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Abstract 
 

This paper addresses the two-machine permutation flowshop problem with deterioration. The objectives are 

minimizing the makespan and the average tardiness. Jobs have a baseline process time in each machine and have a due 

date. The actual time to process a job depends on the machine performance level at the start of each job, which is a 

function of the previously processed jobs and their wear/deterioration effect on the machine. The article proposes 

multiple heuristics and a comprehensive set of experiments.  The results indicate that as a group, the heuristics generate 

solutions that are very close to the optimal for both criteria. Furthermore, no heuristic approach is dominant for all 

experimental conditions, thus heuristic selection to solve practical problems should be based on the specific problem 

characteristics.   

Keywords: Maintenance, Makespan, Permutation flowshop, Scheduling, Sequence-dependent systems, Tardiness. 

Resumen  

Este articulo aborda el problema permutation flowshop con deterioro. Los objetivos son minimizar el tiempo total para 

completar las operaciones y el promedio de su tardanza. Los trabajos tienen un tiempo de proceso base en cada máquina 

y una fecha de vencimiento. El tiempo real de proceso depende del nivel de rendimiento de la máquina al inicio de 

cada trabajo, que es una función de los trabajos procesados previamente y su efecto de desgaste/deterioro en la 

máquina. El artículo presenta múltiples heurísticas y un conjunto exhaustivo de experimentos.  Los resultados indican 
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que, como grupo, las heurísticas generan soluciones que están muy cerca de los valores óptimos para ambos criterios. 

Además, ningún enfoque heurístico es dominante para todas las condiciones experimentales, por lo que la selección 

heurística para resolver problemas prácticos debe considerar las características específicas del problema.   

Palabras clave:  Mantenimiento, Programación de la producción, Sistemas de Secuencias, Tardanza, Tiempo máximo 

de operación. 

 

1. Introduction 

Research about the Flow-shop Scheduling 

Problem (FSP) is extensive and the interest on this 

problem does not abate. A key reason for the 

continued interest in the FSP is that it represents 

how many real-world production systems 

operate; a product requires a sequence of steps 

performed by different resources with the 

constraint that each step of the process must be 

completed for the next to start (1). Researchers 

have addressed many variations of the FSP 

considering the diverse settings and 

characteristics of our industrial world. Some 

problem versions allow skipping steps (2), others 

have multiple parallel machines per step (3), and 

others include due date windows (4).  

This paper considers one of the most basic cases 

of the FSP, called the permutation flowshop 

problem where all jobs must be processed in the 

same order in each of the steps, there is a single 

machine per step, and there is no waiting or setups 

between jobs and between machines. The key 

difference with previous work, and the 

contribution of this article to FSP research, is that 

the proposed model and analysis considers the 

case where the resources (the machines) have 

heterogeneous deterioration based on the job 

sequence. This research considers two measures 

of performance: the completion time of the last 

job on the schedule (e.g., the makespan) and the 

average tardiness. These two are among the most 

commonly addressed measures in the FSP 

literature (5-7). 

Research in the flowshop problem with 

deterioration has been previously addressed by 

multiple authors. Research that addresses the 

minimization of the makespan include Kononov 

and Gawiejnowicz (8), Wang and Xia (9), Wang et 

al. (10), Lee et al. (11), Lee et al. (12), Wang et al. (13), 

Wang and Wang (14) and Sun et. al (15). With the 

exception of (13), the models addressed by these 

authors considers the processing time as a linear 

function which is dependent on its starting time: 

the time to process a job 𝑗 in machine 𝑘 is 

assumed to be 𝑎𝑗,𝑘 +  𝜆𝑡𝑗,𝑘 where 𝑎𝑗,𝑘 is the basic 

processing time of job 𝑗 in machine 𝑘, 𝜆 is the 

deterioration rate, and 𝑡𝑗,𝑘 is the start time of job 𝑗 

in machine 𝑘. In Wang et al. (13) the position of the 

job is relevant, noting their model includes both 

deterioration and learning. Under this model the 

time to process a job 𝑗 in machine 𝑘 is assumed to 

be 𝛼𝑗,𝑘𝑡𝑟𝑏 where 𝛼𝑗,𝑘 is the deterioration rate of 

job 𝑗 on machine k, 𝑡 is the start time of job j on 

machine 𝑘, and 𝑟 is the position of job 𝑗 on the 

sechedule, and 𝑏 is the learning index (𝑏 ≤  0).   

Research that addresses the minimization of the 

total tardiness for the flowshop problem with 

deterioration has not received much attention, 

with Bank et al (16) and Lee et al. (17) being the only 

two articles on the subject. As in most of the 

pervious papers, the deterioration of the jobs is 

based on a linear function of their starting times. 

Research in the related measure of maximum 

tardiness by Sanchez-Herrera et al. (18) considers 

position-based deterioration. 

Therefore, previous research typically considers 

the situation where the jobs deteriorate depending 

on the time at which they start being processed or 

based on their position in the sequence. This view 

of the system fails to consider environments 
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where the machines (or worker) are the elements 

that are wearing down/deteriorating, and each job 

may have a different effect on the condition of the 

machine. Therefore, a job’s processing time 

would not depend on the start time or the number 

of jobs previously processed (position), but rather 

in the condition of the machine, where the 

condition of the machine does not depend on the 

time or just the number of jobs, but rather on the 

specific set of jobs processed. An approach to 

model deterioration in this manner was proposed 

by Ruiz-Torres et al. (19) and has been used in 

several follow up work including Santos and 

Arroyo (20), De Araújo et al. (21), Perez et al. (22) 

and Ding et al. (23).  

Furthermore, this approach to modeling 

deterioration is an element of a software 

developed for the optimization of logistics during 

well drilling (24). As in the case of drilling, there 

are multiple real-world settings where the 

equipment (machines) deteriorates based on the 

particular sequence, for example processes 

associated with metal cutting and shredding 

where equipment performance decreases as it 

processes the materials. The cutting tools’ 

characteristics in terms of sharpness and hardness 

deteriorates due to the heat and pressures of the 

involved processes, and as this occurs, the time 

required to process a job in order to meet the 

required specifications will increase in 

comparison with the original plan. However, the 

wear/deterioration effect on the machine is not the 

same for all jobs being processed.  

For instance, material that is softer will have a 

smaller effect than material that is harder. For 

example, at time 𝑡 =  35 a set of easy jobs would 

have been completed and as a result the machine 

would be performing at 90%. In this case the time 

to process job 𝑗 would be 5 hours to complete 

given the machine status. On the other hand, if at 

time 𝑡 =  35 a set of ℎ𝑎𝑟𝑑 jobs would have been 

completed and, therefore, the machine would be 

performing at 75%. In this case, the time to 

process job 𝑗 would be 6 hours. Another simple 

illustrative example relates to a person doing 

exercises following a multi-step routine. This 

person can either start the routine by running 2 

kilometers or walking 1.5 kilometers (and we 

assume this person can complete any of them in 

12 minutes at the start of the routine – when 

“fresh”). For most people, the level of 

deterioration (tiredness) for position 2 (second 

exercise of the routine) or conversely at time = 12 

minutes would be very different depending on the 

decision of what exercise to do first (run or walk), 

and thus performing the next exercise may take 

different amounts of time in each case. 

Given the time to process jobs increases as the 

machines degrades, a simple option is to run the 

softer jobs first. However, this simple approach is 

only true if all jobs have the same processing 

times (19). It is worthwhile noting that the proposed 

model also has direct application to the 

scheduling of people. The sequence of jobs 

performed by an operator can have diverse effects 

on the level of mental/physical tiredness of that 

person, therefore a type of deterioration. This is 

probably the reason why many people like to do 

the easy tasks first. 

This research contributes to the body of 

knowledge in production and engineering as it 

takes on a different view of the system concerning 

deterioration in flowshop scheduling, where the 

machines deteriorate based on the set of jobs 

previously processed by the resource. 

Furthermore, this research is relevant as it 

expands on the study of the effect that 

deterioration has on the tardiness criteria, which 

is relevant in customer service and therefore 

competitiveness. This paper is organized as 

follows; Section 2 provides the methodology 

including the problem description and heuristics 

proposed to generate schedules, Section 3 

presents computational experiments and results, 

while Section 4 provides conclusions and 

directions for future work. 



Ruiz-Torres, et al/Ingeniería y Competitividad, 23(2), e20410099, julio-diciembre2021 

4 / 18 

2. Methodology  

2.1. Problem description  

Consider a set 𝑁 = {1, … , 𝑗, … 𝑛} of 𝑛 

independent jobs to be processed on a flowshop 

with two machines. All jobs flow in the same 

sequence (permutation flowshop), from machine 

1 to machine 2. All jobs are available at time 0 

(static case) and cannot be preempted or divided. 

Each machine can process only one job at a time. 

At time 0 (the start of the schedule) both machines 

are at their baseline state (e.g., 0% wear = 100% 

performance). Let 𝑝𝑗,𝑘 be the baseline processing 

time of job 𝑗 on machine 𝑘; 𝑤𝑗,𝑘 be the 

wear/deteriorating effect of job 𝑗 on machine 𝑘 

with 0 ≤ 𝑤𝑗,𝑘 ≤ 1, and let 𝑑𝑗 be the due date of 

job 𝑗.  

Let 𝑋 be the ordered set of jobs and 𝑥[ℎ] be the 

job assigned to positon ℎ. Let 𝑞ℎ,𝑘 be the 

performance level for the job in positon 

ℎ of machine 𝑘. For 𝑘 = 1, 2 the value of 𝑞ℎ,𝑘 is 

defined by (1 − 𝑤𝑥[ℎ−1],𝑘) × 𝑞ℎ−1,𝑘 when ℎ > 1, 

and 𝑞ℎ,𝑘 = 1 when ℎ = 1 (as mentioned earlier, 

the model assumes the machines are at their 

“best” operating level at the start of the schedule). 

Let 𝑝𝑥[ℎ],𝑘
′  be the actual processing time of job 

𝑥[ℎ] in machine 𝑘, and 𝑝𝑥[ℎ],𝑘
′ = 𝑝𝑥[ℎ],𝑘 𝑞ℎ,𝑘⁄ . 

This function to define resource deterioration was 

first used in (19) and used in follow up research as 

mentioned in the Introduction section (20-23). 

The completion time of a job 𝑗 in machine 𝑘 is 𝑐𝑗,𝑘 

and the tardiness of a job is 𝑡𝑗 = max[0, 𝑐𝑗,2 − 𝑑𝑗]. 

The measures under analysis are the makespan: 

𝑐𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝑁 𝑐𝑗,2 and the average tardiness: 

𝑡𝑎𝑣𝑒 = ∑ 𝑡𝑗𝑗∈𝑁 𝑛⁄ . 

A simple example is presented next to illustrate 

the problem. There are 𝑛 = 6 jobs with 

processing times, wear/deterioration, and due 

dates parameters as in Table 1. We first consider 

the makespan measure of performance and use 

Johnson’s algorithm(24) to determine a schedule 

given it provides the optimal solution in the basic 

case with no wear/deterioration. Note that 

Johnson Algorithm (JA) iteratively selects the job 

with the smallest processing time in any of the 

machines and assigns them to the sequence: if the 

process time is in machine 1, the job is placed in 

the “front” of the schedule, and if it’s on the 

second machine, its placed on the “back” of the 

schedule, working towards the center of the 

sequence until all jobs are assigned (a formal 

description is provided in section 2.2.2).  

Therefore for this example, job 5 is selected first 

and placed at the “back” of the schedule, then job 

6 is selected and placed at the “front”, then job 3 

is selected and placed at the front (but after 6), 

then job 2 is placed at the “back”, but ahead of job 

5, next is job 1 which is placed at the front (but 

after 3), and finally job 4 stays in the middle 

remaining position for the sequence: 6-3-1-4-2-5.   

Table 1. Job information 

𝒋 𝑝𝑗,1 𝑝𝑗,2 𝑤𝑗,1 𝑤𝑗,2 𝑑𝑗 

1 34 51 2% 5% 100 

2 80 30 6% 6% 145 

3 25 60 1% 7% 210 

4 48 45 9% 2% 260 

5 60 18 5% 1% 280 

6 20 50 4% 9% 350 

The top diagram of Figure 1, schedule s1, presents 

the JA based schedule with no machine 

wear/deterioration (in other words 𝑤𝑗,1 = 𝑤𝑗,2 =

0  ∀𝑗 ∈ 𝑁). Schedule s1 includes the completion 

time of each job on each of the two machines. 

This schedule has a makespan of 285, which as 

mentioned is optimal when no machine
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Figure 1. Three schedules: JA not considering wear/deterioration (s1), JA considering wear/deterioration (s2), 

optimal makespan schedule considering wear/deterioration (s3) 

wear/deterioration is considered. Schedule s2 of 

Figure 1 presents the same sequence of jobs but 

including machine deterioration. The diagram 

includes the completion time of each job on each 

machine as well as the machine performance level 

at the end of that job (position assigned to that 

job).  

Next, it is described how the machine’s 

performance level and the actual job’s processing 

times are determined when machine 

wear/deterioration is considered. The 

performance level of machine 1 is at 100% in 

position 1 (ℎ = 1, 𝑞1,1 = 1 ), the position 

assigned to job 6. The actual process time of job 

6 is 20 (𝑝6,1
′ = 𝑝6,1 𝑞1,1⁄ = 20/1 = 20). Given 

𝑤6,1 = 4%, the machine performance level at the 

end of job 6 (therefore for position ℎ = 2) is 96% 

(𝑞2,1 = (1 − 𝑤6,1) × 𝑞1,1 = 0.96 × 1 = 0.96). 

The actual process time for job 3 (the job assigned 

to position 2) is 26 (𝑝3,1
′ = 𝑝3,1 𝑞2,1⁄ = 25/

0.96 = 26). Given 𝑤3,1 = 1%, the performance 

level of machine 1 after job 3 (therefore for 

position ℎ = 3) is 95.04% (𝑞3,1 = (1 − 𝑤3,1) ×

𝑞2,1 = 0.99 × 0.96 = 0.9504).  

The actual process time for job 1 (the job assigned 

to position 3) is 35.8 (𝑝1,1
′ = 𝑝1,1 𝑞3,1⁄ = 34/

0.9504 = 35.8).  The same calculations are 

repeated for the remaining positions and for 

machine 2 (considering the availability for the job 

in the second machine). It is noted that the 

performance level at the end of the schedule will 

be the same value for all possible sequences as it 

is the effect of processing all jobs in the machine 

(total wear/deterioration). The makespan of this 

schedule is 327.4, a difference of almost 15% 

versus the case when machine deterioration is not 

considered (Schedule 1 of Figure 1). Schedule s3 

in Figure 1 presents a third schedule considering 

machine wear/deterioration with a makespan of 

319.8. This sequence was obtained by a full 

enumeration search (in other words, all possible 

schedules were generated) and it results in the 

lowest makespan for the example problem. It is 

evident with this example that the schedules 
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generated by JA are not optimal for the proposed 

problem. 

Figure 2 presents the schedules generated when 

ordering jobs according to the Earliest Due Date 

rule (EDD). Schedule s4 illustrates the schedule 

when machine wear/deterioration is not 

considered and the bottom schedule when it is 

considered. The jobs in grey are late. The 

additional row of information below the schedule 

is the tardiness for each job (tj). When machine 

wear/deterioration is not considered, all the jobs 

are on time, therefore an average tardiness of 0 

(Schedule s4). As it can be noted in schedule s5 

of Figure 2, when machine wear/deterioration is 

considered, five jobs are tardy with an average 

tardiness of 5.18. From the previous discussion, it 

should be clear that ignoring machine 

wear/deterioration is very important as it could 

lead to incorrect/poor decisions in work planning. 

2.2 Heuristics 

This section describes basic algorithms used to 

generate job sequences and improve on the 

resulting measures of performance. The 

algorithms used to generate job sequences are 

based on list ordering and on Johnson’s 

algorithm. The improvement methods are based 

on job exchange strategies. 

2.2.1 Ordering using one job characteristic. 

The job sequence is based on a single 

characteristic for each job. Eight characteristics 

are analyzed, where in all cases the list is in non-

decreasing order of the characteristic. 

• EDD: due date (𝑑𝑗). 

• Slack: slack time based on the baseline 

process times (𝑠𝑗  =  𝑑𝑗  – 𝑝𝑗,1  − 𝑝𝑗,2). 

• w1: wear/deterioration effect on the first 

machine (𝑤𝑗,1). 

• w2: wear/deterioration effect on the second 

machine (𝑤𝑗,2). 

• p1: baseline process time on the first 

machine (𝑝𝑗,1). 

• p2: baseline process time on the second 

machine (𝑝𝑗,2). 

• p_w1: ratio of baseline process time over the 

performance level effect on the first machine 

(𝑝𝑗,1/(1 − 𝑤𝑗,1)). 

• p_w2: ratio of the baseline process time over 

the performance level on the second machine 

(𝑝𝑗,2/(1 − 𝑤𝑗,2)). 

2.2.2 Ordering using two job characteristics 

The job sequence is created by using information 

from both machines. Three rules are analyzed that 

use the wear/deterioration effects, the baseline 

process times, and the ratio of process time to 

performance level. The first rule is in principle 

similar to Johnson’s but attempts to assign the 

jobs with lower wear/deterioration effect in the 

first machine at the front of the sequence, and the 

jobs with higher wear/deterioration jobs in the 

second machine at the “back” of the sequence. 

The second and third algorithms are Johnson’s 

and a modified version that uses the ratio 

characteristic, respectively. 

Wear effect algorithm (WA) 

Step 1.  Let 𝑁’ = 𝑁, 𝑓 = 1, 𝑏 = 𝑛, 𝑤𝑚𝑖𝑛 =

𝑚𝑖𝑛𝑗∈𝑁𝑤𝑗,1, and 𝑤𝑚𝑎𝑥 =

𝑚𝑎𝑥𝑗∈𝑁𝑤𝑗,2. 

Step 2. Let  𝑤′𝑗,1 = 𝑤𝑗,1 − 𝑤𝑚𝑖𝑛, 𝑤′𝑗,2 =

𝑤𝑚𝑎𝑥 − 𝑤𝑗,2 ∀ 𝑗 ∈ 𝑁.  

Step 3.  Let 𝑗′ = {𝑗 |𝑗 ∈  𝑁′, 𝑘 = 1,2 ∶

 𝑚𝑖𝑛 [𝑤′𝑗,𝑘]}. 

Step 4.  If 𝑤𝑗′,1 < 𝑤𝑗′,2 then 𝑥[𝑓]  =  𝑗’, 𝑓 =

 𝑓 + 1 else  𝑥[𝑏]  =  𝑗’, 𝑏 = 𝑏 − 1. 

Step 5.  Let 𝑁′ = 𝑁′ − 𝑗’. 

Step 6.  If |𝑁′| ≠ ∅ then return to Step 3. 
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Figure 2. Two schedules ordered by due date, one not considering wear/deterioration (s4) and another considering 

wear/deterioration (s5) 

Johnson’s algorithm (JA) 

Step 1.  Let 𝑁’ = 𝑁, 𝑓 = 1, 𝑏 = 𝑛 

Step 2.  Let 𝑗′ = {𝑗 |𝑗 ∈  𝑁′, 𝑘 = 1,2 ∶

 𝑚𝑖𝑛 [𝑝𝑗,𝑘]}. 

Step 3.  If 𝑝𝑗′,1 < 𝑝𝑗′,2 then 𝑥[𝑓]  =  𝑗’, 𝑓 =

 𝑓 + 1 else 𝑥[𝑏]  =  𝑗’, 𝑏 = 𝑏 − 1. 

Step 4.  Let 𝑁′ = 𝑁′ − 𝑗’.  

Step 5.  If |𝑁′| ≠ ∅ then return to Step 2. 

Modified Johnson’s algorithm (MA) 

Step 1.  Let 𝑁’ = 𝑁, 𝑓 = 1, 𝑏 = 𝑛 

Step 2.  Let 𝑗′ = {𝑗 |𝑗 ∈  𝑁′, 𝑘 = 1,2 ∶

 𝑚𝑖𝑛 [𝑝𝑗,𝑘/(1 − 𝑤𝑗,𝑘)]}. 

Step 3.  If 𝑝𝑗′,1/(1 − 𝑤𝑗′,1) < 𝑝𝑗′,2/(1 −

𝑤𝑗′,2) then 𝑥[𝑓]  =  𝑗’, 𝑓 =  𝑓 + 1 

else 𝑥[𝑏]  =  𝑗’, 𝑏 = 𝑏 − 1. 

Step 4.  Let 𝑁′ = 𝑁′ − 𝑗’.  

Step 5.  If |𝑁′| ≠ ∅ then return to Step 2. 

 

2.2.3 Improvement methods 

These improvement methods exchange jobs to 

reduce the measure of performance under 

consideration. Let 𝑣 be the current value of the 

measure of performance of interest (makespan or 

average tardiness) for a schedule with job 

sequence 𝑋. As in Wang et a. (2012) the First 

Improvement (FI) method accepts the first 

exchange that results in an improvement in v, 

while in the Best Improvement (BI) method, all 

exchanges are considered, and the best exchange 

is accepted. Both versions end when no further 

improvements are found. 

First improvement (FI) 

Step 1.  Let 𝑦 =  1 and 𝑧 =  2. 

Step 2.  Let job 𝑎 = 𝑗𝑥[𝑦] and job 𝑏 = 𝑗𝑥[𝑧]. 

Step 3.  Exchange the positions of jobs 𝑎 and 

𝑏 and let 𝑣’ be the measure of 

performance of this sequence.  

Step 4. If 𝑣’ <  𝑣 then let 𝑣 =  𝑣’ and return 

to Step 1. 

Step 5. Exchange the positions of jobs 𝑎 and 

𝑏.  
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Step 6. If 𝑧 <  𝑛 let 𝑧 =  𝑧 +  1 and return to 

Step 2. 

Step 7. If 𝑦 <  𝑛 –  1 then 𝑦 =  𝑦 +  1 and 

𝑧 =  𝑦 +  2 and return to Step 2. 

Best improvement (BI) 

Step 1.  Let 𝑦 =  1, 𝑧 =  2, and 𝑣𝑏𝑒𝑠𝑡 =  𝑣. 

Step 2.  Let job 𝑎 = 𝑗𝑥[𝑦] and job 𝑏 = 𝑗𝑥[𝑧]. 

Step 3.  Exchange the positions of jobs 𝑎 and 

𝑏 and let 𝑣’ be the measure of 

performance of this sequence.  

Step 4. If 𝑣’ <  𝑣𝑏𝑒𝑠𝑡,  then let 𝑣𝑏𝑒𝑠𝑡 =  𝑣′, 

𝑦𝑏𝑒𝑠𝑡 =  𝑦, 𝑧𝑏𝑒𝑠𝑡 =  𝑧. 

Step 5. Exchange the positions of jobs 𝑎 and 

𝑏.  

Step 6. If 𝑧 <  𝑛 let 𝑧 =  𝑧 +  1 and return to 

Step 2. 

Step 7. If 𝑦 <  𝑛 –  1 then 𝑦 =  𝑦 +  1 and 

𝑧 =  𝑦 +  2 and return to Step 2. 

Step 8.  If 𝑣𝑏𝑒𝑠𝑡 <  𝑣  then let job 𝑎 = 𝑗𝑥[𝑦𝑏𝑒𝑠𝑡] 

and job 𝑏 = 𝑗𝑥[𝑧𝑏𝑒𝑠𝑡], exchange the 

positions of jobs 𝑎 and 𝑏, let 𝑣 be the 

measure of performance of this 

sequence and return to Step 1. 

2.2.4 Overall set of Heuristics 

A total of 11 heuristic approaches are proposed to 

generate an initial schedule (8 presented in section 

2.2.1 and 3 presented in section 2.2.2), while two 

improvement heuristics are described in section 

2.2.3. Therefore, a total of 22 combination 

approaches (initial sequence followed by an 

improvement heuristic) can be generated. For the 

makespan criteria the initial sequence based on 

due date and slack are not relevant, therefore 18 

applicable heuristic combinations remain. 

3. Results and Discussion 

Two sets of experiments are conducted to 

evaluate the performance of the heuristic for the 

two criteria under consideration. The first set of 

experiments evaluate the heuristic performance 

versus the optimal solution for small sized 

problems (optimal benchmark experiments), 

while the second set of experiments evaluate 

relative heuristic performance for larger sized 

problems (relative benchmark experiments). To 

find the optimal solution for the first set of 

experiment, a full enumeration search is 

conducted where all the possible job sequences 

are examined, and the schedules are generated. 

All experiments were conducted on a personal 

computer with the following characteristics: 

12GB RAM, 2.9GHz CPU, Windows 10 OS. 

3.1 Experimental Framework 

Four experimental variables are considered: the 

number of jobs, the range of process times, the 

range of wear/deteriorations, and the congestion 

ratio. For the optimal benchmark experiments 𝑛 is 

considered at two levels: 𝑛 = 6, 8, while for the 

relative benchmark experiments 𝑛 is considered 

at three levels: 𝑛 = 10, 15, 20. For the relative 

evaluation experiments, the value of 𝑛 = 20 is 

selected as the largest level as higher values of 𝑛 

are deemed unpractical. At larger values of 𝑛, the 

machine performance levels would be excessively 

low, and in such cases including maintenance 

events would be “required” (an area of future 

research). It is also noted that a problem with 𝑛 =

 20 has 20! possible sequences, which is already 

quite a large number of combinations. 

The processing times for the jobs are randomly 

generated using a uniform distribution with range 

𝑝𝑚𝑖𝑛,𝑘 to 𝑝𝑚𝑎𝑥,𝑘, and the wear/deteriorations are 

randomly generated using a uniform distribution 

with range 𝑤𝑚𝑖𝑛,𝑘 to 𝑤𝑚𝑎𝑥,𝑘. These two 

experimental factors are considered at four levels 

as described in Table 2. For the processing times, 
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and based on the expected values, the first level 

represents the case where both machines have 

high variability and have an equal average load; 

the second level represents the case where both 

machines have less variability and the same 

average load; the third level represents the case 

where there is more variability in the first 

machine and the second machine has a higher 

processing load, and the fourth level represents 

the case where the first machine has a higher 

average load and the second machine has more 

variability.  

For the wear/deterioration factor and also based 

on expected values, the first level represents the 

case where the jobs have a low effect in both 

machines, the second level represents the case 

where the jobs have a high wear/deterioration 

effect in both machines, the third level represents 

the case where the jobs deteriorate the first 

machine significantly less than the second 

machine, and the fourth level represents the case 

where the jobs deteriorate the first machine 

significantly more than the second machine.  

Table 2. Experimental levels for variables 𝑃𝑟𝑎𝑛𝑔𝑒  and 

𝑤𝑟𝑎𝑛𝑔𝑒 . 

𝒑𝒓𝒂𝒏𝒈𝒆 

level name 
𝒑𝒎𝒊𝒏,𝟏, 𝒑𝒎𝒂𝒙,𝟏 𝒑𝒎𝒊𝒏,𝟐, 𝒑𝒎𝒂𝒙,𝟐 

hv_hv 1, 100 1, 100 

hl_hl 50, 100 50, 100 

hv_hl 1, 100 50, 100 

hl_hv 50,100 1,100 

𝒘𝒓𝒂𝒏𝒈𝒆 

level name 

𝒘𝒎𝒊𝒏,𝟏, 

𝒑𝒎𝒂𝒙,𝟏(%) 

𝒘𝒎𝒊𝒏,𝟐, 

𝒑𝒎𝒂𝒙,𝟐(%) 

lw_lw 0, 5 0, 5 

hw_hw 5, 10 5, 10 

lw_hw 0, 5 5, 10 

hw_lw 5,10 0, 5 

The due date for a job 𝑗 is randomly generated 

using a uniform distribution with range 𝑑𝑚𝑖𝑛 to 

𝑑𝑚𝑎𝑥. The value of 𝑑𝑚𝑖𝑛 = 𝑝𝑗,1 + 𝑝𝑗,2, while 

𝑑𝑚𝑎𝑥 = (∑ 𝑝𝑔,1 + 𝑝𝑔2)/𝜃𝑔∈𝑁 , where 𝜃 is called 

the due date tightness ratio. The experimental 

factor 𝜃 is considered at three levels 1, 1.5 and 2, 

and as it increases the due dates decrease while 

the average tardiness is expected to increase. One 

randomly selected job of every instance is 

assigned a 𝑑𝑗  =  0, thus for all instances  𝑡𝑎𝑣𝑒 ≥

0.  

For the optimal benchmark experiment set there 

are 2 × 4 × 4 experimental combinations when 

the makespan is considered (𝜃 is not relevant), 

and 2 × 4 × 4 × 3 for the average tardiness 

measure. For the relative benchmark experiment 

set there are 3 × 4 × 4 experimental 

combinations for the makespan measure, and 

3 × 4 × 4 × 3  for the average tardiness measure. 

For each experimental combination 10 

replications are generated. For the optimal 

benchmark problems, all possible sequences are 

generated to find the optimal sequence. For the 

relative benchmark experiments, the best solution 

found by the heuristics is considered the 

“optimal”, although the true optimal is unknown.  

3.2 Makespan Results 

Table 3 presents for each experimental level the 

mean makespan and the percentage of times that 

at least one of the heuristics found the optimal 

solution. At least one of the heuristics found the 

optimal solution in 98.1% (314 out of 320) of the 

instances and under the hv_hv and lw_lw levels of 

𝑝𝑟𝑎𝑛𝑔𝑒  and 𝑤𝑟𝑎𝑛𝑔𝑒 respectively, the optimal 

makespan was found in 100% of those instances. 

As a set, the heuristics provide a very good 

approximation to the optimal within the analyzed 

structure, although as can be noted, as 𝑛 increases 

the % of optimal solutions obtained decreases, 

and the condition of 𝑝𝑟𝑎𝑛𝑔𝑒 =  ℎ𝑣_ℎ𝑙 and 

𝑤𝑟𝑎𝑛𝑔𝑒 =  ℎ𝑤_𝑙𝑤 results in a lower percentage of 

optimal solutions found. 
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The discussion of the results focuses on the best 

performing subset of heuristics in order to 

emphasize the more relevant solution approaches. 

Table 4 presents the percentage of times each 

heuristic generated the optimal solution. The 

values in bold indicate the highest percentage for 

that experimental level. The best overall 

performer is MA-BI which found 83.8% of the 

optimal solutions, followed by JA-BI which 

generated 83.4% optimal solutions. These two 

heuristics dominated in five experimental levels; 

however, they do not dominate across all the 

experiments; five of the heuristics dominate in at 

least one level. A notable heuristic is w1-BI which 

outperforms all others at two experimental levels 

with a relatively high success rate, finding 88.8% 

and 90% of the optimal values for 𝑝𝑟𝑎𝑛𝑔𝑒 =

ℎ𝑙_ℎ𝑣 and 𝑤𝑟𝑎𝑛𝑔𝑒 = 𝑙𝑤_ℎ𝑤 respectively. It is 

noted that the BI improvement approach on 

average outperforms the FI approach.  

Table 3. Mean makespan and percentage of optimal 

solutions found by at least one heuristic 

  𝒄𝒎𝒂𝒙 % 𝒐𝒑𝒕𝒊𝒎𝒂𝒍 

𝑛 6 514.0 98.8 

 8 700.3 97.5 

𝑝𝑟𝑎𝑛𝑔𝑒  hv_hv 460.1 100.0 

 hl_hl 719.6 98.8 

 hv_hl 620.8 96.3 

 hl_hv 628.4 97.5 

𝑤𝑟𝑎𝑛𝑔𝑒  lw_lw 557.2 100.0 

 hw_hw 650.2 98.8 

 lw_hw 606.7 98.8 

 hw_lw 614.7 95.0 

 Overall 607.2 98.1 

Figure 3 illustrates the results per experimental 

factor.  For the overall set of heuristics, the 

average number of optimal solutions decreased 

slightly as n increased, with heuristics JA-BI and 

MA-BI being the exception, maintaining a similar 

performance level for both values of 𝑛. Heuristic 

performance changed notably at the different 

levels of the 𝑃𝑟𝑎𝑛𝑔𝑒 factor, where at ℎ𝑣_ℎ𝑙 and 

ℎ𝑙_ℎ𝑣 all heuristics perform relatively well (80-

90% of the optimal solutions), at ℎ𝑣_ℎ𝑣 two 

heuristics perform well (85%+) and the rest have 

average performances  80%, and at ℎ𝑙_ℎ𝑙 where 

all the heuristic has lower performance levels ( 

75%).  

Table 4. Percentage of the optimal makespan solutions 

generated by the heuristic 

 
Heur

istic 

J

A 

FI 

J

A 

BI 

M

A 

FI 

M

A 

BI 

p1 

FI 

p1 

BI 

w

1 

FI 

w

1 

BI 

𝑛 6 
83

.1 

83

.8 

82

.5 

84

.4 

80

.0 

85

.6 

78

.1 

85

.0 

 8 
75

.6 

83

.1 

76

.3 

83

.1 

76

.9 

80

.6 

73

.1 

75

.6 

𝑝𝑟𝑎𝑛𝑔𝑒 
hv_h

v 

80

.0 

86

.3 

80

.0 

86

.3 

73

.8 

86

.3 

72

.5 

78

.8 

 hl_hl 
68

.8 

71

.3 

67

.5 

73

.8 

72

.5 

70

.0 

68

.8 

72

.5 

 
hv_h

l 

87

.5 

88

.8 

88

.8 

87

.5 

86

.3 

88

.8 

81

.3 

81

.3 

 
hl_h

v 

81

.3 

87

.5 

81

.3 

87

.5 

81

.3 

87

.5 

80

.0 

88

.8 

𝑤𝑟𝑎𝑛𝑔𝑒 
lw_l

w 

77

.5 

82

.5 

77

.5 

82

.5 

77

.5 

83

.8 

75

.0 

81

.3 

 
hw_h

w 

75

.0 

83

.8 

76

.3 

82

.5 

73

.8 

82

.5 

77

.5 

77

.5 

 
lw_h

w 

85

.0 

85

.0 

85

.0 

85

.0 

86

.3 

86

.3 

77

.5 

90

.0 

 
hw_l

w 

80

.0 

82

.5 

78

.8 

85

.0 

76

.3 

80

.0 

72

.5 

72

.5 

 
Over

all 

79

.4 

83

.4 

79

.4 

83

.8 

78

.4 

83

.1 

75

.6 

80

.3 

It is observed that heuristic MA-BI performs well 

across all levels of 𝑃𝑟𝑎𝑛𝑔𝑒, in particular for the 

ℎ𝑙_ℎ𝑙 condition where the process times on both 

machines is higher. Factor 𝑊𝑟𝑎𝑛𝑔𝑒 also has an 

effect on overall performance and heuristic 

dominance, although heuristics p1-BI, MA-BI, 

and JA-BI have relatively good performance 
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across all levels. The graph also illustrates how 

experimental parameters have notable effects on 

the performance of individual heuristics; for 

example, heuristic w1-BI performs in the “middle 

of the pack” for levels 𝑙𝑤_𝑙𝑤 and ℎ𝑤_ℎ𝑤, 

outperforms all others at 𝑙𝑤_ℎ𝑤, and is the worst 

performer at ℎ𝑤_𝑙𝑤. 

 
Figure 3. Percentage of optimal solutions per 

experimental factor for the makespan criteria 

The size of the error when the heuristic does not 

find the optimal solution is analyzed as a second 

assessment of overall heuristic performance. 

Table 5 provides the mean and maximum error 

versus the optimal for those instances where the 

heuristic did not find the optimal (𝑒𝑟𝑟𝑜𝑟% =

(1 – 𝑐𝑚𝑎𝑥[ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐]/𝑐𝑚𝑎𝑥[𝑜𝑝𝑡𝑖𝑚𝑎𝑙]) × 100). 

Heuristics MA-BI and JA-BI are the best 

performers; for 16.2% of the total instances that 

MA-BI does not find the optimal solution, the 

mean error is 0.45% and the worst error is 2.14%. 

For the 16.6% of the total instances that JA-BI 

does not generate the optimal solution, the mean 

error is 0.46% and the worst error is 1.73%. 

Therefore, even in the cases where the optimal 

solution is not found, the error is on average less 

than 0.5%. 

Table 6 presents the percentage of instances per 

experimental level where a heuristic generated the 

best makespan solution for the relative 

benchmark experiments. As in the optimal 

benchmark experiments, the best overall 

performer is MA-BI which found 63.1% of the 

best solutions.  

Table 5. Mean and maximum error% for instances 

versus the optimal. 

Heuris

tic 

JA 

FI 

JA 

BI 

M

A 

FI 

M

A 

BI 

p1 

FI 

p1 

BI 

w1 

FI 

w1 

BI 

Mean 
0.5

0 

0.4

6 

0.5

3 

0.4

5 

1.0

4 

0.5

9 

0.8

7 

1.0

2 

Max. 
2.9

3 

1.7

3 

3.2

3 

2.1

4 

12.

30 

4.2

1 

6.6

0 

7.3

9 

Table 6. Percentage of the “best” makespan solutions 

generated by a heuristic 

 
Heuri

stic 

J

A 

FI 

J

A 

BI 

M

A 

FI 

M

A 

BI 

p1 

FI 

p1 

BI 

w

1 

FI 

w

1 

BI 

𝑛 10 
65

.6 

74

.4 

65

.6 

74

.4 

70

.6 

72

.5 

71

.9 

66

.9 

 15 
61

.9 

59

.4 

61

.3 

60

.6 

58

.1 

59

.4 

59

.4 

60

.0 

 20 
55

.6 

54

.4 

56

.3 

54

.4 

55

.0 

55

.6 

57

.5 

52

.5 

𝑝𝑟𝑎𝑛𝑔𝑒 hv_hv 
51

.7 

48

.3 

51

.7 

48

.3 

51

.7 

46

.7 

53

.3 

44

.2 

 hl_hl 
54

.2 

55

.8 

55

.8 

57

.5 

57

.5 

55

.8 

59

.2 

53

.3 

 hv_hl 
69

.2 

68

.3 

67

.5 

68

.3 

67

.5 

67

.5 

70

.0 

68

.3 

 hl_hv 
69

.2 

78

.3 

69

.2 

78

.3 

68

.3 

80

.0 

69

.2 

73

.3 

𝑤𝑟𝑎𝑛𝑔𝑒 lw_lw 
55

.0 

58

.3 

55

.8 

60

.0 

55

.0 

57

.5 

54

.2 

49

.2 

 
hw_h

w 

53

.3 

54

.2 

55

.0 

54

.2 

55

.8 

54

.2 

61

.7 

52

.5 

 
lw_h

w 

73

.3 

70

.0 

73

.3 

70

.0 

74

.2 

71

.7 

70

.8 

68

.3 

 
hw_l

w 

62

.5 

68

.3 

60

.0 

68

.3 

60

.0 

66

.7 

65

.0 

69

.2 

 
Overa

ll 

61

.0 

62

.7 

61

.0 

63

.1 

61

.3 

62

.5 

62

.9 

59

.8 
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However, in this set of experiments heuristic w1-

FI is the runner up performer, finding the best 

solution in 62.9% of the problems and dominating 

in five of the experimental levels. Six of the 

heuristics outperform the others in at least one 

experimental level, with w1-FI being the heuristic 

that outperforms the others in the most cases. As 

in the optimal benchmark experiment, none of the 

heuristic outperforms the others across all 

experimental levels and unlike the optimal 

benchmark experiments, the FI improvement 

heuristic outperforms the BI approach on some 

conditions.  

The results by experimental factor for the percent 

of “best” solutions found are shown in Figure 4. 

The results are relatively similar to those obtained 

for the optimal solution, for example, as 𝑛 

increased, heuristic performance decreased. 

Relative heuristic performance also changed at 

the different levels of 𝑛, where at 𝑛 =  10, 

heuristic MA-BI outperforms the rest, while at 

𝑛 =  20, heuristc w1-F1 is the best performer. 

The 𝑃𝑟𝑎𝑛𝑔𝑒  experimental factor had a significant 

effect on the overall performance: poor at hv_hv 

and hl_hl and good at hv_hl and hl_hv. At the 

hv_hv and hl_hv levels, there was a noticeable 

differentiation in relative performance; for 

example, at hv_hv, heuristic w1-FI outperformed 

all others and heuristic p1-BI performed relatively 

poorly, while at hl_hv, their relative performance 

“flips”, as p1-BI outperforms all others and w1-FI 

is one of the worst performers. 

The results related to experimental factor 𝑊𝑟𝑎𝑛𝑔𝑒 

are similar as heuristic performance depends on 

the specific level. The level hw_hw (where both 

machines deteriorate at the high level) is 

prominent given the highly notable difference in 

performance between the dominant heuristic (w1-

FI) and the rest.   

Table 7 presents the error characteristics when the 

heuristic does not find the best solution 

(𝑒𝑟𝑟𝑜𝑟% = (1 – 𝑐𝑚𝑎𝑥[ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐]/

𝑐𝑚𝑎𝑥[𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑎𝑙 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠]) × 100).  

 
Figure 4. Percentage of “best” solutions found by 

experimental factor for the makespan criteria 

Table 7. Mean and maximum error% for 

instances versus the “best” makespan solution 

Heuris

tic 

JA 

FI 

JA 

BI 

M

A 

FI 

M

A 

BI 

p1 

FI 

p1 

BI 

w1 

FI 

w1 

BI 

Mean 
0.6

9 

0.5

0 

0.6

8 

0.4

9 

0.6

0 

0.4

8 

0.5

7 

0.7

3 

Max 
6.1

9 

3.5

4 

6.1

9 

3.3

1 

6.2

2 

3.3

1 

6.0

9 

5.6

2 

Heuristic p1-BI, a heuristic that does not dominate 

under any of the experimental levels is the best 

performer in terms of the mean and the maximum 

error, although only surpassing the best 

performing MA-BI heuristic by a very small 

amount. In this case, the difference in 

performance among the heuristics is not as 
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notable as in the optimal benchmark experiments. 

Based on the complete set of experiments it is 

concluded that heuristic MA-BI is the best 

performer for the makespan criteria. 

3.3 Tardiness Results 

Table 8 presents for each experimental level the 

average tardiness and the percentage of times that 

at least one of the heuristics found the optimal 

solution. At least one of the heuristics found the 

optimal solution in all but one instance, a 99.9% 

success rate (959 out of 960). The heuristics 

provide an excellent approximation to the optimal 

within the analyzed experimental structure. 

Table 8. Mean average tardiness and % of optimal 

solutions found by at least one heuristic 

  𝑡𝑎𝑣𝑒 % 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

𝜃 1 29.2 100 

 1.5 50.7 100 

 2 83.5 99.7 

𝑛 6 50.9 100. 

 8 58.1 99.8 

𝑝𝑟𝑎𝑛𝑔𝑒  hv_hv 43.4 100 

 hl_hl 56.8 99.6 

 hv_hl 53.6 100 

 hl_hv 64.3 100 

𝑤𝑟𝑎𝑛𝑔𝑒  lw_lw 41.6 99.6 

 hw_hw 66.8 100 

 lw_hw 55.9 100 

 hw_lw 53.6 100 

 Overall 54.5 99.9 

The set of heuristics included in the average 

tardiness analysis are different than in the 

makespan analysis based on the relative 

performance of the complete set of heuristics for 

this criterion, noting in this case there are 22 

relevant heuristics. Table 9 presents the 

percentage of times each heuristic generated the 

optimal solution. The best two overall performers 

are p1-FI and d-FI which generated 88.9% and 

88.2% of the optimal solutions, respectively. 

Heuristic p1-FI outperformed all others in 7 

experimental levels, while d-FI outperformed all 

others in 3 experimental levels. Five of the 

heuristics dominate in at least one level. As it is 

the case in the makespan criteria for the optimal 

benchmark experiments, none of the initial job 

ordering heuristic dominates across the complete 

set, but for these experiments the FI improvement 

approach outperforms the BI approach.  

Table 10 presents the mean and maximum error 

versus the optimal for those instances where the 

heuristic did not find the optimal solution. 

Heuristic d-FI provides the smallest average error 

at 4.6% and ties for the smallest maximum error 

with 40.3%. The second heuristic that considers 

the due date parameter in the ordering process, s-

FI, ties with d-FI as the best overall performer for 

the maximum error. These results are notably 

different than those obtained for the makespan 

criteria where the mean error is smaller than 1.04 

% and the maximum is less than 12.5%.  

Table 9. Percentage of the optimal average tardiness 

solutions generated by a heuristic 
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w

1 
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95

.3 

96

.9 
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.7 

96

.3 

96

.9 
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.9 

96

.3 
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.9 
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.2 

88

.4 

86

.3 

88

.1 

80

.6 

88

.4 

88
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78

.4 

80
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78
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78

.4 
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78
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90
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90
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91
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89

.8 

91

.7 

87

.1 

90

.4 

89
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 8 
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.5 

85

.8 

83

.1 

84

.2 
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.0 

79

.8 
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v 

79

.2 
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.5 
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.3 
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.5 
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.9 
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.4 
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.0 
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91

.7 

90
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90
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90
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92
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92
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92
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88
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.4 
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.5 
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.9 

 
Over
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.4 

88
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88
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Figure 5. Percentage of optimal solutions per experimental factor for the average tardiness criteria 

Figure 5 shows heuristic performance per 

experimental factor for the percentage of optimal 

solutions found. The overall performance 

decreases as the number of jobs and the due date 

tightness ratio factors (𝑛 and 𝜃) increase. It is 

noted that heuristic p1-BI performs poorly for 

most of the levels for those two experimental 

factors. As in the makespan experiments, the 

relative performance of the heuristic changed 

notably at the different levels of the 𝑃𝑟𝑎𝑛𝑔𝑒 and 

𝑊𝑟𝑎𝑛𝑔𝑒 factors. It is noted that for 𝑃𝑟𝑎𝑛𝑔𝑒, 

heuristic p1-BI is the worst performer for three 

out of the four experimental levels, but for level 

hl_hv this heuristic is the best performer.  For the 

𝑊𝑟𝑎𝑛𝑔𝑒 parameter it is worth mentioning the 

relatively high performance level of heuristics d-

FI and p2-F1 for experimental levels lw_lw and 

hw_hw respectively. 

Table 10. Mean and maximum error% versus optimal. 

Heuri

stic 

WA 

FI 

d 

FI 

d 

BI 

s 

FI 

p1 

FI 

p1 

BI 

p2 

FI 

w1 

FI 

Mean 7.6 
4.

6 

6.

0 

5.

7 

6.

0 

13.

1 
6.6 7.2 

Max 
124

.2 

40

.3 

59

.2 

40

.3 

71

.8 

182

.9 

124

.2 

120

.5 

The percentage of instances per experimental 

level where a heuristic generated the best average 

tardiness solution for the relative benchmark 

experiments is presented in Table 11. For these 

experiments, s-FI is the best overall performer 

generating 62.6% of the best solutions. The two 

runner ups in terms of overall performance are p2-

FI and w1-FI. As in the previous cases, multiple 

heuristics dominate at least one experimental 

level, thus no dominant heuristic can be 

determined. In line with the previous results, the 

FI improvement heuristic does outperform the BI 

approach. The mean and maximum errors are 

presented in Table 12. As in the makespan case, a 

heuristic that does not dominate under any of the 

experimental levels is the best performer in terms 

of the mean and the maximum error, heuristic 

WA-FI. If having a small error and avoiding the 

maximum error is an important element of 

heuristic selection, heuristic WA-FI is the clear 

best overall performer.  

The tardiness results by experimental factor for 

the percent of “best” solutions found are 

illustrated in Figure 6. The effects are similar to 

those observed when evaluating heuristic 

performance versus the optimal solutions, 
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although the effects more remarkable. For 

example, at 𝜃 =  1 𝑎𝑛𝑑 𝑛 =  10, the percent 

found by the heuristics was in the 65-85% range, 

while at  𝜃 =  2 𝑎𝑛𝑑 𝑛 =  20, the range is 35 to 

55%. It is noted that this does not indicate an error 

versus the optimal as this value is unknown, but 

rather the inability of the heuristics to match each 

other’s performance. As in previous experiments, 

heuristic performance is affected by both 𝑃𝑟𝑎𝑛𝑔𝑒  

and 𝑊𝑟𝑎𝑛𝑔𝑒, and while no heuristic stands out as 

an excellent performer at particular levels of these 

factors, heuristic p1-BI stands out as one that is 

almost always outperformed. 

Table 11. Percentage of the “best” average tardiness 

solutions generated by a heuristic 
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.6 
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.6 
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.7 
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.4 
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.3 
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.6 
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.8 
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.8 
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all 
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.9 

Table 12. Mean and maximum error% for instances 

versus the “best” average tardiness solution 
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77.
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.7 
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.0 

50.

8 

50.

8 

 
Figure 6. Percentage of “best” solutions per 

experimental factor for the average tardiness criteria 

4. Conclusions 

This paper introduced a set of efficient heuristic 

approaches for solving the two-machine 

permutation flowshop problems while 

considering machine deterioration. The heuristic 

performance is assessed under two independent 

objectives: minimization of the makespan and 

minimization of the average tardiness. In the case 

of makespan minimization, eighteen heuristic 

approaches were developed based on different job 

characteristics. Similarly, a total of twenty-two 

heuristic approaches were elaborated when 

considering average tardiness minimization. A 

comprehensive experimental design was carried 

out considering variation of different 

experimental factors such as the number of jobs, 

the range of process time, the range of 

wear/deterioration rate, and the congestion ratio.  

The experimental factor ‘number of jobs’ has a 

significant impact in the problem complexity. 

Hence, this factor was considered at two size 

levels. The first level determined the optimal 

benchmark experiments where the heuristic 
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performance was evaluated versus the optimal 

solution. The relative benchmark experiments 

were defined by the second level. In this case, the 

heuristic performance was compared against the 

best-found solution. 

The results from the optimal benchmark 

experiments exhibited a 98.1% and 99.9% 

heuristics overall success rate when considering 

makespan and average tardiness minimization, 

respectively. As expected, the results show that 

the success factor decreases as the number of jobs 

increases. However, the success rate was nearly 

100% when the process time and 

wear/deterioration rate presented similar levels of 

variation at both machines. The top overall 

performers for makespan minimization were MA-

BI and JA-BI, which found 83.8% and 83.4% of 

the optimal solutions respectively. Furthermore, 

MA-BI and JA-BI had a mean error of 0.45% and 

0.46% respectively. In the case of average 

tardiness minimization, the best two overall 

performers were p1-FI and d-FI, which generated 

88.9% and 88.2% of the optimal solutions, 

respectively. Heuristic d-FI provided the overall 

smallest average error at 4.6%; in contrast, p1-FI 

had an average error of 6%. 

The relative benchmark experiments were 

compared versus the best-found solution. In 

alignment with the previous results, the heuristic 

performance decreases as the number of jobs 

increases. The top overall performers for 

makespan minimization were MA-BI and w1-FI, 

which found 63.1% and 62.9% of the ‘best’ 

solutions, respectively. However, p1-BI had the 

smallest overall mean error at 0.48%. In the case 

of average tardiness minimization, the best three 

overall performers were s-FI, p2-FI, and w1-FI, 

which generated 62.6%, 61.9%, and 61.9% of the 

optimal solutions, respectively. Heuristic WA-FI 

provided the overall smallest average error at 

2.74%; in contrast, s-FI had an average error of 

3.22%. 

Results showed that there is no heuristic that has 

full dominance in any combination of 

experimental factors. Furthermore, the different 

experimental settings had a notable role in the 

heuristic performance suggesting that all of them 

should be utilized when solving real case 

instances. Immediate future research streams are 

as follows: 1) The consideration of maintenance 

events that could help to mitigate the undesirable 

effect of machine deterioration. 2) The extension 

of the presented approach to the ‘m’ machines 

flowshop problem. 3) The analysis of more 

complex interdependencies among the process 

time and wear/deterioration rate with different job 

sequences. For example, given materials and 

mechanical properties, a specific sequence of jobs 

could generate a different deterioration rate than 

if they are performed in another specific 

sequence. The implementation of the results 

learned in this research in applied production and 

industrial engineering settings could provide 

significant competitive advantages to the 

organizations by reducing the makespan, which is 

directly related to operational costs, and the 

average tardiness, which is directly related to 

customer service. 
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