Reutilización de las aguas residuales municipales como estrategia de prevención y control de la contaminación hídrica. Caso de estudio: Cuencas de los ríos Bolo y Frayle (Colombia)

Resumen

En este estudio se evaluó la implementación del reúso de agua residual municipal en agricultura, como una estrategia de prevención y control de la contaminación hídrica. Esta evaluación se desarrolló como un proceso metodológico de planificación del recurso hídrico superficial en las cuencas de los ríos Bolo y Frayle, principales fuentes hídricas de los municipios de Candelaria, Florida y Pradera ubicados en la cuenca Alta del río Cauca en el suroccidente colombiano. Dentro de los principales resultados del estudio se construyeron escenarios de planificación del recurso hídrico de manera participativa con los actores en las cuencas de estudio, que fueron evaluados con la herramienta de modelación QUAL2K. A través de la formulación de los escenarios y en un horizonte de 20 años, fue posible observar el mejoramiento de la calidad del agua de los ríos Bolo y Frayle bajo la implementación de escenarios de reutilización de las aguas residuales municipales. Evaluando esta estrategia, se observó que el Oxígeno Disuelto (OD) puede incrementarse en 5 mg/l y 2.5 mg/l en los ríos Bolo y Frayle respectivamente. Adicionalmente, con la implementación del reúso agrícola es posible obtener una reducción de la carga contaminante vertida del 94% y 62% para los ríos Bolo y Frayle respectivamente, en relación con la carga producida al final del horizonte de planificación (año 2036).

Autores/as

Descargas

La descarga de datos todavía no está disponible.

Palabras clave

Citas

(1) Ministerio de Ambiente Vivienda y Desarrollo Territorial. Política Nacional para la Gestión Intergral del Recurso Hídrico. Bogotá D.C.; 2010. p. 124.

(2) Betancur T, Campiño AK, García V. Una metodología para la formulación de planes de ordenamiento del recurso hídrico. Revista Ingenierías Universidad de Medellín. 2011;10(19):67-78.

(3) Ministerio de Ambiente y Desarrollo Sostenible. Guía técnica para la formulación de planes de ordenamiento del recurso hídrico. Bogotá D.C.; 2014. p. 58.

(4) Moriarty P, Batchelor C, Laban P. Using Visions, Scenarios and Strategies within the EMPOWERS Planning Cycle for IWRM. 2005. EMPOWERS Working Paper No.: 4.

(5) Helmer R, Hespanhol I, World Health Organization (WHO). Water pollution control: a guide to the use of water quality management principles. London: E&FN Spon. 1997. p. 510.

(6) Brega Filho D, Mancuso P. Conceito de reúso de água. In: Pedro Caetano Sanches Mancuso, Hilton Felício dos Santos, editors. Reúso de Água Capitulo 2. Universidade de São Paulo - Facultade de Saúde Pública. ABES2003. p. 579.

(7) Manga J, Logreira N, Serrait J. Reuso de aguas residuales: Un recurso hídrico disponible. Ingeniería y desarrollo. 2001;9:12–21.

(8) Jaramillo MF. Potencial de reuso de agua residual doméstica como estrategia para el control de la contaminación en el valle geográfico del río Cauca. [master's thesis]. Cali: Universidad del Valle; 2014. 187 p.

(9) United Nations World Water Assessment Programme. The United Nations World Water Development Report 2017: Wastewater, The Untapped Resource. France: UNESCO; 2017.

(10) Jaramillo MF, Restrepo I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability. 2017;9(10):1734. Doi:10.3390/su9101734.

(11) Becerra C, Lopes A, Vaz I, Silva E, Manaia C, Nunes O. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environment Int. 2015;75:117-35. Doi: 10.1016/j.envint.2014.11.001.

(12) Winpenny J, Heinz I, Koo-Oshima S. Reutilización del Agua en Agricultura: ¿Beneficios Para Todos? Roma: Organización de las Naciones Unidas para la Alimentación y la Agricultura. Informe sobre temas hidricos (FAO). 2013. (Informes sobre temas hídricos). Report No.: 35;124.

(13) Foster S, Hirata R, Gomes D, D´Elia M, Paris M. Protección de la calidad del agua subterránea. Guía para empresas de agua, autoridades municipales y agencias ambientales. 1era ed. Mundi-Prensa, editor. Washington DC: Banco Mundial; 2003. p. 128.

(14) Bloom P. Soil pH and pH buffering. In: Sumner M, editor. Handbook of soil science: properties and processes. United State: CRC Press; 2000. p. B333-B52.

(15) Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the national academy of sciences of the USA. 2006;103(3):626-31. Doi: 10.1073/pnas.0507535103.

(16) Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and environmental microbiology. 2009;75(15):5111-20. Doi: 10.1128/AEM.00335-09.

(17) Rousk J, Bååth E, Brookes P, Lauber C, Lozupone C, Caporaso G, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME journal. 2010;4(10):1340-51. Doi: 10.1038/ismej.2010.58.

(18) Rattan R, Datta S, Chhonkar P, Suribabu K, Singh A. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture, Ecosystems & Environment. 2005;109(3):310-22. Doi: 10.1016/j.agee.2005.02.025

(19) Sparks D. Environmental soil chemistry. 2nd Ed. Massachusetts: Academic press; 2003. 352 p.

(20) White PJ, Greenwood DJ. Properties and management of cationic elements for crop growth. In: Gregory PJ, Nortcliff S, editors. Soil Conditions and Plant Growth. 1st ed. Hoboken: John Wiley & Sons, Ltd; 2013. p. 369–82.

(21) Julca A, Meneses L, Blas R, Bello S. La materia orgánica, importancia y experiencia de su uso en la agricultura. Idesia. 2006;24(1):49-61. Doi: 10.4067/S0718-34292006000100009.

(22) Andrade M, Marcet P, Reyzábal M, Montero M. Contenido, evolución de nutrientes y productividad en un suelo tratado con lodos residuales urbanos. Edafología. 2000;7(3):21-9.

(23) Macías F. Recuperación de suelos degradados, reutilización de residuos y secuestro de carbono. Una alternativa integral de mejora de la calidad ambiental. In Galicia: IBADER: Instituto de Biodiversidade Agraria e Desenvolvemento Rural; 2004. p. 49–56. (Recursos Rurais).

(24) Powlson DS, Smith P, Smith JU, editors. Evaluation of Soil Organic Matter Models: Using Existing Long-Term Datasets. Hertfordshire, UK: Springer Berlin Heidelberg; 1996. (NATO ASI Series): Series I: Global Environmental Change, Vol. 38.

(25) Thompson L, Troeh F. Los suelos y su fertilidad. 4ta Ed. Barcelona: Editorial Reverté; 1988. 678 p.

(26) Ranjard L, Richaume A. Quantitative and qualitative microscale distribution of bacteria in soil. Research in microbiology. 2001;152(8):707-16. Doi: 10.1016/S0923-2508(01)01251-7.

(27) Levy G, Lordian A, Goldstein D, Borisover M. Soil structural indices' dependence on irrigation water quality and their association with chromophoric components in dissolved organic matter. European journal of soil science. 2014;65(2):197-205. Doi: 10.1111/ejss.12116.

(28) Murcia M, Calderón O, Díaz J. Impacto de aguas grises en propiedades físicas del suelo. Tecno Lógicas. 2014;17(32):57-65.

(29) Pérez F, Madera C, Echeverri A, Urrutia N. Wastewater reuse: impact on the chemical and macronutritional attributes of an inceptisol irrigated with treated domestic wastewater. Ingeniería y competitividad. 2015;17(2):19-28. Doi: 10.25100/iyc.v17i2.2185.

(30) DeForest J, Zak D, Pregitzer K, Burton A. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil science society of America. 2004;68(1):132-8. Doi: 10.2136/sssaj2004.1320.

(31) Habteselassie M, Xu L, Norton J. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Frontiers in microbiology. 2013;4:326. Doi: 10.3389/fmicb.2013.00326.

(32) Haynes R, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient cycling in agroecosystems. 1998;51(2):123-37. Doi: 10.1023/A:1009738307837.

(33) Knobeloch L, Salna B, Hogan A, Postle J, Anderson H. Blue babies and nitrate-contaminated well water. Environmental health perspectives. 2000;108(7):675-8. Doi: 10.1289/ehp.00108675.

(34) Kuramae E, Gamper H, van Veen J, Kowalchuk G. Soil and plant factors driving the community of soil-borne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral pH. FEMS microbiology ecology. 2011;77(2):285-94. Doi: 10.1111/j.1574-6941.2011.01110.x.

(35) Ramírez K, Craine J, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global change biology. 2012;18(6):1918-27. Doi: 10.1111/j.1365-2486.2012.02639.x.

(36) Wu R. Eutrophication, water borne pathogens and xenobiotic compounds: environmental risks and challenges. Marine pollution bulletin. 1999;39(1-12):11-22.

(37) Zörb C, Senbayram M, Peiter E. Potassium in agriculture–status and perspectives. Journal of plant physiology. 2014;171(9):656-69. Doi: 10.1016/j.jplph.2013.08.008.

(38) Chee-Sanford J, Mackie R, Koike S, Krapac I, Lin YF, Yannarell A, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of environmental quality. 2009;38(3):1086-108. Doi: 10.2134/jeq2008.0128.

(39) Oliveira MLD, Coraucci FB, Roston D, Stefanutti R, Tonetti A. Evaluation of the productivity of irrigated eucalyptus grandis with reclaimed wastewater and effects on soil. Water, air & soil pollution. 2014;225(1830):1-7. Doi: 10.1007/s11270-013-1830-8.

(40) Henze M, Loosdrecht MCM, Ekama GA, Brdjanovic D, editors. Wastewater characterization. In: Biological Wastewater Treatment: Principles, Modelling and Design. 1st ed. London: IWA Publishing; 2008. p. 33–52.

(41) Jimenez B. Wastewater reuse to increase soil productivity. Water science and technology. 1995;32(12):173-80. Doi: 10.1016/0273-1223(96)00152-7.

(42) Lal K, Yadav R, Kaur R, Bundela D, Khan MI, Chaudhary M, et al. Productivity, essential oil yield, and heavy metal accumulation in lemon grass (cymbopogon flexuosus) under varied wastewater–groundwater irrigation regimes. Industrial Crops and Products. 2013;45:270-8. Doi: 10.1016/j.indcrop.2013.01.004.

(43) Liu Y, Haynes R. Origin, nature, and treatment of effluents from dairy and meat processing factories and the effects of their irrigation on the quality of agricultural soils. Critical reviews in environmental science and technology. 2011;41(17):1531-99. Doi: 10.1080/10643381003608359.

(44) Matheyarasu R, Seshadri B, Bolan NS, Naidu R. Abattoir wastewater irrigation increases the availability of nutrients and influences on plant growth and development. Water, air, & soil pollution. 2016:227-53. Doi: 10.1007/s11270-016-2947-3.

(45) Moscoso J. Aspectos técnicos de la agricultura con aguas residuales. Lima: Centro panamericano de ingeniería sanitaria y ciencias del ambiente (CEPIS). Organización panamericana de la salud (OPS); 1995.

(46) Candela L, Fabregat S, Josa A, Suriol J, Vigués N, Mas J. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain). Science of the total environment. 2007;374(1):26-35. Doi: 10.1016/j.scitotenv.2006.12.028.

(47) Ministerio de Agricultura y Desarrollo Rural. Decreto 1594 de 1984. Colombia: Diario Oficial No. 36.700 de 1984; 1984.

(48) Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015. Colombia: Diario Oficial No. 49.486 de 18 de abril de 2015; 2015.

(49) Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1207 de 2014. Colombia: Diario Oficial No. 49242 del 13 de agosto de 2014; 2014.

(50) Zainudin Z, Rahman N, Abdullah N, Mazlan N. Development of water quality model for Sungai Tebrau using QUAL2K. Journal of applied sciences. 2010;10(21):2748-50. Doi: 10.3923/jas.2010.2748.2750.

(51) Pai T-Y, Huang J-T, Wang S-C, Chang D-H, Huang K-J, Lee C-C, et al. Evaluation of ecological water purification processes in Dali River using QUAL2K. J Environ Eng Manag. 2010;20(4):239-43.

(52) Rashed AA, El-Sayed E. Simulating agricultural drainage water reuse using QUAL2K Model: case study of the Ismailia canal catchment area, Egypt. Journal of Irrigation and Drainage Engineering. 2014;140(5):05014001. Doi: 10.1061/(ASCE)IR.1943-4774.0000715.

(53) Jaramillo MF, Galvis A, Escobar M, Forni L, Purkey D, Siebel JS, et al. Integración de los modelos WEAP y QUAL2K para la simulación de la calidad agua de fuentes superficiales. Caso de estudio: Cuenca del río la Vieja, Colombia. Aqua-LAC. 2016;8(2):14-24.

(54) CVC, Universidad del Valle. Informe de diagnóstico en el proyecto: Convenio Interadministrativo CVC No. 025, Insumos técnicos para la eleboración del plan de ordenamiento del recurso hídrico de los ríos Bolo y Frayle. Cali; 2015.

(55) Corporación Autónoma Regional del Valle de Cauca (CVC). Reglamentación integral para el manejo y la administraticón del agua del río Bolo. Cali; 2012.

(56) Schwartz P. The Art of the Long View: Planning for the Future in an Uncertain World. 1st Ed. New York: Currency Doubleday; 1991. 292 p.

(57) Corparación Autónoma Regional del Valle del Cauca (CVC). Reglamentación del río Frayle. Cali; 2012.

(58) World Health Organization (WHO). Guidelines for the Safe Use of Wastewater, excreta and greywater - Volume 2. Wasterwater use in Agriculture. 1st ed. Francia; 2006. 182 p.

(59) Pescod MB. Wastewater treatment and use in agriculture. Rome. 1992 (FAO irrigation and dreinage). Report No. 47.

(60) Departamento Administrativo Nacional de Estadística (DANE). Consulta del úilmo censo. Población por departamentos. Bogotá, Colombia; 2005 [Consulted 2015/09/28]; Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-general-2005-1.

(61) Corporación Autónoma Regional del Quindío (CRQ), Corporación Autónoma Regional de Risaralda (CARDER), Corporación Autónoma Regional del Valle del Cauca (CVC), Universidad del Valle, Universidad del Quindío, Universidad Tecnológica de Pereira. Definición de la línea base en el proyecto: ordenación del recurso hídrico en la cuenca del río La Vieja mediante el desarrollo de una metodología con criterios de eficiencia económica e implementación de herramientas de apoyo a la decisión. Armenia, Colombia; 2011.

(62) Instituto Colombiano Agropecuario (ICA). Censo Pecuario Nacional. Bogotá, Colombia; 2015. [Consulted 2015/09/01]; Available from: http://www.ica.gov.co/getdoc/8232c0e5-be97-42bd-b07b-9cdbfb07fcac/Censos-2008.aspx.

(63) Asociación de Cultivadores de Caña de Azúcar de Colombia (ASOCAÑA). Informe Anual 2011-2012. Cali, Colombia; 2011.

(64) Chapra S, Pelletier G, Tao H. QUAL2K: A modeling framework for simulating river and stream water quality. Documentation and user manual. Version 2.07. Medford: Tufts University; 2007.

(65) Corporación Autónoma Regional del Valle del Cauca (CVC). Definción de conflictos por uso del suelo en el departamento del Valle del Cauca. En Sistema de información ambiental de la CVC. Cali, Colombia; 2010.

(66) CVC, Universidad del Valle. Informe ejecutivo en el proyecto:. Convenio Interadministrativo CVC No 025, Insumos técnicos para la eleboración del plan de ordenamiento del recurso hídrico de los ríos Bolo y Frayle. Cali, Colombia; 2015.

(67) Corporación Autónoma Regional del Valle del Cauca (CVC). Effects of climate change and vulnerability assessment. Informe ejecutivo en el Proyecto TWIN-LATIN. Hermando cuencas europeas y latinoamericanas para el desarrollo y manejo sostenible del agua. Cali, Colombia; 2008. 56 p.

(68) Corporación Autónoma Regional del Valle del Cauca (CVC). Plan de manejo del acuífero del Valle del Cauca. Cali, Colombia. 2000. 25 p.

Publicado
2020-05-26
| 663 |
Cómo citar
1.
Jaramillo MF, Cardona Zea DA, Galvis A. Reutilización de las aguas residuales municipales como estrategia de prevención y control de la contaminación hídrica. Caso de estudio: Cuencas de los ríos Bolo y Frayle (Colombia). iyc [Internet]. 26may2020 [citado 20sep.2020];22(2):1-1. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/9412