Contenido principal del artículo

Este artículo desarrolla un estudio a cerca de los recursos energéticos disponibles en micro redes, extrayendo y analizando bases de datos satelitales, con el fín de aplicarlos en las tecnologías disponibles. Por otra parte, una estimación de la demanda es llevada a cabo con base en medidas, y finalmente una optimización es llevada a realizada para determinar la mejor opción en términos de beneficios económicos con las correspondientes gráficas y análisis.

1.
Viñán Robalino WM, Guamán Andrade AR. Optimización del diseño de implementación de recursos energéticos distribuidos en Micro-Redes. inycomp [Internet]. 4 de julio de 2021 [citado 16 de agosto de 2022];23(2):e20610454. Disponible en: //revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10454

(1) Uribe-Perez N, Angulo I, De La Vega D, Arrinda A, Arzuaga T, Marron L, et al. TCP/IP capabilities over NB-PLC for Smart Grid applications: Field validation. 2017 IEEE Int Symp Power Line Commun its Appl ISPLC 2017. 2017;1–5. https://doi.org/10.1109/ISPLC.2017.7897118.

(2) Yu L, Nazir B, Wang Y. Intelligent power monitoring of building equipment based on Internet of Things technology. Comput Commun. 2020;157:76–84. https://doi.org/10.1016/j.comcom.2020.04.016.

(3) Strezoski L, Stefani I, Brbaklic B. Active Management of Distribution Systems with High Penetration of Distributed Energy Resources. In: EUROCON 2019 - 18th Int Conf Smart Technol. 2019;1–5. https://doi.org/10.1109/EUROCON.2019.8861748.

(4) Laschefski K. Conflicting urban and rural territorial livelihood metabolisms: The “explosion” of the “sustainable” urban-industrial pulp complex in Bahia – Brazil. Sustain Cities Soc. 2019;45:159–71. https://doi.org/10.1016/j.scs.2018.11.030

(5) Viñán WM, García EM. Review of Electricity Markets for Smart Nano-Grids. Ing Y Compet. 2019;21(2):1–10. https://doi.org/10.25100/iyc.v21i2.7462.

(6) Piedrahita-Velásquez CA, Ciro-Velásquez HJ, Arango-Tobón JC. Mejoramiento De La Respuesta Transitoria Y La Eficiencia Energética De Un Sistema De Refrigeración Con Compresor De Velocidad Variable Usando Metodología Anti-Windup. Ing Y Compet. 2018;20(2):9-18. https://doi.org/10.25100/iyc.v20i2.6752.

(7) Wen L, Zhou K, Yang S. A shape-based clustering method for pattern recognition of residential electricity consumption. J Clean Prod. 2019;212:475–88.: https://doi.org/10.1016/j.jclepro.2018.12.067.

(8) Sarkis J, Cordeiro JJ. Ecological modernization in the electrical utility industry: An application of a bads-goods DEA model of ecological and technical efficiency. Eur J Oper Res. 2012;219(2):386–95. http://dx.doi.org/10.1016/j.ejor.2011.09.033.

(9) Mohani SSUH, Awan AL, Akhtar S, Ansari H. Smart grid system. In: Proc 2016 SAI Comput Conf SAI 2016. 2016;1278–85. https://doi.org/10.1109/SAI.2016.7556144.

(10) Vargas-Pineda OI, Trujillo-González JM, Torres-Mora MA. Huella hídrica: Una herramienta eficaz para el desafío de la sostenibilidad del agua. Ing Y Compet. 2020;22(1):1–12. https://doi.org/10.25100/iyc.v22i1.8429.

(11) Gutiérrez M, Masip M. The Sun at TeV energies: Gammas, neutrons, neutrinos and a cosmic ray shadow. Astropart Phys. 2020;119:1–4. https://doi.org/10.1016/j.astropartphys.2020.102440.

(12) Haviv S, Revivo N, Kruger N, Rotschild C. Luminescent solar power - Quantum separation between free-energy and heat for cost-effective base-load solar energy generation. In: 2019 Conf Lasers Electro-Optics Eur Eur Quantum Electron Conf CLEO/Europe-EQEC. 2019;1. https://doi.org/10.1109/CLEOE-EQEC.2019.8872478.

(13) Jamieson RW, Sayre MB. Barley and identity in the Spanish colonial Audiencia of Quito: Archaeobotany of the 18th century San Blas neighborhood in Riobamba. J Anthropol Archaeol. 2010;29(2):208–18. http://dx.doi.org/10.1016/j.jaa.2010.02.003.

(14) Dönük A, El-Aff I, Yilmaz M. Metering and data processing in a micro-scale area for smart grid applications. In: 4th Int Istanbul Smart Grid Congr Fair, ICSG. 2016. https://doi.org/10.1109/SGCF.2016.7492432.

(15) Siddique R, Raza S, Mannan A, Khalil L, Alwaz N, Riaz M. A modified NSGA approach for optimal sizing and allocation of distributed resources and battery energy storage system in distribution network. Mater Today Proc. 2020;In press. https://doi.org/10.1016/j.matpr.2020.05.669.

(16) Maia ASC, Culhari E de A, Fonsêca V de FC, Milan HFM, Gebremedhin KG. Photovoltaic panels as shading resources for livestock. J Clean Prod. 2020;258(11):120551. https://doi.org/10.1016/j.jclepro.2020.120551.

(17) Ren G, Wan J, Liu J, Yu D. Characterization of wind resource in China from a new perspective. Energy. 2019;167:994–1010. https://doi.org/10.1016/j.energy.2018.11.032.

(18) Dinh HT, Yun J, Kim DM, Lee KH, Kim D. A Home Energy Management System with Renewable Energy and Energy Storage Utilizing Main Grid and Electricity Selling. IEEE Access. 2020;8:49436–50. https://doi.org/10.1109/ACCESS.2020.2979189.

(19) Garcia E, Isaac I. Demand response systems for integrating energy storage batteries for residential users. In: 2016 IEEE Ecuador Tech Chapters Meet ETCM. 2016. pp. 1-6. https://doi.org/10.1109/ETCM.2016.7750818.

(20) HOMER Energy LLC. HOMER Pro Version 3.7 User Manual. HOMER Energy. 2016;(August):416. Disponible en: http://www.homerenergy.com/pdf/HOMERHelpManual.pdf.