Contenido principal del artículo

Se estudió el uso de adsorbentes a partir de residuos de trigo (WR), celulosa de trigo (WC) y celulosa de trigo (MWC) tratada con Cloruro de Cetil trimetil amonio (CTAC), en la remoción de tartrazina en solución acuosa. Se evaluó el efecto de la dosis de adsorbente (15, 25 y 35 mg) y concentración inicial (40, 70 y 100 mg/L). La WC se obtuvo por doble extracción alcalina, y la modificación se realizó con CTAC al 25 %w. Los ensayos de adsorción se realizaron siguiendo un diseño de experimentos multifactorial 33, colocando 5 mL de solución en contacto con el bioadsorbente durante 24 h, a 30 ºC y 250 rpm. La concentración de tartrazina se determinó por UV-Vis a 500 nm. El análisis FTIR mostró que los adsorbentes preparados presentan una estructura diversa, con presencia de grupos funcionales como OH, carboxilo, amino y compuestos hidrocarbonados. La disminución de la dosis de adsorbente y el aumento de la concentración inicial tiene un efecto positivo sobre la eficiencia de remoción, logrando una remoción del 97.65 % con la MWC. La cinética de adsorción mostró que el equilibrio se alcanzó a los 480 min cuando se usó MWC y WC. El modelo de Freundlich ajustó los datos de equilibrio de adsorción, mostrando que la remoción se da en multicapas debido a interacciones químicas. La celulosa de trigo modificada con CTAC es un buen adsorbente de tartrazina en solución acuosa.

1.
Ortega Toro R, Tejada Tovar C, Villabona-Ortíz A, Aguilar-Bermúdez F, Pájaro-Moreno Y. Adsorción efectiva de Tartrazina por biomaterial modificado a partir de residuos de trigo. inycomp [Internet]. 29 de diciembre de 2021 [citado 20 de mayo de 2022];24(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11139

(1) Rovina K, Siddiquee S, Shaarani SM. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E 102) in Foodstuffs. Crit Rev Anal Chem. 2017;47(4):30-9–324. https://doi.org/10.1080/10408347.2017.1287558

(2) Gičević A, Hindija L, Karačić A. Toxicity of azo dyes in pharmaceutical industry. In: IFMBE Proceedings. 2020; 73:581–7. https://doi.org/10.1007/978-3-030-17971-7_88

(3) Alcantara-Cobos A, Gutiérrez-Segura E, Solache-Ríos M, Amaya-Chávez A, Solís-Casados DA. Tartrazine removal by ZnO nanoparticles and a zeolite-ZnO nanoparticles composite and the phytotoxicity of ZnO nanoparticles. Microporous Mesoporous Mater. 2020;302:110212. https://doi.org/10.1016/j.micromeso.2020.110212

(4) Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015;72:3–27. https://doi.org/10.1016/J.WATRES.2014.08.053

(5) Afroze S, Sen TK. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air Soil Pollut. 2018;229(7):225. https://doi.org/10.1007/s11270-018-3869-z

(6) Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: A review. Adv Colloid Interface Sci. 2014;209:172–84. https://doi.org/10.1016/j.cis.2014.04.002

(7) Tan CHC, Sabar S, Hussin MH. Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. South African J Chem Eng. 2018;26:11–24. https://doi.org/10.1016/j.sajce.2018.08.001

(8) De Lima Barizão AC, Silva MF, Andrade M, Brito FC, Gomes RG, Bergamasco R. Green synthesis of iron oxide nanoparticles for tartrazine and bordeaux red dye removal. J Environ Chem Eng. 2020;8(1):103618. https://doi.org/10.1016/j.jece.2019.103618

(9) Otavo-Loaiza RA, Sanabria-González NR, Giraldo-Gómez GI. Tartrazine Removal from Aqueous Solution by HDTMA-Br-Modified Colombian Bentonite. Sci World J. 2019;2019: 11. https://doi.org/10.1155/2019/2042563

(10) da Rocha HD, Reis ES, Ratkovski GP, da Silva RJ, Gorza FDS, Pedro GC, et al. Use of PMMA/(rice husk ash)/polypyrrole membranes for the removal of dyes and heavy metal ions. J Taiwan Inst Chem Eng. 2020;110:8–20. https://doi.org/10.1016/j.jtice.2020.03.003

(11) Reck IM, Paixão RM, Bergamasco R, Vieira MF, Vieira AMS. Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod. 2018;171:85–97. https://doi.org/10.1016/j.jclepro.2017.09.237

(12) Gautam RK, Gautam PK, Banerjee S, Rawat V, Soni S, Sharma SK, et al. Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. J Environ Chem Eng. 2015;3(1):79–88. https://doi.org/10.1016/j.jece.2014.11.026

(13) Mittal A, Kurup L, Mittal J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J Hazard Mater. 2007;146(1–2):243–8. https://doi.org/10.1016/j.jhazmat.2006.12.012

(14) Han Y, Cao X, Ouyang X, Sohi SP, Chen J. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere. 2016;145:336–41. https://doi.org/10.1016/j.chemosphere.2015.11.050

(15) Xu J, Krietemeyer EF, Boddu VM, Liu SX, Liu WC. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydr Polym. 2018;192:202–7. https://doi.org/10.1016/j.carbpol.2018.03.017

(16) Shiralipour R, Larki A. Pre-concentration and determination of tartrazine dye from aqueous solutions using modified cellulose nanosponges. Ecotoxicol Environ Saf. 2017;135:123–9. https://doi.org/10.1016/j.ecoenv.2016.09.038

(17) Litefti K, Freire MS, Stitou M, González-Álvarez J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci Rep. 2019;9(1):1–11. https://doi.org/10.1038/s41598-019-53046-z

(18) Mahmoud ME, Abdelfattah AM, Tharwat RM, Nabil GM. Adsorption of negatively charged food tartrazine and sunset yellow dyes onto positively charged triethylenetetramine biochar: Optimization, kinetics and thermodynamic study. J Mol Liq. 2020;318:114297. https://doi.org/10.1016/j.molliq.2020.114297

(19) Sahnoun S, Boutahala M. Adsorption removal of tartrazine by chitosan/polyaniline composite: Kinetics and equilibrium studies. Int J Biol Macromol. 2018;114:1345–53. https://doi.org/10.1016/j.ijbiomac.2018.02.146

(20) Jiang Z, Hu D. Molecular mechanism of anionic dyes adsorption on cationized rice husk cellulose from agricultural wastes. J Mol Liq. 2019;276:105–14. https://doi.org/10.1016/j.molliq.2018.11.153

(21) Fan C, Zhang Y. Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. J Geochemical Explor. 2018;188:95–100. https://doi.org/10.1016/j.gexplo.2018.01.020

(22) Al-Lagtah NMA, Al-Muhtaseb AH, Ahmad MNM, Salameh Y. Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons. Microporous Mesoporous Mater. 2016;225:504–14. https://doi.org/10.1016.j.micromeso.2016.01.043

(23) Rinaldi R, Yasdi Y, Hutagalung WLC. Removal of Ni (II) and Cu (II) ions from aqueous solution using rambutan fruit peels (Nephelium lappaceum L.) as adsorbent. In: AIP Conf Proc 2026; 2018:020098. https://doi.org/10.1063/1.5065058

(24) Hospodarova V, Singovszka E, Stevulova N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am J Anal Chem. 2018;9(6):303–10. https://doi.org/10.4236/ajac.2018.96023

(25) Johari K, Saman N, Song ST, Chin CS, Kong H, Mat H. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int Biodeterior Biodegrad. 2016;109:45–52. https://doi.org/10.1016/j.ibiod.2016.01.004

(26) Afshin S, Rashtbari Y, Shirmardi M, Vosoughi M, Hamzehzadeh A. Adsorption of basic violet 16 dye from aqueous solution onto mucilaginous seeds of Salvia sclarea: Kinetics and isotherms studies. Desalin Water Treat. 2019;161:365–75. https://doi.org/10.5004/dwt.2019.24265

(27) Saha N, Saba A, Reza MT. Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood. J Anal Appl Pyrolysis. 2019;137:138–45. https://doi.org/10.1016/j.jaap.2018.11.018

(28) Hu Q, Chen N, Feng C, Hu W, Liu H. Kinetic and isotherm studies of nitrate adsorption on granular Fe-Zr-chitosan complex and electrochemical reduction of nitrate from the spent regenerant solution. RSC Adv. 2016;6:61944–54.: https://doi.org/10.1039/c6ra04556a

(29) Silva FC, Lima LCB, Bezerra RDS, Osajima JA, Filho ECS. Chapter 5: Use of Cellulosic Materials as Dye Adsorbents — A Prospective Study. In: Cellulose - Fundamental Aspects and Current Trends. 2015. p. 115–32.

(30) Dawood S, Sen TK, Phan C. Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of congo red dye from aqueous solution by adsorption. Water Air Soil Pollut. 2014;225:1818. https://doi.org/10.1007/s11270-013-1818-4

(31) Mushtaq M, Nawaz H, Iqbal M, Noreen S. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies. J Environ Manage. 2016;176:21–33. https://doi.org/10.1016/j.jenvman.2016.03.013

(32) Magdy YH, Altaher H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J Environ Chem Eng. 2018;6(1):834–41. https://doi.org/10.1016/j.jece.2018.01.009

(33) Kırbıyık Ç, Pütün AE, Pütün E. Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation. Surfaces and Interfaces. 2017;8:182–92. https://doi.org/10.1016/j.surfin.2017.03.011

(34) Chukwuemeka-Okorie HO, Ekuma FK, Akpomie KG, Nnaji JC, Okereafor AG. Adsorption of tartrazine and sunset yellow anionic dyes onto activated carbon derived from cassava sievate biomass. Appl Water Sci. 2021;11(2):27. https://doi.org/10.1007/s13201-021-01357-w

(35) Banerjee S, Chattopadhyaya MC. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem. 2017;10:S1629–38. https://doi.org/10.1016/j.arabjc.2013.06.005

(36) Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater. 2020;393:122383. https://doi.org/10.1016/j.jhazmat.2020.122383

(37) Shen Z, Zhang Y, McMillan O, Jin F, Al-Tabbaa A. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environ Sci Pollut Res. 2017;24(14):12809–19. https://doi.org/10.1007/s11356-017-8847-2%0A%0A

(38) Zhang Y, Song X, Xu Y, Shen H, Kong X, Xu H. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J Clean Prod. 2019;210:366–75. https://doi.org/10.1016/j.jclepro.2018.11.041

(39) Brice DNC, Manga NH, Arnold BS, Daouda K, Victoire AA, Giresse NNA, et al. Adsorption of Tartrazine onto Activated Carbon Based Cola Nuts Shells: Equilibrium, Kinetics, and Thermodynamics Studies. Open J Inorg Chem. 2021;11(1):1–19. https://doi.org/10.4236/ojic.2021.111001

Descargas

Los datos de descargas todavía no están disponibles.