Solución de la ecuación de Rachford – Rice por homotopía diferencial

Resumen

En el presente trabajo se desarrolla una rutina de cálculo numérico para resolver la ecuación de Rachford-Rice Generalizada (RR-G) en sistemas de tres fases y múltiples componentes, fundamentado en el acople del método de sustitución sucesiva y el de continuación por homotopía diferencial, el cual se aplicó a diferentes tipo de mezclas en equilibrios de Vapor-Liquido-Liquido (EVLL), Vapor-Liquido-Solido (EVLS) y Liquido-Liquido-Liquido (ELLL). El algoritmo propuesto se probó con tres mezclas distintas a condiciones de temperatura, presión, composición y distintos componentes, encontrándose que la solución propuesta es estable y convergente para cualquier tipo de vector de inicio. Los resultados predicen de forma satisfactoria las fases en equilibrio, siendo el error mínimo del 1.9% en ELLL y el máximo igual a 15.47 % en EVLL.

Autores/as

  • Fiderman Machuca-Martínez Universidad del Valle
  • Miguel Angel-Mueses Universidad de Cartagena
  • José Antonio Lara-Ramos Universidad del Valle

Descargas

La descarga de datos todavía no está disponible.

Palabras clave

Citas

(1) Mueses MA, Machuca F. Una solución de la ecuación de rachford-rice para sistemas multifases aplicando el método newton-raphson, un parámetro de broyden y el flash negativo. Inf Tecnol. 2010;21(4):3–10. Doi: 10.4067/S0718-07642010000400002.

(2) Pan H, Imai M, Connolly M, Tchelepi H. Efficient and robust solver for multiphase Rachford-Rice equations in compositional and thermal simulations. Soc Pet Eng - SPE Reserv Simul Conf 2019, RSC 2019. 2019;(V):1–17.

(3) Nichita DV, Graciaa A. A new reduction method for phase equilibrium calculations. Fluid Phase Equilib. 2011;302(1–2):226–33. Doi: 10.1016/j.fluid.2010.11.007.

(4) Gao R, Yin X, Li Z. Hybrid Newton-successive substitution method for multiphase rachford-rice equations. Entropy. 2018;20(6):1–19. Doi: 10.3390/e20060452.

(5) Wankat PC. Ingeniería de procesos de separación. Ruben Fuerte Rivera, editor. 2da ed. Mexico: PEARSON EDUCACION; 2008. 768 p.

(6) Corredor EC, Deo MD. Effect of vapor liquid equilibrium on product quality and yield in oil shale pyrolysis. Fuel. 2018;234(July):1498–506. Doi: 10.1016/j.fuel.2018.07.085.

(7) Nino-Ruiz ED, Ardila C, Estrada J, Capacho J. A reduced-space line-search method for unconstrained optimization via random descent directions. Appl Math Comput. 2019;341:15–30. Doi: 10.1016/j.amc.2018.08.020.

(8) Nocedal J, Wright SJ. Numerical Optimization. 2006. (Springer Series in Operations Research and Financial Engineering book series (ORFE)).

(9) Florez WF, Gonzales JW, Hill AF, Lopez GJ, Lopez JD. Numerical Methods Coupled withRichardson Extrapolation for Computationof Transient Power Systems. Ing y Cienc. 2017;13(26):65–89. Doi: 10.17230/ingciencia.13.26.3.

(10) Leibovici CF, Neoschil J. A solution of Rachford-Rice equations for multiphase systems. Fluid Phase Equilib. 1995;112(2):217–21. Doi: 10.1016/0378-3812(95)02797-I.

(11) Oliveros-Muñoz JM, Jiménez-Islas H. Hyperspherical path tracking methodology as correction step in homotopic continuation methods. Chem Eng Sci. 2013;97:413–29. Doi: 10.1016/j.ces.2013.03.053.

(12) Petitfrere M, Nichita DV. On a choice of independent variables in Newton iterations for multiphase flash calculations. Fluid Phase Equilib. 2016;427:147–51. Doi: 10.1016/j.fluid.2016.06.050.

(13) Nichita DV, Leibovici CF. A rapid and robust method for solving the Rachford-Rice equation using convex transformations. Fluid Phase Equilib. 2013;353:38–49. Doi: 10.1016/j.fluid.2013.05.030.

(14) Li Y, Johns RT, Ahmadi K. A rapid and robust alternative to Rachford-Rice in flash calculations. Fluid Phase Equilib. 2012;316:85–97. Doi: 10.1016/j.fluid.2011.12.005.

(15) Nichita DV, Leibovici CF. Improved solution windows for the resolution of the Rachford-Rice equation. Fluid Phase Equilib. 2017;452:69–73. Doi: 10.1016/j.fluid.2017.08.020.

(16) Iranshahr a., Voskov D, Tchelepi H a. Generalized negative-flash method for multiphase multicomponent systems. Fluid Phase Equilib. 2010;299(2):272–84. Doi: 10.1016/j.fluid.2010.09.022.

(17) Coutinho J a. P, Pauly J, Daridon J. Modelling phase equilibria in systems with organic solid solutions. Comput Aided Prop Estim Process Prod Des. 2004;229–49.

(18) Leibovici CF, Nichita DV. A new look at multiphase Rachford-Rice equations for negative flashes. Fluid Phase Equilib. 2008;267(2):127–32. Doi: 10.1016/j.fluid.2008.03.006.

(19) Wasylkiewicz SK, Li YK, Satyro M a., Wasylkiewicz MJ. Application of a global optimization algorithm to phase stability and liquid-liquid equilibrium calculations. Fluid Phase Equilib. 2013;358:304–18. Doi: 10.1016/j.fluid.2013.08.030.

(20) Coutinho J a P, Knudsen K, Andersen SI, Stenby EH. A local composition model for paraffinic solid solutions. Chem Eng Sci. 1996;51(12):3273–82. Doi: 10.1016/0009-2509(95)00397-5.

(21) Stenby EH. Evaluation of activity coefficient models in prediction of alkane solid-liquid equilibria. Fluid Phase Equilib. 1995;103(1):23–39. Doi: 10.1016/0378-3812(94)02600-6.

(22) Néron a., Lantagne G, Marcos B. Computation of complex and constrained equilibria by minimization of the Gibbs free energy. Chem Eng Sci. 2012;82:260–71. Doi: 10.1016/j.ces.2012.07.041.

(23) Liu Q, Proust C, Gomez F, Luart D, Len C. The prediction multi-phase, multi reactant equilibria by minimizing the Gibbs energy of the system: Review of available techniques and proposal of a new method based on a Monte Carlo technique. Chem Eng Sci. 2020;216:115433. Doi: 10.1016/j.ces.2019.115433.

(24) Lapene A, Nichita DV, Debenest G, Quintard M. Three-phase free-water flash calculations using a new Modified Rachford-Rice equation. Fluid Phase Equilib. 2010;297(1):121–8. Doi: 10.1016/j.fluid.2010.06.018.

(25) Monroy-Loperena R. An efficient method to calculate multisolid-(wax) precipitation. Fluid Phase Equilib. 2013;348:70–8. Doi: 10.1016/j.fluid.2013.03.005.

(26) Figueiredo JR, Santos RG, Favaro C, Silva AFS, Sbravati A. Substitution-Newton-Raphson method applied to the modeling of a vapour compression refrigeration system using different representations of the thermodynamic properties of R-134a. J Brazilian Soc Mech Sci. 2002;24(3):158–68. Doi: 10.1590/S0100-73862002000300003.

(27) Nichita DV, Broseta D, de Hemptinne JC. Multiphase equilibrium calculation using reduced variables. Fluid Phase Equilib. 2006;246(1–2):15–27. Doi: 10.1016/j.fluid.2006.05.016.

(28) Malinen I, Kangas J, Tanskanen J. A new Newton homotopy based method for the robust determination of all the stationary points of the tangent plane distance function. Chem Eng Sci. 2012;84:266–75. Doi: 10.1016/j.ces.2012.08.037.

(29) Li Z, Firoozabadi A. Initialization of phase fractions in Rachford-Rice equations for robust and efficient three-phase split calculation. Fluid Phase Equilib. 2012;332:21–7. Doi: 10.1016/j.fluid.2012.06.021.

(30) Gaganis V, Marinakis D, Varotsis N. A general framework of model functions for rapid and robust solution of Rachford-Rice type of equations. Fluid Phase Equilib. 2012;322–323:9–18. Doi: 10.1016/j.fluid.2012.03.001.

(31) Heidemann R a., Michelsen ML. Instability of Successive Substitution. Ind Eng Chem Res. 1995;34(3):958–66. Doi: 10.1021/ie00042a032.

(32) Iliuta MC, Thomsen K, Rasmussen P. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes . Part A . Methanol-water-salt systems. 2000;55(14):2673-86. Doi: 10.1016/S0009-2509(99)00534-5.

Publicado
2020-05-26
| 262 |
Cómo citar
1.
Machuca-Martínez F, Angel-Mueses M, Lara-Ramos J. Solución de la ecuación de Rachford – Rice por homotopía diferencial. iyc [Internet]. 26may2020 [citado 20sep.2020];22(2):1-2. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/9504

Artículos más leídos del mismo autor/a

1 2 > >>