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Abstract 

Recibido: 18 de septiembre de 2021 – Aceptado: 28 de febrero de 2022 

 

In the manufacturing industry, it is important to reduce machining deviations as soon as possible to avoid the cost 

associated with reworks. The definition of mathematical models that predict future failures in the diagnosis of 

combustion engines associated with errors in machining is a way that helps to save time and money in a process. This 

paper proposes the analysis and establishment of correlations between the deviations of the machining in cylinder 

heads and the rejections of an engine cold testing in an automotive manufacturing company. To determine the 

relationships, a sample of heads and engines was measured in two months, and statistical models were established 

using inferential statistics. It was possible to establish 77 statistical models that allow predicting which machining of 

the cylinder heads are contributing to the rejects and therefore adjust the corresponding tools. Due to a large amount 

of data from the results of the 77 models, this article shows only one model which is one of the most representatives. 

Using this statistical model, it was possible to know which characteristic of the tool should be adjusted in addition it 

was also possible to know that the test limits for oil pressure have to be adjusted in the engine cold testing. 
 

Keywords: Engine cold testing, Head cylinder machining, Inferential statistics, Variables correlation, Quality 

control. 
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Resumen 

 
En la industria manufacturera es de gran importancia reducir las desviaciones de maquinado tan pronto como sea 

posible para evitar costos asociados con los retrabajos. La definición de modelos matemáticos que predicen futuras 

fallas en el diagnóstico de motores de combustión asociados con los errores en los maquinados es una manera que 

ayuda a ahorrar tiempo y dinero en el proceso. Este trabajo propone el análisis y establecimiento de correlaciones entre 

las desviaciones del maquinado en cabezas de cilindros y los rechazos de un banco de pruebas en frio en una empresa 

que produce automóviles. Para determinar las relaciones, se midió una muestra de cabezas y motores en un período de 

dos meses y mediante estadística inferencial se establecieron modelos estadísticos. Se logró establecer 77 modelos 

estadísticos que permiten predecir qué maquinados de las cabezas de cilindros están contribuyendo a los rechazos y 

por tanto ajustar las herramientas correspondientes. Debido a la gran cantidad de datos de los resultados de los 77 

modelos, este artículo muestra solo un modelo el cual es uno de los más representativos. Utilizando este modelo 

estadístico fue posible saber cuál característica de la herramienta debe ser ajustada además también se encontró que 

los límites de prueba para la presión de aceite tienen que ser ajustados en el banco de pruebas en frio. 

 

Palabras clave: Banco de pruebas en frío, Maquinado de cabeza de cilindros, Estadística inferencial, Correlación de 

variables, Control de calidad. 
 

1. Introduction 

Statistics in the industry help to establish 

relationships between variables, predictions (1,2), 

continuous improvement, statistical control, and 

problem-solving process. Regarding continuous 

improvement, Jia et al. (3) established a quality 

control method in the textile industry based on the 

statistical information generated by images from 

a camera of the condition of defective and non- 

defective fabrics. On the other hand, the statistical 

process control or SPC allows knowing if a 

process is capable of producing parts without 

defects. Moica (4) confirmed that the use of SPC 

in the production of aluminum parts has a 

significant influence on cost reduction; He 

recorded the costs derived from internal and 

external failures to the manufacturing process in 

12 months before implementing the SPC, later he 

recorded the costs and was able to determine the 

improvement by estimating the cost reduction. 

For their part, Wang et al. (5) were able to establish 

a complete control system by presenting a 

multivariate statistical process control method 

(MSPC). In this method, the influences of the 

operations before and after the operation analyzed 

were included and not as in the case of SPC from 

a traditional study. 

Regarding relationships between variables, Qi Q. 

et al. (6), proposed an improvement method by 

eliminating redundant design specifications. They 

determined the dependence between surface 

roughness specifications of mechanical parts 

through a correlational statistical study and 

eliminated unnecessary specifications. In 

addition, Mahmoud et al (7) were able to predict 

the correlation between hardness and mechanical 

stress of aluminum casting manufactured with 

different amounts of silicone using a statistic 

regression modeling approach. Mikó (8), in his 

work about mechanical measurements, was able 

to establish an adjusted regression model to 

predict values of flatness on surfaces of 

mechanical parts. However, unlike Mahmoud and 

Mikó, it is necessary to predict the behavior of the 

dependent variables at the population level. 

Therefore, the use of inferential statistics is 

required, which can give relationships between 

variables and establish significant statistical 

models as in the case of Heidarian and Palkowski 
(9) who, through a multiple and significant 

regression model, were able to determine the 

relationship between the resulting eccentricity of 

tubes after a manufacturing process where the 

controlled variables were the mechanical 

properties of the material, the geometry and the 

tool for the manufacture of the tubes. 
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For this research work, inference statistics 

allowed to determine the relationship between the 

parameters recorded in an engine cold testing with 

the machining characteristics of the cylinder 

heads in a problem-solving process. The quality 

control process implemented in the company 

where the research was developed uses coordinate 

measuring machines and engines cold testing. The 

coordinate machines are used to control the 

machining of the internal components, and the 

engine cold testing evaluates the general 

assembly at the end of the production line. The 

engines are 100% checked, and the tests are 

automatically done. The engine cold testing uses 

a servomotor to freely rotate the crankshaft 

engine. In this process, there is not combustion, 

the fuel is not used. This is the reason why the test 

is named engine cold testing (10-13). During the 

diagnosis, when the servomotor rotates the 

crankshaft (10,11,13), the following parameters are 

measured: air pressure, oil pressure, vibrations 

and noises in the head and cylinder block, 

components synchronization, and torques (10-12,14). 

With the values obtained from the measurements, 

the engine cold testing computer compares with 

reference limits, and in this way an engine is 

rejected or accepted. The reference limits were 

obtained from measurements made to engines 

without operating problems (11). 

It has been identified that one of the main 

rejections in the engines cold testing is related to 

the machining of cylinder heads in the part of the 

camshaft bores, see Figure 1. 

 
 

 

Figure 1. Engine cold testing rejects from January 2019 to February 2020. 

Source: own elaboration. 

 

During regular production, when there is a 

rejection like that, the cylinder head is only 

changed and it is analyzed in a general way 

without establishing any precise argument that 

allows knowing which machining needs to be 

adjusted. Therefore, it was decided to initiate a 

formal investigation to determine the relationship 

between the conditions of the machining and the 

rejections of the engine cold testing. 

2. Methodology 

 
A sample of 124-cylinder heads was taken from 

the production line, and the heads were 

dimensioned in a Zeiss Acura coordinate 

measuring machine (CMM). Subsequently, each 

head was assembled to an engine to later be 

diagnosed in a HIRATA engine cold testing, the 

above was done between the months of July to 

August 2019 where the production was 81,000 



Hernández-Nuñez, et al/Ingeniería y Competitividad, e22111607, julio-diciembre 2022 

4 / 13 

 

 

 

engines (1500 engines per day). The machining 

characteristics that were measured from each 

cylinder head were: diameter, the true position, 

the runout, and the roundness for the 12 bores that 

assemble the camshafts. Figure 2 shows how the 

camshaft bores were identified, and figure 3 

shows the design specifications. 

It is important to mention that the process is 

qualified, so that, external influences to the 

measurement processes were considered (8), 

additionally, sizing systems such as the 

coordinate measuring machine have its certificate 

to guarantee the quality of the measurements. 

Maul et al. (15) comment that there must be a basis 

to have confidence in the results of the 

measurements; R&R studies determine if the 

measurement instruments are capable of 

generating reliable data. 

Using CMM, 56 machining characteristics were 

dimensioned for each head as shown in figure 3. 

Hence a data matrix was established with 124 

rows corresponding to the sample individuals and 

56 columns corresponding to the measurements 

of the characteristics. On the other hand, the 124 

engines were diagnosed by using 305 parameters 

or test points regarding air pressure, oil pressure, 

vibrations and noises in the head and cylinder 

block, timing components, and torques. From the 

above, a second matrix was also established with 

124 rows corresponding to the simple individuals 

and 305 columns corresponding to the test points. 

Finally, the data from both matrices were 

combined into one as is referenced in figure 4. 

 
 

 

Figure 2. Camshaft bores identification. Source: own elaboration. 
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Figure 3. Camshaft bores specifications. Source: own elaboration. 

Figure 4. Data matrix reference. 

Source: own elaboration. 

 

To determine relationships between the engine 

cold testing results and the machining of the 

cylinder heads, regression equations such as Eq. 1 

were proposed to infer relationships at the 

population level. 

 
𝑌i = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽k𝑋k + 𝑒 

(1) 

where: 
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Yi = The dependent variable i or test point i, with 

i = 1, 2,…, 305. 

Xk = The independent variable or machining 

characteristic k, with k = 56. 

βk = The regression coefficient k, with k = 56. 

α = Constant term. 

e = Error. 

 
The following steps were followed to obtain the 

significant statistical models: Step 1.- The 

statistical program Minitab was used and was 

adjusted to use the method called steps forward. 

Step 2.- Global tests of the proposed models were 

done by using the F test statistic with a 

significance level of 0.05. Additionally, a null and 

an alternative hypothesis were tested, where H0: 

All coefficients β1 through β56 are equal to zero, 

and H1: Not all coefficients β1 through β56 are 

equal to zero. Step 3.- Specific tests were done for 

each component of the proposed models by using 

the t-test statistic with a significance level of 0.05. 

The null and alternative hypothesis were tested, 

where H0: β1 = 0, β2 = 0,…,β56 = 0, and H0: β1 ≠ 0, 

β2 ≠ 0,… , β56 ≠ 0. Step 4.- An normality test of 

the residuals was done by using the Anderson- 

Darling test statistic with a significance level of 

.05, also scatter diagrams were prepared to verify 

the absence of patterns or trends. Step 5.- The 

absence of correlations between the independent 

variables of the models were verified by using the 

variance inflation factor VIF, this step avoids 

instability to the statistical model in addition to 

the comments of Melhem et al (2). 

 
The above steps are summarized in the flowchart 

shown in figure 5. 

 

 

 

Figure 5. Steps to obtain the statistical model. Source: own elaboration. 
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3. Results and discussion 

 
From the 305 test points and using the procedure 

shown in figure 5, 77 significant statistical models 

were determined (25.25%), and 228 were not 

(74.75%) due to the following reasons: 1.- There 

was no normality in the residuals (60.66%, 185 

Test Points), 2.- there were no significant 

correlations between the test points and the 

machining characteristics (13.11%, 40 Test 

Points) and finally, there were 3 test points that 

had the same value (.98%). 

 
Due to the extension of the results generated for 

the 77 test points, it was considered for this paper 

to present only the information of one of the 

points most influenced by the machining 

conditions, this was the test point #1610. It is 

clarified that the results of the other 76 test points 

have their statistical models which were tested by 

inferential statistics. 

 
3.1 Results and discussion of test point #1610. 

 
This test point measures the engine oil pressure 

and the limits programmed for acceptance in the 

engine cold testing are from 275 to 330 kPa. The 

assumption that the engine oil pressure is 

influenced by the condition of the camshaft bores 

lies in the fact that there are lubrication holes, as 

illustrated in figure 6. 

 

 

Figure 6. Oil lubrication hole and camshaft bore. 

Source: own elaboration. 

 

Figure 6. Oil lubrication hole and camshaft bore. 

Source: own elaboration. 
The results of the measurements done by the 

CMM and the engine cold testing were ordered in 

a data matrix as illustrated in figure 7, so that the 

rows were the 124 individuals in the sample 

(cylinder heads and engines), and the columns 

were the 57 variables, one dependent variable 

(test point #1610) and 56 independent variables 

(cylinder head characteristics). 

 
The data were analyzed in the Minitab statistical 

software according to the flow chart proposed in 

figure 5, the proposed statistical model was: 

 
𝑇𝑃#1610 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑖𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

= 302.26 

+ 33.72(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑎𝑡𝑢𝑚 𝑏𝑜𝑟𝑒#6001) 

−236.3(𝑙𝑜𝑐𝑎𝑙 𝑟𝑢𝑛𝑜𝑢𝑡 𝑏𝑜𝑟𝑒#6005)(2) 

 
In Eq.2 the variables of the true position of bore 

#6001 and the local runout of bore #6005 showed 

significant correlations regarding the test point 

#1610 in a step-forward iteration process. In the 

global test of the model, the F test statistic had a 

value of 22.34, and it was statistically significant. 

Hence the alternative hypothesis H1 was true, and 

the null hypothesis H0 was false. In the F 

distribution graph (figure 8a), the value calculated 

by the software was on the right side of the critical 

value or in the zone of acceptance of the alterna 

tive hypothesis. 
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Figure 7. Data matrix with the measurements of machining characteristics and TP #1610. 

Source: own elaboration. 

 

 
 

a) b) 
Figure 8. Distribution curves F and t. 

Source: own elaboration. 
 

Regarding the specific tests for each component 

of the model, the t-test statistics had the values of 

308.88 for the constant term, 6.24 for the 

machining of the true position of bore #6001, and 
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-2.57 for the machining of the local runout of bore 

#6005. The three values were statistically 

significant so that the alternative hypothesis of the 

existence of these components was verified as 

true. Figure 8b shows the t distribution curve 

where the values calculated are located within the 

acceptance zone of the alternative hypothesis H1. 

In the residual normality test, the Aderson- 

Darling test statistic showed 0.302 with a p-value 

of 0.572 (figure 9a). Hence the null hypothesis 

(Ho: the residual distribution comes from a normal 

distribution) was verified as true and the 

alternative hypothesis is false. In addition, in the 

scatter diagram of the residuals (figure 9b), no 

patterns or trends were observed on both sides of 

the horizontal line of the graph. 

 

 
 

a) b) 

Figure 9. Normality, frequency, scatter diagrams. 

Source: own elaboration. 
 

If the values at the extremes of Figure 9a (3 

sample individuals) were removed from the study, 

the resulting model would be: 

 
𝑇𝑃#1610 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑖𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 309.7 + 

32.36(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑎𝑡𝑢𝑚 𝑏𝑜𝑟𝑒#6001) − 

277.6 (𝐿𝑜𝑐𝑎𝑙 𝑟𝑢𝑛𝑜𝑢𝑡 𝑏𝑜𝑟𝑒 #6005 − 

.295 (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 #6012) (3) 

 
Additionally, 2 distant points appear again at the 

extremes of the graph. If this process is repeated 

3 times, 7 individuals from the sample would be 

eliminated and the statistical model would be: 

 
𝑇𝑃#1610 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑖𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 309.61 + 

33.26(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑎𝑡𝑢𝑚 𝑏𝑜𝑟𝑒#6001) − 

293.8 (𝐿𝑜𝑐𝑎𝑙 𝑟𝑢𝑛𝑜𝑢𝑡 𝑏𝑜𝑟𝑒 #6005 − 

.295 (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑏𝑜𝑟𝑒 #6012) (4) 

Because an additional variable appears in the 

statistical model in addition to the fact that some 

individuals in the sample were eliminated, it was 

decided to leave the model of equation 2. 

Finally, the independent variables (true position 

of bore #6001 and the runout of bore #6005) are 

not correlated because the values of the variance 

inflation factor in both cases were equal to 1 

(figure 8b, VIF value). 

 
Using Eq. 2 and the R2 value, the engine oil 

pressure changes 25.8% due to the interaction of 

the machining. It can be predicted that when the 

true position of bore #6001 is increased, the 

pressure rises. On the other hand, when the runout 

of bore #6005 is increased, the pressure decreases. 

The statistical model geometrically represents a 

plane in three-dimensional space and predicts 

pressure values at different machining conditions 
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(see figure 10). A pressure value of 306.5 kPa can 

be predicted (within the range allowed in the 

engine cold testing) when the true position and the 

runout are within the limits of their tolerances, 

which are 300 microns for the true position and 

25 microns for the runout. 

 
 

 
 

Figure 10. Scatter diagram in the third dimension and graph 

of the statistics model. Source: own elaboration. 

 

3.2 Applications of the statistical model of 

test point #1610. 

 
The first application of the statistical model is that 

it allows us to know which machining of the 

cylinder head affects the engine oil pressure. 

When there are deviations in the oil pressure, the 

deviations in the true position and the runout of 

the mentioned machining must be corrected. 

 
To adjust the true position machining, the tool 

position must be moved by adjusting the 

parameters of the machine numerical control in 

the direction that corrects the deviation, on the 

other hand, to correct the runout machining, the 

tool must be adjusted by a procedure that already 

exists in the company. 

 
To validate the statistical model, the oil pressures 

measured by the engine cold testing were 

compared with the pressures predicted by the 

model in two engines of regular production. In 

both cases the percentages of error were less than 

5 percent, see table 1. 

The second application of the model is that it 

allowed us to know that the test limits for oil 

pressure must be adjusted. The engine cold testing 

releases engines even when the true position or 

the runout are out of their specifications. In the 

first engine in table 1, the deviation of the true 

position is at the limit of its specification (.2975 

mm), however the pressure measured by the 

engine cold testing and predicted by the model are 

303.85 kPa and 311.11 kPa which are only 1.35 

kPa y 8.61 kPa above the nominal value (302.5 

kPa). 

 
Table 2 shows 5 predictions of oil pressure 

calculated by the model. In prediction 1 

deviations in the machining are not considered, 

the pressure calculated is only 0.2 kPa less than 

the nominal value. In prediction 2, deviations in 

the machining are at the limit of their 

specifications however the pressure calculated is 

within its specification and above its lower limit, 

this situation should not happen. In predictions 3 

to 5, the oil pressures are within specification 

although the dimensional deviations are out of 

specification, these situations should not happen 

either. 
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Table 1. Statistical model validation 

 

 
Engine serial 

number 

 
 

Cylinder head 

serial number 

Deviation 

from the true 

position of 

bore # 6001 
(mm) 

Deviation 

from the 

local runout 

of bore # 
6005 (mm) 

Engine pressure 

measured by 

engine cold 

testing (kPa) 

Engine 

pressure 

predicted by 

statistical 
model (kPa) 

 
Percentage 

of error 

M1192260G 
DXX0371 

SH1M922213 
16T718 

 
0.2975 

 
0.005 

 
303.85 

 
311.11 

 
2.39 

M2191850GS 
7X0006 

SHNM917807 
05M718 

 

0.2514 
 

0.0048 
 

307.27 
 

309.56 
 

0.74 

Source: own elaboration. 
 

Table 2. Prediction of average oil pressure 

 

 
Prediction 

Deviation of the 

true position from 

the nominal value 
(mm) 

Deviation of the 

runout from the 

nominal value 
(mm) 

Prediction of 

average oil 

pressure (kpa) 

 
Observation 

1 0 0 302,3 True position and runout without deviation 

2 0,03 0,025 297,4 
True position and runout at specification limit, 

pressure within specification 

3 0,21 0,035 301,1 
Runout out of specification and pressure 

within specification 

4 0,4 0,01 313,4 
True position out of specification and pressure 

within specification 

5 0,33 0,055 300,4 
True position and runout out of specification 

and pressure within specification 

Source: own elaboration 

Derived from the above it is necessary to adjust 

the limits of test point # 1610. This proposal will 

be presented to the quality and manufacturing 

departments of the engine plant so that the 

modifications can be made. 

 
4. Conclusions 

 
Using the procedure shown in figure 5, it was 

possible to establish 77 significant statistical 

models that relate the results from the engine cold 

testing with the machining conditions. 

Additionally, the procedure can be used to find 

relationships between the same results and other 

combustion engine components such as the 

crankshaft or the cylinder block. On the other 

hand, it is important to establish significant 

statistical models that allow us to know the 

validity of the model at the population level 

regardless of the level of accuracy. 

It was determined that the engine oil pressure is 

related to the machining condition of the local 

runout and the true position. The statistical model 

indicates that when increasing the true position, 

the oil pressure increases too, in contrast with the 

runout, when it increases, the oil pressure 

decreases. On the other hand, no evidence was 

found that the roundness and diameter affect the 

engines oil pressure. Additionally, the use of the 

statistical model made it possible to know that the 

engine cold testing releases engines even though 

the true position and the runout are out of 

specification. Derived from the above, it is 

necessary to adjust the limits of test point #1610. 

 
In summary, inferential statistics is a powerful 

tool that allows us to relate the results of an engine 

cold testing in the combustion engine assembly 

process with respect to the machining conditions 
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of its components. In this sense, relate the 

rejections in the assembly line with the failures in 

the machining processes and in this way focus the 

resources to correct and prevent those failures. 
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