

Technique 23 2 4 29

Total 42 4 5 51

On the other hand, all identified proposals follow the canonical reverse engineering
process defined by Tilley et al (19), as observed in Table 8. Therefore, the defined
reference framework integrates and complements them by including determinant
aspects of the context, allowing the recovery and analysis of the design to be
conducted taking into account the stakeholders’ concerns, the available resources,
and the purposes that arise in different situations in the field of software construction,
education, cybersecurity, and forensic computing. It also incorporates a conceptual
model that facilitates understanding reverse engineering, which is useful for process
participants who are not experts in the field, as observed in the conducted case
study. Additionally, the reference framework establishes guidelines and defines a
methodology that follows the canonical process (19), including an inception phase to
specify the problem context, define the process feasibility, and establish the action
plan. Furthermore, it defines a query mechanism implemented in a prototype, which
serves to support the analysis of documentation represented in UML models. The
main advantage of the query mechanism lies in its ability to ask questions in natural
language, making this type of analysis easier for process participants with little
experience.

https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.1109/WICSA.2004.1310696
https://doi.org/10.1109/ICECCS.2019.00032
https://doi.org/10.1109/WICSA.2004.1310696
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1016/j.jksuci.2023.101706
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1109/WPC.1996.501117
https://doi.org/10.1109/WPC.1996.501117

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 19/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Table 7. Comparison between existing proposals

References MC Purpose Stakeholders

(5) Yes
Facilitate system design recovery under the
MDE approach

Software engineers and developers

(12) Yes
Recover the architecture of mission-critical
systems

Software architects and developers

(13) Yes Recover the architecture of product lines Development team

(14) No
Recovery the product architecture based on
the contextual knowledge for which it was
developed

Software engineers, developers, software
architects and testing experts

(15) No
Recover product architecture and evaluate
changes

Software engineers and developers

(16) Yes Evolution of software architecture Software engineers and developers

(17) Yes Recover system architecture
Developers, integrator, architect, product
manager and test architect

(18) Yes
Recover the necessary views of the software
product

Software architects, developers, people
responsible for migration or customization of
the product, responsible for the problem and
commercial representatives

The defined Reference Framework does not incorporate new techniques, nor define new
algorithms, nor modify the canonical process of reverse engineering; therefore, it does
not rely on specific technologies such as programming languages, application types,
among others. It can be used in conjunction with other proposals if circumstances
require it. To achieve the process objectives, it is essential to correctly define the
scope, resources, stakeholders, and their concerns in each situation that arises, as well
as the system views to be recovered. As future work, we propose to define or adapt
new design recovery techniques that are intuitive and integrated into the Reference
Framework so that they can be used by different stakeholders, regardless of their level
of expertise in reverse engineering. Additionally, validating the defined Reference
Framework in the contexts of cybersecurity and computer forensics is also proposed.

https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/ICECCS.2019.00032
https://doi.org/10.1016/j.jksuci.2023.101706
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1049/iet-sen.2019.0246
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.1109/WICSA.2004.1310696

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 20/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

Table 8. Activities of the canonical reverse engineering process

Conclusions
The case study results allow us to conclude that the defined reference framework
offers a new approach, which guides the software design recovery and documentation
retrieved analysis, in a pertinent manner with the characteristics of the stakeholders and
their concerns, based on the situations present in the context where it is carried out,
taking into account the scope, its purpose, and hiding the complexity of this process
from those participants who are not experts in reverse engineering. The reference
framework integrates existing approaches (5, 12-18) and complements them by
including the context, a conceptual model, a set of guidelines, a methodology, and a
query mechanism. It differs from these approaches because it can be used in contexts
other than software development. Additionally, in its application, it can be integrated
with different techniques and tools.

References
[1] B. Arasteh, R. Sadegi & K. Arasteh. Bölen: Software module clustering method

using the combination of shuffled frog leaping and genetic algorithm. Data
Technologies and Applications, vol. 55, no. 2,. pp. 251-279. 2021. https://doi.
org/10.1108/DTA-08-2019-0138

[2] A. Shatnawi, A.D. Seriai, H. Sahraoui et al. Reverse engineering reusable software
components from object-oriented APIs, J. Syst. Softw., 131, pp. 442–460, 2017

[3] F.A. Fontan, M.V. Mäntylä, M.Zanoni et al: Comparing and experimenting
machine learning techniques for code smell detection, Empir. Softw. Eng., vol 21,
no. 3, pp. 1143–1191 , 2016

[4] J. García, I. Ivkovic, N. Medvidovic. A comparative analysis of software
architecture recovery techniques. 28th IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE’13), Clayton, Australia, pp. 486–496, 2014

Activities
References

(5) (12) (13) (14) (15) (16) (17) (18)

Data
extraction

Injection

Source
code micro
analysis, code
categorization

Reverse
engineering of
architectural
variants,

Do code
analysis

Preparation,
extraction

Domain and
asset analysis,
requirements
analysis.

Problem
identification,
concept

Knowledge

Blocks
Identification
and functions
naming,
dependencies
identification,
construction
of multiple
views.

Identify
standard

Analysis
Specification of
metamodels,

Knowledge
inference

Information
exploration

Derivation of
architectural
variants

Represent
the
recovered
architecture

Evolution
Information
interpretation

https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1007/s10664-017-9543-z
https://doi.org/10.1109/ICECCS.2019.00032
https://doi.org/10.1016/j.jksuci.2023.101706
https://doi.org/10.1145/3368089.3417941
https://doi.org/10.1049/iet-sen.2019.0246
https://doi.org/10.1109/WCRE.2004.15
https://doi.org/10.1109/WICSA.2004.1310696

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 21/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

[5] H. Bruneliere, J. Cabot, G. Dupé y F. Madiot, “Modisco: A model driven reverse
engineering framework”, Information and Software Technology, vol. 56, no. 8, pp.
1012-1032, 2014. https://doi.org/10.1016/j.infsof.2014.04.007

[6] M. Moser and J. Pichler, “eknows: Platform for Multi-Language Reverse
Engineering and Documentation Generation,” 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Luxembourg, 2021, pp. 559-
568, doi: 10.1109/ICSME52107.2021.00057.

[7] T. A. Ghaleb, K. Aljasser and M. A. Alturki, “Enhanced Visualization of Method
Invocations by Extending Reverse-engineered Sequence Diagrams,” 2020
Working Conference on Software Visualization (VISSOFT), Adelaide, SA, Australia,
2020, pp. 49-60, doi: 10.1109/VISSOFT51673.2020.00010.

[8] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt and A. Amjad, “A Model
Driven Reverse Engineering Framework for Generating High Level UML Models
From Java Source Code,” in IEEE Access, vol. 7, pp. 158931-158950, 2019,
doi:10.1109/ACCESS.2019.2950884.

[9] Sparx Systems. Architect. User Guide Serieshttps://sparxsystems.com/resources/
user-guides/15.2/model-domains/software-models.pdf. 2021

[10] Imagix Corp. Imagix 4D. Disponible en https://www.imagix.com/
[11] C. Stormer, “Software quality attribute analysis by architecture reconstruction

(squa3re)”, 11th European Conference on Software Maintenance and
Reengineering (CSMR’07), IEEE, 2007, pp. 361-364. https://doi.org/10.1109/
csmr.2007.43

[12] D. A. Tamburri y R. Kazman, “General methods for software architecture recovery:
a potential approach and its evaluation”. Empirical Software Engineering, vol. 23,
no. 3, pp. 1457-1489. 2018. https://doi.org/10.1007/s10664-017-9543-z

[13] M. L. Kerdoudi, T. Ziadi, C. Tibermacine and S. Sadou, “Recovering Software
Architecture Product Lines,” 2019 24th International Conference on Engineering
of Complex Computer Systems (ICECCS), Guangzhou, China, 2019, pp. 226-235,
doi: 10.1109/ICECCS.2019.00032.

[14] K. Ibrahim, H. Hassan, K.T. Wassif y S. Makady. Context-Aware Expert for Software
Architecture Recovery (CAESAR): An automated approach for recovering software
architectures. Journal of King Saud University-Computer and Information
Sciences, vol. 35, no. 8, pp. 101-106, 2023.

[15] M. Schmitt Laser, N. Medvidovic, D.M. Le, & J. Garcia. ARCADE: an extensible
workbench for architecture recovery, change, and decay evaluation. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering pp.
1546-1550, 2020.

[16] D. Guamán, D., J. Pérez, J. Diaz & C.E. Cuesta. Towards a reference process for
software architecture reconstruction. IET Software, vol. 14, no. 6, pp. 592-606,
2020

[17] J. M. Favre, “Cacophony: Metamodel-driven software architecture
reconstruction”, 11th Working Conference on Reverse Engineering, IEEE, 2004,
pp. 204-213. https://doi.org/10.1109/wcre.2004.15

[18] A. Van Deursen, C. Hofmeister, C, R. Koschke, L. Moonen y C. Riva, “Symphony:
View-driven software architecture reconstruction”. Proceedings. Fourth Working
IEEE/IFIP Conference on Software Architecture, IEEE, 2004, pp. 122-132. https://
doi.org/10.1109/wicsa.2004.1310696

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 22/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

[19] S. R. Tilley, P. Santanu y D. B. Smith, “Towards a framework for program
understanding”, WPC’96. 4th Workshop on Program Comprehension, IEEE, 1996,
pp. 19-28. https://doi.org/10.1109/wpc.1996.501117

[20] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino y A. Di Salle,
“Towards recovering the software architecture of microservice-based systems”.
International Conference on Software Architecture Workshops (ICSAW), IEEE,
2017, pp. 46-53. https://doi.org/10.1109/icsaw.2017.48

[21] M. E. Monroy, J. L. Arciniegas y J. Rodríguez, “Recuperación de Arquitecturas de
Software: Un Mapeo Sistemático de la Literatura”, Información Tecnológica, vol.
27, no. 5, pp. 201-220, 2016. https://doi.org/10.4067/s0718-07642016000500022

[22] H. Zhang and J. Liu, “Research Review of Design Pattern Mining,” 2020 IEEE 11th
International Conference on Software Engineering and Service Science (ICSESS),
Beijing, China, 2020, pp. 339-342, doi: 10.1109/ICSESS49938.2020.9237742.

[23] M. E. Monroy, J. L. Arciniegas y J. Rodríguez, “Caracterización de contextos de
uso de la ingeniería inversa”, Información Tecnológica, vol. 28, no. 4, pp. 75-84,
2017. https://doi.org/10.4067/s0718-07642017000400010

[24] IEEE/ISO/IEC International Standard for Software, systems and enterprise--
Architecture description, International Organization for Standardization, Ginebra,
Suiza, 2022

[25] A. Di Federico, P. Fezzardi and G. Agosta, “rev.ng: A Multi-Architecture
Framework for Reverse Engineering and Vulnerability Discovery,” 2018
International Carnahan Conference on Security Technology (ICCST), Montreal,
QC, Canada, 2018, pp. 1-5, doi: 10.1109/CCST.2018.8585654.

[26] M. E. Monroy, G. E. Chanchí y M. A. Ospina, “Desarrollo de habilidades técnicas
en ingeniería de software aplicando ingeniería inversa”, Revista Boletín Redipe,
vol. 11, no. 1, pp. 534-550, 2022. https://doi.org/10.36260/rbr.v11i1.1661

[27] E.J. López, M.A. Flores, G.L. Sandoval, B.L., Velázquez, J.J., Vázquez & L.A.
Velásquez. Reverse engineering and straightforward design as tools to improve
the teaching of mechanical engineering. Industry Integrated Engineering
and Computing Education: Advances, Cases, Frameworks, and Toolkits for
Implementation, pp. 93-118. 2019.

[28] “I. Verner & M. Greenholts. Teacher education to analyze and design systems
through reverse engineering. In Educational Robotics in the Makers Era 1.
Springer International Publishing, pp. 122-132, 2017.

[29] A. Sejfia, “A Pilot Study on Architecture and Vulnerabilities: Lessons Learned,”
2019 IEEE/ACM 2nd International Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based Software Engineering (ECASE),
Montreal, QC, Canada, 2019, pp. 42-47, doi: 10.1109/ECASE.2019.00015.

[30] A. P. David, Ghidra Software Reverse Engineering for Beginners: Analyze, identify,
and avoid malicious code and potential threats in your networks and systems,
Packt Publishing, 2021.

[31] M. F. Ismael and K. H. Thanoon, “Investigation Malware Analysis Depend on
Reverse Engineering Using IDAPro,” 2022 8th International Conference on
Contemporary Information Technology and Mathematics (ICCITM), Mosul, Iraq,
2022, pp. 227-231, doi: 10.1109/ICCITM56309.2022.10031698.

[32] K. Hausknecht and S. Gruičić, “Anti-computer forensics,” 2017 40th International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 2017, pp. 1233-1240, doi: 10.23919/
MIPRO.2017.7973612.

Ingeniería y Competitividad, 2024 vol 26(1) e-22112840/ enero-abril 23/18
doi: 10.25100/iyc.v26i1.12840

Applied Reverse Engineering in Context

[33] M. D. Peters, C. Marnie, A.C. Tricco, D. Pollock, Z. Munn, L. Alexander, L., ... & H.
Khalil, (2020). Updated methodological guidance for the conduct of scoping
reviews. JBI evidence synthesis, vol. 18, no. 10, pp. 2119-2126.

[34] R. K. Yin, “Case study research: Design and methods”, Sage publications, 2013.
[35] S. L. McGregor y J. A. Murnane, “Paradigm, methodology and method:

Intellectual integrity in consumer scholarship”, International journal of consumer
studies, vol. 34, no. 4, pp. 419-427, 2010. https://doi.org/10.1111/j.1470-
6431.2010.00883.x

[36] M. E. Monroy, J. L. Arciniegas y J. C. Rodríguez, “Mecanismo de Consulta para el
Análisis de Arquitecturas Recuperadas”. Información tecnológica, vol. 28, no. 5,
pp. 87-100, 2017. http://dx.doi.org/10.4067/S0718-07642017000500011

[37] M. E. Monroy, J. C. Rodríguez y P. Puello, “QModel-XMI: un mecanismo de
consulta para modelos XMI”, Revista Espacios, vol. 41, no. 5, pp. 218-228, 2020.
https://doi.org/10.48082/espacios-a20v41n45p17

[38] A.T. Jebb, V. Ng, & L. Tay. A review of key Likert scale development advances:
1995–2019. Frontiers in psychology, Vol. 4, no. 12, pp. 637547. 2021.

	Resumen
	Abstract
	Correspondencia:
	_heading=h.30j0zll

