Contenido principal del artículo

Autores

El agua es un líquido indispensable tanto para subsistir como para el desarrollo de la sociedad. No obstante, actualmente la disponibilidad de agua preocupa a la comunidad mundial por la intensa aparición de escenarios de escasez física y económica del recurso. Razón por la cual, es necesario que este recurso tenga una gestión eficiente, de tal manera que satisfaga las necesidades actuales, sin comprometer su uso en el futuro. Este artículo, presentará un análisis conceptual de la dinámica del recurso con énfasis en la escasez, y la importancia de la gestión integral, alrededor de un indicador como la huella hídrica, vista como una herramienta eficaz para la toma de decisiones.

1.
Vargas-Pineda OI, Trujillo-González JM, Torres-Mora MA. Huella hídrica: Una herramienta eficaz para el desafío de la sostenibilidad del agua. inycomp [Internet]. 3 de enero de 2020 [citado 19 de abril de 2024];22(1):1-12. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/8814
(1) Garrick D, Hall JW. Water Security and Society: Risks, Metrics, and Pathways. Annu Rev Environ Resour [Internet]. 2014;39:611–39. Doi: 10.1146/annurevenviron-013012-093817.

(2) Food and Agriculture Organization of the United Nations (FAO). Exploring the concept of water tenure [Internet]. Roma; 2016. (LAND AND WATER DISCUSSION PAPER). Report No.: 10. Available from: http://www.fao.org/3/ai5435e.pdf.

(3) Bocchiola D, Nana E, Soncini A. Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agric Water Manag [Internet]. 2013;116:50–61. Doi: 10.1016/j.agwat.2012.10.009.

(4) Ibidhi R, Hoekstra AY, Gerbens-Leenes PW, Chouchane H. Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems. Ecol Indic [Internet]. 2017;77:304–13. Doi: 10.1016/j.ecolind.2017.02.022.

(5) Vargas-Pineda O, Trujillo-González J, Torres-Mora, M. La economía verde: un cambio ambiental y social necesario en el mundo actual. Rev Investig Agrar y Ambient [Internet]. 2017;8(2):175–86. Doi: 10.22490/21456453.2044.

(6) Lander E. La economía verde: el lobo se viste con piel de cordero [Internet]. 2011. 10p. Available from: https://www.tni.org/files/download/greeneconomy_es.pdf.

(7) Karakul AK. Educating labour force for a green economy and renewable energy jobs
in Turkey: A quantitave approach. Renew Sustain Energy Rev [Internet]. 2016;63:568–78. Doi: 10.1016/j.rser.2016.05.072.

(8) Pellicer-Martínez F, Martínez-Paz JM. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Sci Total Environ [Internet]. 2016;571:561–74. Doi: 10.1016/j.scitotenv.2016.07.022.

(9) Jury WA, Vaux-Jr. HJ. The Emerging Global Water Crisis: Managing Scarcity and Conflict Between Water Users. Adv Agron [Internet]. 2007;95:1–76. Doi: 10.1016/S0065-2113(07)95001-4.

(10) Lonergan SC. Water and Conflict: Rhetoric and Reality. In: Diehl P, Gleditsch NP, editors. Environmental Conflict An Anthology [Internet]. 1st ed. New York: Taylor & Francis group; 2001. p. 16. Available from: https://www.taylorfrancis.com/books/e/97 80429500794/chapters/10.4324/97804295 00794-6.

(11) United Nations Children’s Fund (UNICEF), World Health Organization (WHO). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines [Internet]. 2017. p 110. Available from: https://www.unicef.org/publications/index _96611.html.

(12) OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction [Internet]. OECD Publishing; 2012. Doi: 10.1787/9789264122246-en.

(13) Thomas RM. Blending qualitative & quantitative research methods in theses and dissertations [Internet]. Thousand Oaks, CA: SAGE Publications, Inc; 2003. Doi: 10.4135/9781412983525.

(14) Zeng Z, Liu J, Koeneman PH, Zarate E, Hoekstra AY. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China. Hydrol Earth Syst Sci [Internet]. 2012;16:2771–2781. Doi: 10.5194/hess16-2771-2012.

(15) AQUASTAT [Internet]. Rome: Food and Agriculture Organization of the United Nations (FAO); 2011. [Consulted 15/10/2019]. Available from: http://www.fao.org/nr/water/aquastat/data/ query/index.html?lang=en.

(16) Departamento Administrativo Nacional de Estadística (DANE). Boletín Técnico - Encuesta nacional de calidad de vida (ECV) 2017 [Internet]. Bogotá; 2017. 32 p. Available from:https://www.dane.gov.co/files/invest igaciones/condiciones_vida/calidad_vida/ Boletin_Tecnico_ECV_2017-v2.pdf.

(17) Bernal A, Rivas L, Peña P. Propuesta de un modelo de co-gestión para los Pequeños Abastos Comunitarios de Agua en Colombia. Rev Perfiles Latinoam [Internet]. 2014;22(43). Doi: 10.18504/pl2243-159-2014.

(18) Guzmán BL, Nava G, Bevilacqua PD. La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomédica [Internet]. 2015;35(Sup2):177–90. Doi: 0.7705/biomedica.v35i0.2511.

(19) Bedoya M, Contreras C, Ruiz F. Alteraciones del régimen hidrológico y de la oferta hídrica por variabilidad y cambio climático. In: Estudio Nacional del Agua [Internet]. IDEAM; 2010. p. 282–320. Available from:
http://documentacion.ideam.gov.co/openbi blio/bvirtual/021888/CAP7.pdf.

(20) García MC, Botero AP, Quiroga FAB, Robles EA. Variabilidad climática, cambio climático y el recurso hídrico en Colombia. Rev Ing [Internet]. 2012;(36):60–4. Doi: 10.16924%2Friua.v0i36.136.

(21) Biswas AK. Integrated Water Resources Management: A Reassessment. Water Int [Internet]. 2004;29(2):248–56. Doi: 10.1080/02508060408691775.

(22) Al-Saidi M. Conflicts and security in integrated water resources management. Environ Sci Policy [Internet]. 2017;73:38– 44. Doi: 10.1016/j.envsci.2017.03.015.

(23) Beltrán MJ, Velázquez E. La ecología política del agua virtual y huella hídrica. Reflexiones sobre la necesidad de un análisis crítico de los indicadores de flujo virtuales de agua en la economía. Rev Econ Crítica [Internet]. 2015;(20):44–56. Available from: http://revistaeconomiacritica.org/sites/defa ult/files/MariaBeltranEstherVelazquez_Ecologia-Politica-AguaVirtual.pdf.

(24) Chapagain A, Hoekstra A. Water footprints of nations [Internet]. 2004. (Value of Water Research Report Series). Report No.: 16. UNESCO-IHE. Available from: https://waterfootprint.org/media/download s/Report16Vol1_1.pdf.

(25) Allan T. Fortunately there are substitutes for water: otherwise our hydropolitical futures would be impossible. In: Proceedings of the Conference on Priorities for Water Resources Allocation and Management. Southampton: Overseas
Development Administration (ODA); 1992. p. 13–26.

(26) Hoekstra A, Hung P. A quantification of virtual water flows between nations in relation to international crop trade [Internet]. 2002. (Value of Water Research Report Series). Report No.: 11. UNESCOIHE. Available from: https://waterfootprint.org/media/download s/Report11_1.pdf.

(27) Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. The Water Footprint Assessment Manual: Setting the Global Standard [Internet]. 1st ed. London: Earthscan; 2011. 228 p. Available from: https://waterfootprint.org/media/download s/TheWaterFootprintAssessmentManual_2 .pdf.

(28) Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. Water Footprint Manual: State of the Art 2009 [Internet] Water Footprint Network, Enschede, the Netherlands; 2011, 131 p. Available from: https://waterfootprint.org/media/download s/WaterFootprintManual2009.pdf

(29) ru illo- on le ovar- ern nde N el ado- ar a ar as- humada orres- ora a huella h dr a en nuestras cuencas. 1. Guayuriba [Internet]. 1a ed. Villavicencio: Universidad de los Llanos, Ecopetrol S. A.; 2015. 80 p. Available from: http://icaoc.unillanos.edu.co/index.php/pu blicaciones/category/8-proyectocuencas?download=108:la-huella-hidricaen-nuestras-cuencas.

(30) Pellicer-Martínez F, Martínez-Paz JM. Grey water footprint assessment at the river basin level: Accounting method and case study in the Segura River Basin, Spain. Ecol Indic [Internet]. 2016;60:1173–83. Doi: 10.1016/j.ecolind.2015.08.032.

(31) Hurtado J. Metodología de la investigación holística. 3a ed. Caracas: Fundación SYPAL; 2000. 613 p.

(32) Ciro LL, Tabares JM. Metodología de la investigación holística. Una propuesta integradora desde las sociedades fragmentadas. Uni-pluriversidad [Internet]. 2012;2(3):22–3. Available from: https://aprendeenlinea.udea.edu.co/revista s/index.php/unip/article/view/12229.

(33) Kuiper D, Zarate E, Aldaya M, Morrison J, Schulte P, Schenck R. Water Footprint and Corporate Water Accounting for Resource Efficiency [Internet]. United Nations Environment Programme (UNEP); 2011. 184 p. Available from: http://www.unep.fr/shared/publications/pd f/DTIx1411xPA-WaterFootprint.pdf.

(34) Lamastra L, Suciu NA, Novelli E, Trevisan M. A new approach to assessing the water footprint of wine: An Italian case study. Sci Total Environ [Internet]. 2014;490:748–56. Doi: 10.1016/j.scitotenv.2014.05.063.

(35) Mekonnen MM, Hoekstra A. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sci [Internet]. 2010;14(7):1259–1276. Doi: 10.5194/hess-14-1259-2010.

(36) Naranjo-Merino CA, Ortíz-Rodriguez OO, Villamizar-G RA. Assessing Green and Blue Water Footprints in the Supply Chain of Cocoa Production: A Case Study in the Northeast of Colombia. Sustainability [Internet]. 2018;10(1):38. Doi:
10.3390/su10010038.

(37) Mekonnen MM, Hoekstra A. The green, blue and grey water footprint of production and consumption [Internet]. 2011. (Value of Water Research Report Series). Report No.: 50. UNESCO-IHE. Available from: https://waterfootprint.org/media/download s/Report50-NationalWaterFootprintsVol1.pdf.

(38) Liu C, Kroeze C, Hoekstra A, GerbensLeenes W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic [Internet]. 2012;18:42– 9. Doi: 10.1016/j.ecolind.2011.10.005.

(39) Deurer M, Green SR, Clothier BE, Mowat A. Can product water footprints indicate the hydrological impact of primary production? – A case study of New Zealand kiwifruit. J Hydrol [Internet]. 2011;408(3–4):246–56. Doi: 10.1016/j.jhydrol.2011.08.007.

(40) Ridoutt BG, Pfister S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang [Internet]. 2010;20(1):113–20. Doi: 10.1016/j.gloenvcha.2009.08.003.

(41) Berger M, Finkbeiner M. How to address water use in life cycle assessment. Journal of Sustainability. Sustainability [Internet]. 2010;2(4):919–44. Doi: 10.3390/su2040919.

(42) Vanham D, Hoekstra A, Bidoglio G. Potential water saving through changes in European diets. Environ Int [Internet]. 2013;61:45–56. Doi: 10.1016/j.envint.2013.09.011.

(43) Tillotson MR, Liu J, Guan D, Wu P, Xu Zhao, Zhang G, et al. Water Footprint Symposium: where next for water footprint and water assessment methodology? Int J Life Cycle Assess [Internet]. 2014;19(8):1561–1565. Doi: 10.1007/s11367-014-0770-x.

(44) Vidal-Abarca MR, Suárez-Alonso ML, Santos-Martín F, Martín-López B, Benayas J, Montes C. Understanding complex links between fluvial ecosystems and social indicators in Spain: An ecosystem services approach. Ecol Complex [Internet]. 2014;20:1–10. Doi: 10.1016/j.ecocom.2014.07.002.

(45) Boulay A-M, Hoekstra A, Vionnet S. Complementarities of Water-Focused Life Cycle Assessment and Water Footprint Assessment. Environ Sci Technol [Internet]. 2013;47(21):11926–7. Doi: 10.1021/es403928f.

(46) Chapagain AK, Hoekstra AY. Globalization of water: harin the planet’s freshwater resources. [Internet]. 2008. 220. Blackwell Publishing, Oxford, UK. Available from: https://www.researchgate.net/publication/ 270745057_Globalization_of_Water_Shar ing_the_Planet%27s_Freshwater_Resourc es.

(47) Smakhtin V, Revenga C, Döll P. Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments [Internet]. Colombo, Sri Lanka; 2004. (Comprehensive Assessment Research). Report No.: 2. Available from: https://www.protos.ong/sites/default/files/l ibrary_assets/W_MIL_E37_taking_accou nt.pdf.

(48) Ilaya-Ayza AE, Campbell E, Pérez-García R, Izquierdo J. La problemática de los sistemas de suministro de agua intermitentes. Aspectos generales. The issues of intermittent water supply. RIOC Rev Ing Obras Civiles [Internet]. 2015;5:33–41. Available from: https://revistaschilenas.uchile.cl/handle/22 50/99193.

(49) Charlon V, Tieri M, Frank F, Engler P. La huella del agua en la producción primaria de leche en Argentina. In: Información técnica de producción animal 2016 [Internet]. Santa Fe: Instituto Nacional de Tecnología Agropecuaria (INTA); 2016. p. 10–15. Available from: https://inta.gob.ar/sites/default/files/inta_i nformacio_tecnica_produccion_animal_20 16.pdf.

(50) Llosa ZB. Problemática de los ciclos biogeoquímicos, hidrológico y de nutrientes en la meseta central de Costa Rica. Rev Posgrado y Soc [Internet]. 2010;10(1):23–37. Doi: 10.22458/rpys.v10i1.1873.

(51) Mali SS, Singh DK, Sarangi A, Parihar SS. Assessing water footprints and virtual water flows in Gomti river basin of India. Current Science [Internet]. 2018;115(4):721–728. Doi: 10.18520/cs/v115/i4/721-728.

(52) Li C, Xu M, Wang X, Tan Q. Spatial analysis of dual-scale water stresses based on water footprint accounting in the Haihe River Basin, China. Ecological indicators [Internet]. 2018; 92: 254-267. Doi: https://doi.org/10.1016/j.ecolind.2017.02.0 46.

(53) Novoa V, Ahumada-Rudolph R, Rojas O, Munizaga J, Sáez K, ArumíJL. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecological indicators [Internet]. 2019: 98, 19-28. Doi: 10.1016/j.ecolind.2018.10.048

(54) Builes-Cedula ED. Cuantificación y análisis de sostenibilidad ambiental de la huella hídrica agrícola y pecuaria de la cuenca del Río Porce [Doctoral dissertation]. Universidad Nacional de Colombia, Medellín; 2013. Available from: http://bdigital.unal.edu.co/10765/1/101714 2094.2013.pdf.

(55) Tovar-Hernández NA, Trujillo-González JM, Muñoz-Yáñez SI, Torres-Mora MA, Zárate E. Evaluación de la sostenibilidad de los cultivos de arroz y palma de aceite en la cuenca del río Guayuriba (Meta, Colombia), a través de la evaluación de huella hídrica. Orinoquia [Internet]. 2017;21(1):52–63. Doi: 10.22579/20112629.394.

(56) hneir a huella h dri a omo un indi ador de sustenta ilidad su apli a i n en el er . Saber y Hacer [Internet]. 2015;2(1):32–47. Available from: http://revistas.usil.edu.pe/index.php/syh/ar ticle/view/40/39.

(57) Aldaya MM, Llamas MR. Water footprint analysis for the Guadiana river basin. Delft, The Netherlands: UNESCOIHE [Internet]. 2008; 3. Available from: https://waterfootprint.org/media/download s/Report35-WaterFootprint-Guadiana.pdf.

(58) Sallam OM. Water footprints as an indicator for the equitable utilization of shared water resources:(Case study: Egypt and Ethiopia shared water resources in Nile Basin). Journal of African Earth Sciences, [Internet]. 2014:100, 645-655. Doi: 10.1016/j.jafrearsci.2014.08.007.

(59) Calle EAD, Rivera HG, Sarmiento RV, Moreno P. Relaciones demanda -oferta de agua y el índice de escasez de agua como herramientas de evaluación del recurso hídrico colombiano. Rev Acad Colomb Ciencias Exactas, Físicas y Nat [Internet]. 2008;32(123):195–212. Available from: http://www.accefyn.com/revista/Vol_32/1 23/195-212.pdf.

(60) Gheewala SH, Silalertruksa T, Nilsalab P, Mungkung R, Perret SR, Chaiyawannakarn N. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water [Internet]. 2014;6(6):1698–718. Doi: 10.3390/w6061698.

(61) Madurga MRL. Los colores del agua, el agua virtual y los conflictos hídricos. In: Discurso Inaugural del año académico 2005-2006 [Internet]. Madrid: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales (RACSAM); 2005. p. 30. Available from: http://www.rac.es/ficheros/Discursos/DI_2 0080825_077.pdf.

(62) Mamian CAM, Erazo XAR, Velasco SM. Huella hídrica de una finca ganadera lechera bajo las condiciones agroecológicas del Valle del Cauca. Biotecnol en el Sect Agropecu e Ind [Internet]. 2016;14(2):47–56. Doi: 10.18684/BSAA(14)47-56.

(63) Castro R, Monge E, Rocha C, Rodríguez H. La gestión del recurso hídrico. Biocenosis [Internet]. 2007;20(1–2):36– 45. Available from: https://revistas.uned.ac.cr/index.php/bioce nosis/article/view/1298.

(64) Dong H, Geng Y, Sarkis J, Fujita T, Okadera T, Xue B. Regional water footprint evaluation in China: A case of
Liaoning. Sci Total Environ [Internet]. 2013;442:215–24. Doi: 10.1016/j.scitotenv.2012.10.049.

(65) Delgado-García S, Trujillo-González J, Torres-Mora M. La huella hídrica como una estrategia de educación ambiental enfocada a la gestión del recurso hídrico: ejercicio con comunidades rurales de Villavicencio. Rev Luna Azul [Internet]. 2013;(36):70–7. Available from: http://190.15.17.25/lunazul/downloads/Lu nazul36_6.pdf.

(66) Ercin AE, Hoekstra A. Water footprint scenarios for 2050: A global analysis. Environ Int [Internet]. 2014;64:71–82. Doi: 10.1016/j.envint.2013.11.019.

(67) Lopez LIF, Bautista-Capetillo C. Green and Blue Water Footprint Accounting for Dry Beans (Phaseolus vulgaris) in Primary Region of Mexico. Sustainability [Internet]. 2015;7(3):3001–16. Doi: 10.3390/su7033001.

(68) Vanham D, Gawlik BM, Bidoglio G. Cities as hotspots of indirect water consumption: The case study of Hong Kong. Journal of Hydrology [Internet]. 2019; 573: 1075-1086. Doi: 10.1016/j.jhydrol.2017.12.004.

(69) Hoekstra A. A critique on the waterscarcity weighted water footprint in LCA. Ecol Indic [Internet]. 2016;66:564–73. Doi: 10.1016/j.ecolind.2016.02.026.

(70) Xinchun C, Mengyang W, Rui S, La Z, Dan C, Guangcheng S, Shuhai T. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Science of the Total Environment [Internet]. 2018;610:84-93. Doi: 10.1016/j.scitotenv.2017.08.011.

(71) Chapagain AK, Hoekstra AY. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. [Internet]. 2011; 70 (4), 749e758. Doi: 10.1016/j.ecolecon.2010.11.012.

(72) Shrestha S, Chapagain R, Babel MS. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Science of the Total Environment, [Internet]. 2017: 599, 689-699. Doi: 10.1016/j.scitotenv.2017.05.028.

(73) Pérez-Rincón MA, Hurtado IC, Restrepo S, Bonilla SP, Calderón H, Ramírez A. Water footprint messure method for tilapia, cachama and trout production: study cases to Valle del Cauca (Colombia). Ingeniería y competitividad [Internet]. 2017; 19(2): 115-126. Doi: 10.25100/iyc.v19i2.5298.

(74) Mamian CA, Ximena Erazo A, Velasco S. Huella hídrica de una finca ganadera lechera bajo las condiciones agroecológicas del Valle del Cauca. Biotecnología en el Sector Agropecuario y Agroindustrial [Internet]. 2016; 14(2): 4756. Doi: 10.18684/BSAA(14)47-56.

(75) Murphy IJ, de Boer M, van Middelaar CE, Holden NM. Shalloo L, Curran TP, Upton J. Water footprinting of dairy farming in Ireland. J. Clean. Prod [Internet]. 2017; 140, 547–555. Doi: 10.1016/j.jclepro.2016.07.199.

(76) Hosseinian SM, Nezamoleslami R. Water Footprint and Virtual Water Assessment in Cement Industry: A Case Study in Iran. J. Clean. Prod. [Internet]. 2018;172, 2454–2463. Doi: 10.1016/j.jclepro.2017.11.164.

(77) Ene SA, Teodosiu C, Robu B, Volf I. Water footprint assessment in the winemaking industry: A case study for a Romanian medium size production plant. J. Clean. Prod. [Internet]. 2013: 43, 122–135 Doi: 10.1016/j.jclepro.2012.11.051.

(78) Ibáñez GR, Ruíz JM, Sánchez MR, López JC. A corporate water footprint case study: The production of Gazpacho, a chilled vegetable soup. Water resources and industry [Internet]. 2017; 17: 34-42. Doi: 10.1016/j.wri.2017.04.001.

(79) Lambooy T. Corporate social responsibility: sustainable water use. J Clean Prod [Internet]. 2011;19(8):852–66. Doi: 10.1016/j.jclepro.2010.09.009.

(80) Vargas-Pineda Ó, Trujillo-González J, Torres-Mora M. Análisis de la inclusión de aspectos ambientales en microempresas agroindustriales de la ciudad de Villavicencio, Colombia. Prod + Limpia [Internet]. 2017;12(1):115–23. Doi: 10.22507/pml.v12n1a12.